global-analysis-and-the-banach-manifold-of-class-h1-curvers
Riemannian Geometry course project on the manifold H¹(I, M) of class H¹ curves on a Riemannian manifold M and its applications to the geodesics problem
Name | Size | Mode | |
.. | |||
references.bib | 1389B | -rw-r--r-- |
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
@book{klingenberg, title={Riemannian Geometry}, author={Wilhelm Klingenberg}, isbn={9783110905120}, series={De Gruyter Studies in Mathematics}, year={2011}, publisher={De Gruyter} } @book{lang, title = {Fundamentals of Differential Geometry}, author = {Serge Lang}, publisher = {Springer}, isbn = {9780387985930}, year = {1999}, series = {Graduate Texts in Mathematics}, edition = {1}, } @misc{unitary-group-strong-topology, doi = {10.48550/ARXIV.1309.5891}, author = {Martin Schottenloher}, title = {The Unitary Group In Its Strong Topology}, publisher = {arXiv}, year = {2013}, } @book{palais, title = {Critical Point Theory and Submanifold Geometry}, author = {Richard Palais, Chuu-lian Terng}, publisher = {Springer}, isbn = {3540503994}, year = {1988}, series = {Lecture Notes in Mathematics}, } @article{eells, title={A setting for global analysis}, author={James Eells, Jr.}, journal={Bulletin of the American Mathematical Society}, volume={72}, number={5}, pages={751--807}, year={1966} } @book{gorodski, title = {An introduction to Riemannian geometry}, author = {Claudio Gorodski}, edition = {Preliminary version 3}, year = {2022}, month = jun, url = {https://www.ime.usp.br/~gorodski/teaching/mat5771-2022/master07-05-2022.pdf}, }