global-analysis-and-the-banach-manifold-of-class-h1-curvers
Riemannian Geometry course project on the manifold H¹(I, M) of class H¹ curves on a Riemannian manifold M and its applications to the geodesics problem
structure.tex (24271B)
1 \section{The Structure of \(H^1(I, M)\)}\label{sec:structure} 2 3 Throughout this section let \(M\) be a finite-dimensional Riemannian manifold. 4 As promised, in this section we will highlight the differential and Riemannian 5 structures of the space \(H^1(I, M)\) of class \(H^1\) curves in a \(M\). The 6 first question we should ask ourselves is an obvious one: what is \(H^1(I, 7 M)\)? Specifically, what is a class \(H^1\) curve in \(M\)? 8 9 Given an interval \(I\), recall that a continuous curve \(\gamma : I \to 10 \mathbb{R}^n\) is called \emph{a class \(H^1\)} curve if \(\gamma\) is 11 absolutely continuous, \(\dot \gamma(t)\) exists for almost all \(t \in I\) and 12 \(\dot\gamma \in H^0(I, \mathbb{R}^n) = L^2(I, \mathbb{R}^n)\). It is a well 13 known fact that the so called \emph{Sobolev space \(H^1([0, 1], 14 \mathbb{R}^n)\)} of all class \(H^1\) curves in \(\mathbb{R}^n\) is a Hilbert 15 space under the inner product given by 16 \[ 17 \langle \gamma, \eta \rangle_1 18 = \int_0^1 \gamma(t) \cdot \eta(t) + \dot\gamma(t) \cdot \dot\eta(t) \; \dt 19 \] 20 21 Finally, we may define\dots 22 23 \begin{definition} 24 Given an \(n\)-dimensional manifold \(M\), a continuous curve \(\gamma : I 25 \to M\) is called \emph{a class \(H^1\)} curve if \(\varphi_i \circ \gamma : 26 J \to \mathbb{R}^n\) is a class \(H^1\) curve for any chart \(\varphi_i : U_i 27 \subset M \to \mathbb{R}^n\) -- i.e. if \(\gamma\) can be locally expressed 28 as a class \(H^1\) curve in terms of the charts of \(M\). We'll denote by 29 \(H^1(I, M)\) the set of all class \(H^1\) curves \(I \to M\). 30 \end{definition} 31 32 \begin{note} 33 From now on we fix \(I = [0, 1]\). 34 \end{note} 35 36 Notice in particular that every piece-wise smooth curve \(\gamma : I \to M\) is 37 a class \(H^1\) curve. This answer raises and additional question though: why 38 class \(H^1\) curves? The classical theory of the calculus of variations -- as 39 described in \cite[ch.~5]{gorodski} for instance -- is usually exclusively 40 concerned with the study of piece-wise smooth curves, so the fact that we are 41 now interested a larger class of curves -- highly non-smooth curves, in fact -- 42 \emph{should} come as a surprise to the reader. 43 44 To answer this second question we return to the case of \(M = \mathbb{R}^n\). 45 Denote by \({C'}^\infty(I, \mathbb{R}^n)\) the space of piece-wise curves in 46 \(\mathbb{R}^n\). As described in section~\ref{sec:introduction}, we would like 47 \({C'}^\infty(I, \mathbb{R}^n)\) to be a Banach manifold under which both the 48 energy functional and the length functional are smooth maps. As most function 49 spaces, \({C'}^\infty(I, \mathbb{R}^n)\) admits several natural topologies. 50 Some of the most obvious candidates are the uniform topology and the topology 51 of the \(\norm\cdot_0\) norm, which are the topologies induced by the norms 52 \begin{align*} 53 \norm{\gamma}_\infty & = \sup_t \norm{\gamma(t)} \\ 54 \norm{\gamma}_0 & = \sqrt{\int_0^1 \norm{\gamma(t)}^2 \; \dt} 55 \end{align*} 56 respectively. 