a-conjecture-of-mine
An exercise on polyglossy: the same problem solved on multiple languages
proof.tex (1393B)
1 \documentclass{article} 2 \usepackage{amsmath, amssymb, amsthm} 3 4 \newtheorem*{conjecture}{Conjecture} 5 \renewcommand{\qedsymbol}{$\blacksquare$} 6 \newcommand{\Mod}{\;(\textup{mod} \; 9)} 7 8 \title{A Conjecture of Mine} 9 \author{Pablo Emilio Escobar Gaviria} 10 \date{August 15, 2020} 11 12 \begin{document} 13 \maketitle 14 15 \begin{conjecture} 16 Let \(S : \mathbb{N} \rightarrow \mathbb{N}\) be the sum of the digits of a 17 natural number. Then \(S(n + m) \equiv S(n) + S(m) \Mod\) for all natural 18 numbers \(n\) and \(m\). 19 \end{conjecture} 20 21 \begin{proof} 22 If \(n = n_0 \cdot 10^0 + \cdots + n_k \cdot 10^k \in \mathbb{N}\) then: 23 24 \[ 25 \begin{split} 26 n 27 & = n_0 \cdot 10^0 + \cdots + n_k \cdot 10^k \\ 28 & = n_0 \cdot (10^0 - 1 + 1) + \cdots + n_k \cdot (10^k - 1 + 1) \\ 29 & = (n_0 \cdot (10^0 - 1) + \cdots + n_k \cdot (10^k - 1)) 30 + (n_0 + \cdots + n_k) \\ 31 & = S(n) + n_0 \cdot (10^0 - 1) + \cdots + n_k \cdot (10^k - 1) 32 \end{split} 33 \] 34 35 Therefore: 36 37 \[ 38 \begin{split} 39 n 40 & \equiv S(n) + n_0 \cdot (10^0 - 1) + \cdots + n_k \cdot (10^k - 1) \\ 41 & \equiv S(n) + 0 + \cdots + 0 \\ 42 & \equiv S(n) \Mod 43 \end{split} 44 \] 45 46 Similarly, if \(m \in \mathbb{N}\) then \(m \equiv S(m) \Mod\). Finally: 47 48 \[ 49 \begin{split} 50 S(n + m) 51 & \equiv n + m \\ 52 & \equiv S(n) + S(m) \Mod 53 \end{split} 54 \] 55 \end{proof} 56 \end{document} 57