7-spheres-3d

Python scripts to generate 3D models of some complex curves

NameSizeMode
..
model.py 5361B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""
Python script to generate 3D models of some surfaces using the methods of [1]

  [1]: Hanson, Andrew J.
       "A Construction for Computer Visualization of Certain Complex Curves."
       (1994).
       https://homes.luddy.indiana.edu/hansona/papers/CP2-94.pdf
"""

import numpy as np
import numpy.linalg as la
from typing import List, Tuple, Iterator, Callable

Vector3     = np.ndarray[Tuple[3], np.dtype[np.float64]]
Patch       = np.ndarray[Tuple[3, int, int], np.dtype[np.float64]]
ComplexGrid = np.ndarray[Tuple[int, int], np.dtype[np.complex128]]
Projection  = Callable[[ComplexGrid, ComplexGrid], Patch]

class Model:
    def __init__(self, p: Projection):
        self.patches: List[Patch] = []
        self.projection = p

    def append_patch(self, z1: ComplexGrid, z2: ComplexGrid):
        """
        Appends a 2D array of points in C^2 to the model
        and updates the bounding box
        """
        self.patches.append(self.projection(z1, z2))

    def vertices(self) -> Iterator[Vector3]:
        """
        Iterate through the vertices of the mesh
        """

        return (x[:, j, i] for x in self.patches
                for i in range(x.shape[2]) for j in range(x.shape[1]))

    def write_obj(self, path: str):
        """
        Exports the model to the an OBJ file at `path`
        """
        with open(path, "w") as f:
            vs = set()       # vertices
            eff_vis = list() # effective indixes

            f.write("# vertices\n")

            vi = 0 # OBJ indices start at 1
            for x1, x2, x3 in self.vertices():
                v = f"{x1:.3f} {x2:.3f} {x3:.3f}"
                eff_vis.append(vi)

                if v not in vs:
                    vs.add(v)
                    vi += 1

                    f.write(f"v {v}\n")

            f.write("\n# faces\n")

            v_i = 0
            fs = set() # faces
            for patch in self.patches:
                _, cols, rows = patch.shape

                for theta_i in range(rows - 1):
                    for xi_i in range(cols - 1):
                        v1 = eff_vis[v_i + xi_i + theta_i * cols]
                        v2 = eff_vis[v_i + xi_i + (theta_i + 1) * cols]
                        v3 = eff_vis[v_i + (xi_i + 1) + theta_i * cols]
                        v4 = eff_vis[v_i + (xi_i + 1) + (theta_i + 1) * cols]

                        if (v1, v2, v3) not in fs:
                            fs.add((v1, v2, v3))
                            f.write(f"f {v1} {v2} {v3}\n")
                        if (v2, v4, v3) not in fs:
                            fs.add((v1, v2, v3))
                            f.write(f"f {v2} {v4} {v3}\n")

                v_i += rows * cols

def normalized_p(z1: ComplexGrid, z2: ComplexGrid) -> Patch:
    "Projection R^4 -> S^3 + inclusion R^3 -> S^3"
    assert z1.shape == z2.shape

    z = np.stack((z1, z2), axis=0)
    w = z/la.norm(z, axis=0)
    v = np.vstack([w.real, w.imag])
    x = v[:3, :, :]/(1 - v[3, :, :])

    return x

def riemman_sphere_p(z1: ComplexGrid, z2: ComplexGrid) -> Patch:
    "Riemman-sphere transform + projection on the first 3 coordinates"
    assert z1.shape == z2.shape

    norm_sqrd = z1.real ** 2 + z1.imag ** 2 + z2.real ** 2 + z2.imag ** 2

    u0 = 2 * (norm_sqrd/4)
    u1 = z1.real
    u2 = z1.imag

    return np.vstack([u0, u1, u2])/(1 + norm_sqrd/4)

def s(k: int, n: int) -> np.complex128:
    return np.exp(2 * np.pi * 1j * k / n)

EPS = 0.1
XI_MAX = 15

def fermat_surface(n: int, eps: float = EPS, xi_max: float = XI_MAX) -> Model:
    """
    Returns a model of the Fermat surface z1^n + z2^n = 1
    """
    if n <= 0:
        raise ValueError(f"Parameter \"n\" should be positive: n = {n}")

    m = Model(normalized_p)

    theta, xi = np.meshgrid(np.arange(0, np.pi / 2 + eps, eps),
                            np.arange(-xi_max, xi_max + eps, eps))

    for k1 in range(n):
        for k2 in range(n):
            u1 = (np.exp(xi + 1j * theta)+np.exp(-xi - 1j * theta))/2
            z1 = s(k1, n) * (u1**(2/n))
            u2 = (np.exp(xi + 1j * theta)-np.exp(-xi - 1j * theta))/2j
            z2 = s(k2, n) * (u2**(2/n))
            z = np.stack((z1, z2), axis=0)

            m.append_patch(z)

    return m

def brieskorn_surface(z3: complex, n: int,
                      patches: Iterator[Tuple[int, int]] = None,
                      eps: float = EPS, xi_max: float = XI_MAX) -> Model:
    """
    Returns the model of the Brieskorn surface z1^(6 n - 1) + z2^3 + z3^2 = 0
    """
    if not (1 <= n <= 11):
        raise ValueError(f"\"n\" should be in between 1 and 11: n = {n}")

    if abs(z3) > 1:
        raise ValueError(f"\"z3\" should have norm smaller than 1: z3 = {z3}")

    k0 = 6*n - 1

    if patches is None:
        patches = ((k1, k2) for k1 in range(3) for k2 in range(k0))

    m = Model(normalized_p)

    theta, xi = np.meshgrid(np.arange(0, np.pi / 2 + eps, eps),
                            np.arange(-xi_max, xi_max + eps, eps))

    for k1, k2 in patches:
        if not (0 <= k1 < 3) or not (0 <= k2 < k0): continue

        u1 = (np.exp(xi + 1j * theta)-np.exp(-xi - 1j * theta))/2j
        z1 = -(z3**(2/k0)) * s(k2, k0) * (u2**(2/k0))
        u2 = (np.exp(xi + 1j * theta)+np.exp(-xi - 1j * theta))/2
        z2 = -(z3**(2/3)) * s(k1, 3) * (u1**(2/3))

        m.append_patch(z2, z1)

    return m