57 58 The problem with the first candidate is that \(L : {C'}^\infty(I, \mathbb{R}^n) 59 \to \mathbb{R}\) is not a continuous map under the uniform topology. This can 60 be readily seen by approximating the curve 61 \begin{align*} 62 \gamma : I & \to \mathbb{R}^2 \\ 63 t & \mapsto (t, 1 - t) 64 \end{align*} 65 with ``staircase curves'' \(\gamma_n : I \to \mathbb{R}^n\) for larger and 66 larger values of \(n\), as shown in figure~\ref{fig:step-curves}: clearly 67 \(\gamma_n \to \gamma\) in the uniform topology, but \(L(\gamma_n) = 2\) does 68 not approach \(L(\gamma) = \sqrt 2\) as \(n\) approaches \(\infty\). 69 70 \begin{figure}[h] 71 \centering 72 \begin{tikzpicture} 73 \draw (4, 1) -- (1, 4); 74 \draw (4, 1) -- (4, 2) 75 -- (3, 2) 76 -- (3, 3) node[right]{$\gamma_n$} 77 -- (2, 3) node[left]{$\gamma$} 78 -- (2, 4) 79 -- (1, 4); 80 \draw[dotted] (4.5, .5) -- (4, 1); 81 \draw[dotted] (.5, 4.5) -- (1, 4); 82 \draw (1, 4.3) -- (2, 4.3); 83 \draw (1, 4.2) -- (1, 4.4); 84 \draw (2, 4.2) -- (2, 4.4); 85 \node[above] at (1.5, 4.3) {$\sfrac{1}{n}$}; 86 \end{tikzpicture} 87 \caption{A diagonal line representing the curve $\gamma$ overlaps a 88 staircase-like curve $\gamma_n$, whose steps measure $\sfrac{1}{n}$ in 89 width and height.} 90 \label{fig:step-curves} 91 \end{figure} 92 93 The issue with this particular example is that while \(\gamma_n \to \gamma\) 94 uniformly, \(\dot\gamma_n\) does not converge to \(\dot\gamma\) in the uniform 95 topology. This hints at the fact that in order for \(E\) and \(L\) to be 96 continuous maps we need to control both \(\gamma\) and \(\dot\gamma\). Hence a 97 natural candidate for a norm in \({C'}^\infty(I, \mathbb{R}^n)\) is 98 \[ 99 \norm{\gamma}_1^2 = \norm{\gamma}_0^2 + \norm{\dot\gamma}_0^2, 100 \] 101 which is, of course, the norm induced by the inner product \(\langle \, , 102 \rangle_1\) -- here \(\norm{\cdot}_0\) denotes the norm of \(H^0(I, 103 \mathbb{R}^n) = L^2(I, \mathbb{R}^n)\). 104 105 The other issue we face is one of completeness. Since \(\mathbb{R}^n\) has a 106 global chart, we expect \({C'}^\infty(I, \mathbb{R}^n)\) to be affine too. In 107 other words, it is natural to expect \({C'}^\infty(I, \mathbb{R}^n)\) to be 108 Banach space. In particular, \({C'}^\infty(I, \mathbb{R}^n)\) must be complete. 109 This is unfortunately not the case for \({C'}^\infty(I, \mathbb{R}^n)\) in the 110 \(\norm\cdot_1\) norm, but we can consider its completion. Lo and behold, a 111 classical result by Lebesgue establishes that this completion just so happens 112 to coincide with \(H^1(I, \mathbb{R}^n)\). 113 114 It's also interesting to note that the completion of \({C'}^\infty(I, 115 \mathbb{R}^n)\) with respect to the norms \(\norm\cdot_\infty\) and 116 \(\norm\cdot_0\) are \(C^0(I, \mathbb{R}^n)\) and \(H^0(I, \mathbb{R}^n)\), 117 respectively, and that the natural inclusions 118 \begin{equation}\label{eq:continuous-inclusions-rn-curves} 119 H^1(I, \mathbb{R}^n) 120 \longhookrightarrow C^0(I, \mathbb{R}^n) 121 \longhookrightarrow H^0(I, \mathbb{R}^n) 122 \end{equation} 123 are continuous. 