global-analysis-and-the-banach-manifold-of-class-h1-curvers
Riemannian Geometry course project on the manifold H¹(I, M) of class H¹ curves on a Riemannian manifold M and its applications to the geodesics problem
references.bib (1389B)
1 @book{klingenberg, 2 title={Riemannian Geometry}, 3 author={Wilhelm Klingenberg}, 4 isbn={9783110905120}, 5 series={De Gruyter Studies in Mathematics}, 6 year={2011}, 7 publisher={De Gruyter} 8 } 9 10 @book{lang, 11 title = {Fundamentals of Differential Geometry}, 12 author = {Serge Lang}, 13 publisher = {Springer}, 14 isbn = {9780387985930}, 15 year = {1999}, 16 series = {Graduate Texts in Mathematics}, 17 edition = {1}, 18 } 19 20 @misc{unitary-group-strong-topology, 21 doi = {10.48550/ARXIV.1309.5891}, 22 author = {Martin Schottenloher}, 23 title = {The Unitary Group In Its Strong Topology}, 24 publisher = {arXiv}, 25 year = {2013}, 26 } 27 28 @book{palais, 29 title = {Critical Point Theory and Submanifold Geometry}, 30 author = {Richard Palais, Chuu-lian Terng}, 31 publisher = {Springer}, 32 isbn = {3540503994}, 33 year = {1988}, 34 series = {Lecture Notes in Mathematics}, 35 } 36 37 @article{eells, 38 title={A setting for global analysis}, 39 author={James Eells, Jr.}, 40 journal={Bulletin of the American Mathematical Society}, 41 volume={72}, 42 number={5}, 43 pages={751--807}, 44 year={1966} 45 } 46 47 @book{gorodski, 48 title = {An introduction to Riemannian geometry}, 49 author = {Claudio Gorodski}, 50 edition = {Preliminary version 3}, 51 year = {2022}, 52 month = jun, 53 url = {https://www.ime.usp.br/~gorodski/teaching/mat5771-2022/master07-05-2022.pdf}, 54 } 55