124 125 This can be seen as a particular case of a more general result regarding spaces 126 of sections of vector bundles over the unit interval \(I\). Explicitly, we 127 find\dots 128 129 \begin{proposition} 130 Given an Euclidean bundle \(E \to I\) -- i.e. a vector bundle endowed with a 131 Riemannian metric -- the space \(C^0(E)\) of all continuous sections of \(E\) 132 is the completion of \({C'}^\infty(E)\) under the norm given by 133 \[ 134 \norm{\xi}_\infty = \sup_t \norm{\xi_t} 135 \] 136 \end{proposition} 137 138 \begin{proposition}\label{thm:h0-bundle-is-complete} 139 Given an Euclidean bundle \(E \to I\), the space \(H^0(E)\) of all square 140 integrable sections of \(E\) is the completion of \({C'}^\infty(E)\) under 141 the inner product given by 142 \[ 143 \langle \xi, \eta \rangle_0 = \int_0^1 \langle \xi_t, \eta_t \rangle \; \dt 144 \] 145 \end{proposition} 146 147 \begin{proposition} 148 Given an Euclidean bundle \(E \to I\), the space \(H^1(E)\) of all class 149 \(H^1\) sections of \(E\) is the completion of the space \({C'}^\infty(E)\) 150 of piece-wise smooth sections of \(E\) under the inner product given by 151 \[ 152 \langle \xi, \eta \rangle_1 153 = \langle \xi, \eta \rangle_0 + 154 \left\langle 155 \nabla_{\frac\dd\dt} \xi, \nabla_{\frac\dd\dt} \eta 156 \right\rangle_0 157 \] 158 \end{proposition} 159 160 \begin{proposition}\label{thm:continuous-inclusions-sections} 161 Given an Euclidean bundle \(E \to I\), the inclusions 162 \[ 163 H^1(E) \longhookrightarrow C^0(E) \longhookrightarrow H^0(E) 164 \] 165 are continuous. More precisely, \(\norm{\xi}_\infty \le \sqrt 2 166 \norm{\xi}_1\) and \(\norm{\xi}_0 \le \norm{\xi}_\infty\). 167 \end{proposition} 168 169 \begin{proof} 170 Given \(\xi \in H^0(E)\) we have 171 \[ 172 \norm{\xi}_0^2 173 = \int_0^1 \norm{\xi_t}^2 \; \dt 174 \le \int_0^1 \norm{\xi}_\infty^2 \; \dt 175 = \norm{\xi}_\infty^2 176 \] 177 178 Now given \(\xi \in H^1(E)\) fix \(t_0, t_1 \in I\) with \(\norm{\xi}_\infty 179 = \norm{\xi_{t_1}}\) and \(\norm{\xi_{t_0}} \le \norm{\xi}_0\). If \(t_0 < 180 t_1\) then 181 \[ 182 \begin{split} 183 \norm{\xi}_\infty^2 184 & = \norm{\xi_{t_0}}^2 185 + \int_{t_0}^{t_1} \frac{\dd}\dt \norm{\xi_t}^2 \; \dt \\ 186 & \le \norm{\xi}_0^2 187 + \int_{t_0}^{t_1} \frac{\dd}\dt \norm{\xi_t}^2 \; \dt \\ 188 \text{(\(\nabla\) is compatible with the metric)} 189 & = \norm{\xi}_0^2 + \int_{t_0}^{t_1} 190 2 \left\langle \xi_t, \nabla_{\frac\dd\dt} \xi_t \right\rangle 191 \; \dt \\ 192 \text{(Cauchy-Schwarz)} 193 & \le \norm{\xi}_0^2 + \int_0^1 194 2 \norm{\xi_t} \cdot \norm{\nabla_{\frac\dd\dt} \xi_t} \; \dt \\ 195 & \le \norm{\xi}_0^2 196 + \int_0^1 \norm{\xi_t}^2 + \norm{\nabla_{\frac\dd\dt} \xi_t}^2 197 \; \dt \\ 198 & = \norm{\xi}_0^2 199 + \norm{\xi}_0^2 + \norm{\nabla_{\frac\dd\dt} \xi}_0^2 \\ 200 & \le 2 \norm{\xi}_1^2 201 \end{split} 202 \] 203 204 Similarly, if \(t_0 > t_1\) then 205 \[ 206 \norm{\xi}_\infty^2 207 = \norm{\xi_{t_0}}^2 + \int_{t_0}^{t_1} \frac{\dd}\dt \norm{\xi_t}^2 \; \dt 208 = \norm{\xi_{t_0}}^2 + \int_{1 - t_0}^{1 - t_1} 209 \frac{\dd}\dt \norm{\xi_{1 - t}}^2 \; \dt 210 \le 2 \norm{\xi}_1^2 211 \] 212 \end{proof} 213 214 \begin{note} 215 Apply proposition~\ref{thm:continuous-inclusions-sections} to the trivial 216 bundle \(I \times \mathbb{R}^n \to I\) to get the continuity of the maps in 217 (\ref{eq:continuous-inclusions-rn-curves}). 218 \end{note} 219 220 We are particularly interested in the case of the pullback bundle \(E = 221 \gamma^* TM \to I\), where \(\gamma : I \to M\) is a piece-wise smooth curve. 222 \begin{center} 223 \begin{tikzcd} 224 \gamma^* TM \arrow{r} \arrow[swap]{d}{\pi} & TM \arrow{d}{\pi} \\ 225 I \arrow[swap]{r}{\gamma} & M 226 \end{tikzcd} 227 \end{center} 228 229 We now have all the necessary tools to describe the differential structure of 230 \(H^1(I, M)\). 231 232 \subsection{The Charts of \(H^1(I, M)\)} 233 234 We begin with a technical lemma. 235 236 \begin{lemma}\label{thm:section-in-open-is-open} 237 Let \(W \subset TM\) be an open neighborhood of the zero section in \(TM\). 238 Given \(\gamma \in {C'}^\infty(I, M)\), denote by \(W_{\gamma, t}\) the set 239 \(W \cap T_{\gamma(t)} M\) and let \(W_\gamma = \bigcup_t W_{\gamma, t}\). 240 Then \(H^1(W_\gamma) = \{ X \in H^1(\gamma^* TM) : X_t \in W_{\gamma, t} \; 241 \forall t \}\) is an open subset of \(H^1(\gamma^* TM)\). 242 \end{lemma} 243 244 \begin{proof} 245 Let \(C^0(W_\gamma) = \{ X \in C^0(\gamma^* TM) : X_t \in W_{\gamma, t} \; 246 \forall t \}\). We claim \(C^0(W_\gamma)\) is open in \(C^0(\gamma^* TM)\). 247 Indeed, given \(X \in C^0(W_\gamma)\) there exists \(\delta > 0\) such 248 that 249 \[ 250 \begin{split} 251 \norm{X - Y}_\infty < \delta 252 & \implies \norm{X_t - Y_t} < \delta \; \forall t \\ 253 & \implies Y_t \in W_{\gamma, t} \; \forall t \\ 254 & \implies Y \in C^0(W_\gamma) 255 \end{split} 256 \] 257 258 Finally, notice that \(H^1(W_\gamma)\) is the inverse image of 259 \(C^0(W_\gamma)\) under the continuous inclusion \(H^1(\gamma^* TM) 260 \longhookrightarrow C^0(\gamma^* TM)\) and is therefore open. 261 \end{proof} 262 263 Let \(W \subset TM\) be an open neighborhood of the zero section in \(TM\) such 264 that \(\exp\!\restriction_W : W \to \exp(W)\) is invertible -- whose existence 265 follows from the fact that the injectivity radius depends continuously on \(p 266 \in M\). 267 268 \begin{definition} 269 Given \(\gamma \in {C'}^\infty(I, M)\) let \(W_\gamma, W_{\gamma, t} \subset 270 \gamma^* TM\) be as in lemma~\ref{thm:section-in-open-is-open}, define 271 \[ 272 \arraycolsep=1pt 273 \begin{array}{rl} 274 \exp_\gamma : H^1(W_\gamma) & \to H^1(I, M) \\ 275 X & 276 \begin{array}[t]{rl} 277 \mapsto \exp \circ X : I & \to M \\ 278 t & \mapsto \exp_{\gamma(t)}(X_t) 279 \end{array} 280 \end{array} 281 \] 282 and let \(U_\gamma = \exp_\gamma(H^1(W_\gamma))\). 283 \end{definition} 284 285 Finally, we find\dots 286 287 \begin{theorem} 288 Given \(\gamma \in {C'}^\infty(I, M)\), the map \(\exp_\gamma : H^1(W_\gamma) 289 \to U_\gamma\) is bijective. The collection \(\{(U_\gamma, \exp_\gamma^{-1} : 290 U_\gamma \to H^1(\gamma^* TM))\}_{\gamma \in {C'}^\infty(I, M)}\) is an atlas 291 for \(H^1(I, M)\) under the final topology of the maps \(\exp_\gamma\) -- 292 i.e. the coarsest topology such that such maps are continuous. This atlas 293 gives \(H^1(I, M)\) the structure of a \emph{separable} Banach manifold 294 modeled after separable Hilbert spaces, with typical 295 representatives\footnote{Any trivialization of $\gamma^* TM$ induces an 296 isomorphism $H^1(\gamma^* TM) \isoto H^1(I \times \mathbb{R}^n) \cong H^1(I, 297 \mathbb{R}^n)$.} \(H^1(\gamma^* TM) \cong H^1(I, \mathbb{R}^n)\). 298 \end{theorem} 299 300 The fact that \(\exp_\gamma\) is bijective should be clear from the definition 301 of \(U_\gamma\) and \(W_\gamma\). That each \(\exp_\gamma^{-1}\) is a 302 homeomorphism is also clear from the definition of the topology of \(H^1(I, 303 M)\). Moreover, since \({C'}^\infty(I, M)\) is dense, \(\{U_\gamma\}_{\gamma 304 \in {C'}^\infty(I, M)}\) is an open cover of \(H^1(I, M)\). The real difficulty 305 of this proof is showing that the transition maps 306 \[ 307 \exp_\eta^{-1} \circ \exp_\gamma : 308 \exp_\gamma^{-1}(U_\gamma \cap U_\eta) \subset H^1(\gamma^* TM) 309 \to H^1(\eta^* TM) 310 \] 311 are diffeomorphisms, as well as showing that \(H^1(I, M)\) is separable. We 312 leave these details as an exercise to the reader -- see theorem 2.3.12 of 313 \cite{klingenberg} for a full proof. 314 315 It's interesting to note that this construction is functorial. More 316 precisely\dots 317 318 \begin{theorem} 319 Given finite-dimensional Riemannian manifolds \(M\) and \(N\) and a smooth 320 map \(f : M \to N\), the map 321 \begin{align*} 322 H^1(I, f) : H^1(I, M) & \to H^1(I, N) \\ 323 \gamma & \mapsto f \circ \gamma 324 \end{align*} 325 is smooth. In addition, \(H^1(I, f \circ g) = H^1(I, f) \circ H^1(I, g)\) and 326 \(H^1(I, \operatorname{id}) = \operatorname{id}\) for any composable smooth 327 maps \(f\) and \(g\). We thus have a functor \(H^1(I, -) : \mathbf{Rmnn} \to 328 \mathbf{BMnfd}\) from the category \(\mathbf{Rmnn}\) of finite-dimensional 329 Riemannian manifolds and smooth maps onto the category \(\mathbf{BMnfd}\) of 330 Banach manifolds and smooth maps. 331 \end{theorem} 332 333 We would also like to point out that this is a particular case of a more 334 general construction: that of the Banach manifold \(H^1(E)\) of class \(H^1\) 335 sections of a smooth fiber bundle \(E \to I\) -- not necessarily a vector 336 bundle. Our construction of \(H^1(I, M)\) is equivalent to that of the manifold 337 \(H^1(I \times M)\), in the sense that the canonical map 338 \[ 339 \arraycolsep=1pt 340 \begin{array}{rl} 341 \tilde{\cdot} : H^1(I, M) \to & H^1(I \times M) \\ 342 \gamma \mapsto & 343 \begin{array}[t]{rl} 344 \tilde\gamma : I & \to I \times M \\ 345 t & \mapsto (t, \gamma(t)) 346 \end{array} 347 \end{array} 348 \] 349 can be easily checked to be a diffeomorphism. 350 351 The space \(H^1(E)\) is modeled after the Hilbert spaces \(H^1(F)\) of class 352 \(H^1\) sections of open sub-bundles \(F \subset E\) which have the structure 353 of a vector bundle -- the so called \emph{vector bundle neighborhoods of 354 \(E\)}. This construction is highlighted in great detail and generality in the 355 first section of \cite[ch.~11]{palais}, but unfortunately we cannot afford such 356 a diversion in these short notes. Having said that, we are now finally ready to 357 layout the Riemannian structure of \(H^1(I, M)\). 358 359 \subsection{The Metric of \(H^1(I, M)\)} 360 361 We begin our discussion of the Riemannian structure of \(H^1(I, M)\) by looking 362 at its tangent bundle. Notice that for each \(\gamma \in {C'}^\infty(I, M)\) 363 the chart \(\exp_\gamma^{-1} : U_\gamma \to H^1(\gamma^* TM)\) induces a 364 canonical isomorphism \(\phi_\gamma = \phi_{\gamma, \gamma} : T_\gamma H^1(I, 365 M) \isoto H^1(\gamma^* TM)\), as described in 366 proposition~\ref{thm:tanget-space-topology}. In fact, these isomorphisms may be 367 extended to a canonical isomorphism of vector bundles, as seen in\dots 368 369 \begin{lemma}\label{thm:alpha-fiber-bundles-definition} 370 Given \(i = 0, 1\), the collection \(\{(\psi_{i, \gamma}(H^1(W_\gamma) \times 371 H^i(\gamma^* TM)), \psi_{i, \gamma}^{-1})\}_{\gamma \in {C'}^\infty(I, 372 M)}\) with 373 \[ 374 \arraycolsep=1pt 375 \begin{array}{rl} 376 \psi_{i, \gamma} : H^1(W_\gamma) \times H^i(\gamma^* TM) \to 377 & \coprod_{\eta \in H^1(I, M)} H^i(\eta^* TM) \\ 378 (X, Y) \mapsto & 379 \begin{array}[t]{rl} 380 \psi_{i, \gamma}(X) : I & \to \exp_\gamma(X)^* TM \\ 381 t & \mapsto (d \exp)_{X_t} Y_t 382 \end{array} 383 \end{array} 384 \] 385 gives \(\coprod_{\gamma \in {C'}^\infty(I, M)} H^i(\gamma^* TM) \to H^1(I, 386 M)\) the structure of a smooth vector bundle\footnote{Here we use the 387 canonical identification $T_{\gamma(t)} M \cong T_{X_t} TM$ to apply the 388 vector $Y_t \in T_{\gamma(t)} M$ to the map $(d \exp)_{X_t} : T_{X_t} TM \to 389 T_{\exp_{\gamma(t)}(X_t)} M$.}. 390 \end{lemma} 391 392 \begin{proposition} 393 There is a canonical isomorphism of vector bundles 394 \[ 395 T H^1(I, M) \isoto \coprod_{\gamma \in H^1(I, M)} H^1(\gamma^* TM) 396 \] 397 whose restriction \(T_\gamma H^1(I, M) \isoto H^1(\gamma^* TM)\) is given by 398 \(\phi_\gamma\) for all \(\gamma \in {C'}^\infty(I, M)\). 399 \end{proposition} 400 401 \begin{proof} 402 Note that the sets \(H^1(W_\gamma) \times T_\gamma H^1(I, M)\) are precisely 403 the images of the charts 404 \[ 405 \varphi_\gamma^{-1} : 406 \varphi_\gamma(H^1(W_\gamma) \times T_\gamma H^1(I, M)) 407 \subset T H^1(I, M) 408 \to H^1(W_\gamma) \times T_\gamma H^1(I, M) 409 \] 410 of \(T H^1(I, M)\) given by\footnote{Once more, we use the 411 canonical identification $T_X H^1(W_\gamma) \cong H^1(\gamma^* TM)$ to apply 412 the vector $\phi_\gamma(Y) \in H^1(\gamma^* TM)$ to $(d \exp_\gamma)_X : T_X 413 H^1(W_\gamma) \to T_{\exp_\gamma(X)} H^1(I, M)$.} 414 \begin{align*} 415 \varphi_\gamma : H^1(W_\gamma) \times T_\gamma H^1(I, M) 416 & \to T H^1(I, M) \\ 417 (X, Y) & \mapsto (d \exp_\gamma)_X \phi_\gamma(Y) 418 \end{align*} 419 420 By composing charts we get a fiber-preserving, fiber-wise linear 421 diffeomorphism 422 \[ 423 \varphi_\gamma(H^1(W_\gamma) \times T_\gamma H^1(I, M)) 424 \subset T H^1(I, M) 425 \isoto 426 \psi_{1, \gamma}(H^1(W_\gamma) \times H^1(\gamma^* TM)), 427 \] 428 which takes \(\varphi_\gamma(X, Y) \in T_{\exp_\gamma(X)} H^1(I, M)\) to 429 \(\psi_{1, \gamma}(X, \phi_\gamma(Y)) \in H^1(\exp_\gamma(X)^* TM)\). With 430 enough patience, one can deduce from the fact that \(\varphi_\gamma^{-1}\) 431 and \(\psi_{1, \gamma}^{-1}\) are charts that these maps agree in the 432 intersections of the open subsets \(\varphi_\gamma(H^1(W_\gamma) \times 433 T_\gamma H^1(I, M))\), so that they may be glued together into a global 434 smooth map \(\Phi : T H^1(I, M) \to \coprod_{\eta \in H^1(I, M)} H^1(\eta^* 435 TM)\). 436 437 Since this map is a fiber-preserving, fiber-wise linear local diffeomorphism, 438 this is an isomorphism of vector bundles. 439 Furthermore, by construction 440 \[ 441 \Phi(X)_t 442 = \psi_{1, \gamma}(0, \phi_\gamma(X))_t 443 = (d \exp)_{0_{\gamma(t)}} \phi_\gamma(X)_t 444 = \phi_\gamma(X)_t 445 \] 446 for each \(\gamma \in {C'}^\infty(I, M)\) and \(X \in T_\gamma H^1(I, M)\). 447 In other words, \(\Phi\!\restriction_{T_\gamma H^1(I, M)} = \phi_\gamma\) as 448 required. 449 \end{proof} 450 451 At this point it may be tempting to think that we could now define the metric 452 of \(H^1(I, M)\) in a fiber-wise basis via the identification \(T_\gamma H^1(I, 453 M) \cong H^1(\gamma^* TM)\). In a very real sense this is what we are about to 454 do, but unfortunately there are still technicalities in our way. The issue we 455 face is that proposition~\ref{thm:h0-bundle-is-complete} only applies for 456 \emph{smooth} vector bundles \(E \to I\), which may not be the case for \(E = 457 \gamma^* TM\) if \(\gamma \in H^1(I, M)\) lies outside of \({C'}^\infty(I, 458 M)\). In fact, neither \(\langle X , Y \rangle_0\) nor \(\langle \, , 459 \rangle_1\) are defined \emph{a priori} for \(X, Y \in H^0(\gamma^* TM)\) with 460 \(\gamma \notin {C'}^\infty(I, M)\). 461 462 Nevertheless, we can get around this limitation by extending the metric 463 \(\langle \, , \rangle_0\) and the covariant derivative \(\frac\nabla\dt = 464 \nabla_{\frac\dd\dt}\) to 465 those \(H^0(\gamma^* TM)\) with \(\gamma \notin {C'}^\infty(I, M)\). In other 466 words, we'll show\dots 467 468 \begin{theorem}\label{thm:h0-has-metric-extension} 469 The vector bundle \(\coprod_{\gamma \in H^1(I, M)} H^0(\gamma^* TM) \to 470 H^1(I, M)\) admits a canonical Riemannian metric whose restriction to the 471 fibers \(H^0(\gamma^* TM) = \left.\coprod_{\eta \in H^1(I, M)} H^0(\eta^* 472 TM)\right|_\gamma\) for \(\gamma \in {C'}^\infty(I, M)\) is given by 473 \(\langle \, , \rangle_0\) as defined in 474 proposition~\ref{thm:h0-bundle-is-complete}. 475 \end{theorem} 476 477 \begin{proof} 478 Given \(\gamma \in {C'}^\infty(I, M)\) and \(X \in H^1(\gamma^* TM)\), let 479 \begin{align*} 480 g_X^\gamma : H^0(\gamma^* TM) \times H^0(\gamma^* TM) & \to \mathbb{R} \\ 481 (Y, Z) & 482 \mapsto \int_0^1 483 \langle (d\exp)_{X_t} Y_t, (d\exp)_{X_t} Z_t \rangle \; \dt 484 \end{align*} 485 486 This is clearly a Riemannian metric in the bundle \(H^1(W_\gamma) \times 487 H^0(\gamma^* TM) \to H^1(W_\gamma)\). Now by composing with the chart 488 \(\psi_{0, \gamma}^{-1}\) as in 489 lemma~\ref{thm:alpha-fiber-bundles-definition} we get a Riemannian metric 490 \(g_\gamma\) in the bundle \(\coprod_{\eta \in U_\gamma} H^0(\eta^* TM) = 491 \left. \coprod_{\eta \in H^1(I, M)} H^0(\eta^* TM) \right|_{U_\gamma} \to 492 U_\gamma\). One can then quickly verify that the \(g^\gamma\)'s agree in the 493 intersection of the \(U_\gamma\)'s, so that they define a global Riemannian 494 metric \(g\) in \(\coprod_{\eta \in H^1(I, M)} H^0(\eta^* TM)\). 495 496 Furthermore, given \(\gamma \in {C'}^\infty(I, M)\) and \(X, Y \in 497 H^0(\gamma^* TM)\) by construction we have 498 \[ 499 g_\gamma(X, Y) 500 = g_0^\gamma(X, Y) 501 = \int_0^1 502 \langle 503 (d \exp)_{0_{\gamma(t)}} X_t, (d \exp)_{0_{\gamma(t)}} Y_t 504 \rangle \; \dt 505 = \int_0^1 \langle X_t, Y_t \rangle \; \dt 506 = \langle X, Y \rangle_0 507 \] 508 \end{proof} 509 510 \begin{proposition}\label{thm:partial-is-smooth-sec} 511 The map 512 \begin{align*} 513 \partial : H^1(I, M) & \to \coprod_{\gamma} H^0(\gamma^* TM) \\ 514 \gamma & \mapsto \dot\gamma 515 \end{align*} 516 is a smooth section of \(\coprod_{\gamma \in H^1(I, M)} H^0(\gamma^* TM) \to 517 H^1(I, M)\). 518 \end{proposition} 519 520 \begin{proposition}\label{thm:covariant-derivative-h0} 521 Denote by \(\nabla^0 : \mathfrak{X}(H^1(I, M)) \times 522 \Gamma\left(\coprod_\gamma H^0(\gamma^* TM)\right) \to 523 \Gamma\left(\coprod_{\gamma} H^0(\gamma^* TM)\right)\) the Levi-Civita 524 connection of \(\coprod_\gamma H^0(\gamma^* TM)\). The map 525 \begin{align*} 526 \mathfrak{X}(H^1(I, M)) 527 & \to \Gamma\left(\coprod_\gamma H^0(\gamma^* TM)\right) \\ 528 \tilde X 529 & \mapsto \nabla_{\tilde X}^0 \partial 530 \end{align*} 531 is such that 532 \[ 533 (\nabla_X^0 \partial)_\gamma 534 = \nabla_{\frac\dd\dt} X 535 = \frac\nabla\dt X 536 \] 537 for all \(\gamma \in {C'}^\infty(I, M)\) and \(X \in H^1(\gamma^* TM) \cong 538 T_\gamma H^1(I, M)\). Given some arbitrary \(\gamma \in H^1(I, M)\) and \(X 539 \in H^1(\gamma^* TM)\) we therefore denote \((\nabla_X^0 \partial)_\gamma\) 540 simply by \(\frac\nabla\dt X\). 541 \end{proposition} 542 543 The proofs of these last two propositions were deemed too technical to be 544 included in here, but see proposition 2.3.16 and 2.3.18 of \cite{klingenberg}. 545 We may now finally describe the canonical Riemannian metric of \(H^1(I, M)\). 546 547 \begin{definition}\label{def:h1-metric} 548 Given \(\gamma \in H^1(I, M)\) and \(X, Y \in H^1(\gamma^* TM)\), let 549 \[ 550 \langle X, Y \rangle_1 551 = \langle X, Y \rangle_0 552 + \left\langle \frac\nabla\dt X, \frac\nabla\dt Y \right\rangle_0 553 \] 554 \end{definition} 555 556 At this point it should be obvious that definition~\ref{def:h1-metric} does 557 indeed endow \(H^1(I, M)\) with the structure of a Riemannian manifold: the 558 inner products \(\langle \, , \rangle_1 : H^1(\gamma^* TM) \times H^1(\gamma^* 559 TM) \to \mathbb{R}\) may be glued together into a single positive-definite 560 section \(\langle \, , \rangle_1 \in \Gamma\left(\operatorname{Sym}^2 561 \coprod_\gamma H^1(\gamma^* TM)\right)\) -- whose smoothness follows from 562 theorem~\ref{thm:h0-has-metric-extension}, 563 proposition~\ref{thm:partial-is-smooth-sec} and 564 proposition~\ref{thm:covariant-derivative-h0} -- which is then mapped to a 565 positive-definite section of \(\operatorname{Sym}^2 T H^1(I, M)\) by the 566 induced isomorphism 567 \[ 568 \Gamma\left(\operatorname{Sym}^2 \coprod_\gamma H^1(\gamma^* TM)\right) 569 \isoto \Gamma(\operatorname{Sym}^2 T H^1(I, M)) 570 \] 571 572 We are finally ready to discuss some applications.