global-analysis-and-the-banach-manifold-of-class-h1-curvers
Riemannian Geometry course project on the manifold H¹(I, M) of class H¹ curves on a Riemannian manifold M and its applications to the geodesics problem
Name | Size | Mode | |
.. | |||
sections/structure.tex | 24271B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
\section{The Structure of \(H^1(I, M)\)}\label{sec:structure} Throughout this section let \(M\) be a finite-dimensional Riemannian manifold. As promised, in this section we will highlight the differential and Riemannian structures of the space \(H^1(I, M)\) of class \(H^1\) curves in a \(M\). The first question we should ask ourselves is an obvious one: what is \(H^1(I, M)\)? Specifically, what is a class \(H^1\) curve in \(M\)? Given an interval \(I\), recall that a continuous curve \(\gamma : I \to \mathbb{R}^n\) is called \emph{a class \(H^1\)} curve if \(\gamma\) is absolutely continuous, \(\dot \gamma(t)\) exists for almost all \(t \in I\) and \(\dot\gamma \in H^0(I, \mathbb{R}^n) = L^2(I, \mathbb{R}^n)\). It is a well known fact that the so called \emph{Sobolev space \(H^1([0, 1], \mathbb{R}^n)\)} of all class \(H^1\) curves in \(\mathbb{R}^n\) is a Hilbert space under the inner product given by \[ \langle \gamma, \eta \rangle_1 = \int_0^1 \gamma(t) \cdot \eta(t) + \dot\gamma(t) \cdot \dot\eta(t) \; \dt \] Finally, we may define\dots \begin{definition} Given an \(n\)-dimensional manifold \(M\), a continuous curve \(\gamma : I \to M\) is called \emph{a class \(H^1\)} curve if \(\varphi_i \circ \gamma : J \to \mathbb{R}^n\) is a class \(H^1\) curve for any chart \(\varphi_i : U_i \subset M \to \mathbb{R}^n\) -- i.e. if \(\gamma\) can be locally expressed as a class \(H^1\) curve in terms of the charts of \(M\). We'll denote by \(H^1(I, M)\) the set of all class \(H^1\) curves \(I \to M\). \end{definition} \begin{note} From now on we fix \(I = [0, 1]\). \end{note} Notice in particular that every piece-wise smooth curve \(\gamma : I \to M\) is a class \(H^1\) curve. This answer raises and additional question though: why class \(H^1\) curves? The classical theory of the calculus of variations -- as described in \cite[ch.~5]{gorodski} for instance -- is usually exclusively concerned with the study of piece-wise smooth curves, so the fact that we are now interested a larger class of curves -- highly non-smooth curves, in fact -- \emph{should} come as a surprise to the reader. To answer this second question we return to the case of \(M = \mathbb{R}^n\). Denote by \({C'}^\infty(I, \mathbb{R}^n)\) the space of piece-wise curves in \(\mathbb{R}^n\). As described in section~\ref{sec:introduction}, we would like \({C'}^\infty(I, \mathbb{R}^n)\) to be a Banach manifold under which both the energy functional and the length functional are smooth maps. As most function spaces, \({C'}^\infty(I, \mathbb{R}^n)\) admits several natural topologies. Some of the most obvious candidates are the uniform topology and the topology of the \(\norm\cdot_0\) norm, which are the topologies induced by the norms \begin{align*} \norm{\gamma}_\infty & = \sup_t \norm{\gamma(t)} \\ \norm{\gamma}_0 & = \sqrt{\int_0^1 \norm{\gamma(t)}^2 \; \dt} \end{align*} respectively. The problem with the first candidate is that \(L : {C'}^\infty(I, \mathbb{R}^n) \to \mathbb{R}\) is not a continuous map under the uniform topology. This can be readily seen by approximating the curve \begin{align*} \gamma : I & \to \mathbb{R}^2 \\ t & \mapsto (t, 1 - t) \end{align*} with ``staircase curves'' \(\gamma_n : I \to \mathbb{R}^n\) for larger and larger values of \(n\), as shown in figure~\ref{fig:step-curves}: clearly \(\gamma_n \to \gamma\) in the uniform topology, but \(L(\gamma_n) = 2\) does not approach \(L(\gamma) = \sqrt 2\) as \(n\) approaches \(\infty\). \begin{figure}[h] \centering \begin{tikzpicture} \draw (4, 1) -- (1, 4); \draw (4, 1) -- (4, 2) -- (3, 2) -- (3, 3) node[right]{$\gamma_n$} -- (2, 3) node[left]{$\gamma$} -- (2, 4) -- (1, 4); \draw[dotted] (4.5, .5) -- (4, 1); \draw[dotted] (.5, 4.5) -- (1, 4); \draw (1, 4.3) -- (2, 4.3); \draw (1, 4.2) -- (1, 4.4); \draw (2, 4.2) -- (2, 4.4); \node[above] at (1.5, 4.3) {$\sfrac{1}{n}$}; \end{tikzpicture} \caption{A diagonal line representing the curve $\gamma$ overlaps a staircase-like curve $\gamma_n$, whose steps measure $\sfrac{1}{n}$ in width and height.} \label{fig:step-curves} \end{figure} The issue with this particular example is that while \(\gamma_n \to \gamma\) uniformly, \(\dot\gamma_n\) does not converge to \(\dot\gamma\) in the uniform topology. This hints at the fact that in order for \(E\) and \(L\) to be continuous maps we need to control both \(\gamma\) and \(\dot\gamma\). Hence a natural candidate for a norm in \({C'}^\infty(I, \mathbb{R}^n)\) is \[ \norm{\gamma}_1^2 = \norm{\gamma}_0^2 + \norm{\dot\gamma}_0^2, \] which is, of course, the norm induced by the inner product \(\langle \, , \rangle_1\) -- here \(\norm{\cdot}_0\) denotes the norm of \(H^0(I, \mathbb{R}^n) = L^2(I, \mathbb{R}^n)\). The other issue we face is one of completeness. Since \(\mathbb{R}^n\) has a global chart, we expect \({C'}^\infty(I, \mathbb{R}^n)\) to be affine too. In other words, it is natural to expect \({C'}^\infty(I, \mathbb{R}^n)\) to be Banach space. In particular, \({C'}^\infty(I, \mathbb{R}^n)\) must be complete. This is unfortunately not the case for \({C'}^\infty(I, \mathbb{R}^n)\) in the \(\norm\cdot_1\) norm, but we can consider its completion. Lo and behold, a classical result by Lebesgue establishes that this completion just so happens to coincide with \(H^1(I, \mathbb{R}^n)\). It's also interesting to note that the completion of \({C'}^\infty(I, \mathbb{R}^n)\) with respect to the norms \(\norm\cdot_\infty\) and \(\norm\cdot_0\) are \(C^0(I, \mathbb{R}^n)\) and \(H^0(I, \mathbb{R}^n)\), respectively, and that the natural inclusions \begin{equation}\label{eq:continuous-inclusions-rn-curves} H^1(I, \mathbb{R}^n) \longhookrightarrow C^0(I, \mathbb{R}^n) \longhookrightarrow H^0(I, \mathbb{R}^n) \end{equation} are continuous. This can be seen as a particular case of a more general result regarding spaces of sections of vector bundles over the unit interval \(I\). Explicitly, we find\dots \begin{proposition} Given an Euclidean bundle \(E \to I\) -- i.e. a vector bundle endowed with a Riemannian metric -- the space \(C^0(E)\) of all continuous sections of \(E\) is the completion of \({C'}^\infty(E)\) under the norm given by \[ \norm{\xi}_\infty = \sup_t \norm{\xi_t} \] \end{proposition} \begin{proposition}\label{thm:h0-bundle-is-complete} Given an Euclidean bundle \(E \to I\), the space \(H^0(E)\) of all square integrable sections of \(E\) is the completion of \({C'}^\infty(E)\) under the inner product given by \[ \langle \xi, \eta \rangle_0 = \int_0^1 \langle \xi_t, \eta_t \rangle \; \dt \] \end{proposition} \begin{proposition} Given an Euclidean bundle \(E \to I\), the space \(H^1(E)\) of all class \(H^1\) sections of \(E\) is the completion of the space \({C'}^\infty(E)\) of piece-wise smooth sections of \(E\) under the inner product given by \[ \langle \xi, \eta \rangle_1 = \langle \xi, \eta \rangle_0 + \left\langle \nabla_{\frac\dd\dt} \xi, \nabla_{\frac\dd\dt} \eta \right\rangle_0 \] \end{proposition} \begin{proposition}\label{thm:continuous-inclusions-sections} Given an Euclidean bundle \(E \to I\), the inclusions \[ H^1(E) \longhookrightarrow C^0(E) \longhookrightarrow H^0(E) \] are continuous. More precisely, \(\norm{\xi}_\infty \le \sqrt 2 \norm{\xi}_1\) and \(\norm{\xi}_0 \le \norm{\xi}_\infty\). \end{proposition} \begin{proof} Given \(\xi \in H^0(E)\) we have \[ \norm{\xi}_0^2 = \int_0^1 \norm{\xi_t}^2 \; \dt \le \int_0^1 \norm{\xi}_\infty^2 \; \dt = \norm{\xi}_\infty^2 \] Now given \(\xi \in H^1(E)\) fix \(t_0, t_1 \in I\) with \(\norm{\xi}_\infty = \norm{\xi_{t_1}}\) and \(\norm{\xi_{t_0}} \le \norm{\xi}_0\). If \(t_0 < t_1\) then \[ \begin{split} \norm{\xi}_\infty^2 & = \norm{\xi_{t_0}}^2 + \int_{t_0}^{t_1} \frac{\dd}\dt \norm{\xi_t}^2 \; \dt \\ & \le \norm{\xi}_0^2 + \int_{t_0}^{t_1} \frac{\dd}\dt \norm{\xi_t}^2 \; \dt \\ \text{(\(\nabla\) is compatible with the metric)} & = \norm{\xi}_0^2 + \int_{t_0}^{t_1} 2 \left\langle \xi_t, \nabla_{\frac\dd\dt} \xi_t \right\rangle \; \dt \\ \text{(Cauchy-Schwarz)} & \le \norm{\xi}_0^2 + \int_0^1 2 \norm{\xi_t} \cdot \norm{\nabla_{\frac\dd\dt} \xi_t} \; \dt \\ & \le \norm{\xi}_0^2 + \int_0^1 \norm{\xi_t}^2 + \norm{\nabla_{\frac\dd\dt} \xi_t}^2 \; \dt \\ & = \norm{\xi}_0^2 + \norm{\xi}_0^2 + \norm{\nabla_{\frac\dd\dt} \xi}_0^2 \\ & \le 2 \norm{\xi}_1^2 \end{split} \] Similarly, if \(t_0 > t_1\) then \[ \norm{\xi}_\infty^2 = \norm{\xi_{t_0}}^2 + \int_{t_0}^{t_1} \frac{\dd}\dt \norm{\xi_t}^2 \; \dt = \norm{\xi_{t_0}}^2 + \int_{1 - t_0}^{1 - t_1} \frac{\dd}\dt \norm{\xi_{1 - t}}^2 \; \dt \le 2 \norm{\xi}_1^2 \] \end{proof} \begin{note} Apply proposition~\ref{thm:continuous-inclusions-sections} to the trivial bundle \(I \times \mathbb{R}^n \to I\) to get the continuity of the maps in (\ref{eq:continuous-inclusions-rn-curves}). \end{note} We are particularly interested in the case of the pullback bundle \(E = \gamma^* TM \to I\), where \(\gamma : I \to M\) is a piece-wise smooth curve. \begin{center} \begin{tikzcd} \gamma^* TM \arrow{r} \arrow[swap]{d}{\pi} & TM \arrow{d}{\pi} \\ I \arrow[swap]{r}{\gamma} & M \end{tikzcd} \end{center} We now have all the necessary tools to describe the differential structure of \(H^1(I, M)\). \subsection{The Charts of \(H^1(I, M)\)} We begin with a technical lemma. \begin{lemma}\label{thm:section-in-open-is-open} Let \(W \subset TM\) be an open neighborhood of the zero section in \(TM\). Given \(\gamma \in {C'}^\infty(I, M)\), denote by \(W_{\gamma, t}\) the set \(W \cap T_{\gamma(t)} M\) and let \(W_\gamma = \bigcup_t W_{\gamma, t}\). Then \(H^1(W_\gamma) = \{ X \in H^1(\gamma^* TM) : X_t \in W_{\gamma, t} \; \forall t \}\) is an open subset of \(H^1(\gamma^* TM)\). \end{lemma} \begin{proof} Let \(C^0(W_\gamma) = \{ X \in C^0(\gamma^* TM) : X_t \in W_{\gamma, t} \; \forall t \}\). We claim \(C^0(W_\gamma)\) is open in \(C^0(\gamma^* TM)\). Indeed, given \(X \in C^0(W_\gamma)\) there exists \(\delta > 0\) such that \[ \begin{split} \norm{X - Y}_\infty < \delta & \implies \norm{X_t - Y_t} < \delta \; \forall t \\ & \implies Y_t \in W_{\gamma, t} \; \forall t \\ & \implies Y \in C^0(W_\gamma) \end{split} \] Finally, notice that \(H^1(W_\gamma)\) is the inverse image of \(C^0(W_\gamma)\) under the continuous inclusion \(H^1(\gamma^* TM) \longhookrightarrow C^0(\gamma^* TM)\) and is therefore open. \end{proof} Let \(W \subset TM\) be an open neighborhood of the zero section in \(TM\) such that \(\exp\!\restriction_W : W \to \exp(W)\) is invertible -- whose existence follows from the fact that the injectivity radius depends continuously on \(p \in M\). \begin{definition} Given \(\gamma \in {C'}^\infty(I, M)\) let \(W_\gamma, W_{\gamma, t} \subset \gamma^* TM\) be as in lemma~\ref{thm:section-in-open-is-open}, define \[ \arraycolsep=1pt \begin{array}{rl} \exp_\gamma : H^1(W_\gamma) & \to H^1(I, M) \\ X & \begin{array}[t]{rl} \mapsto \exp \circ X : I & \to M \\ t & \mapsto \exp_{\gamma(t)}(X_t) \end{array} \end{array} \] and let \(U_\gamma = \exp_\gamma(H^1(W_\gamma))\). \end{definition} Finally, we find\dots \begin{theorem} Given \(\gamma \in {C'}^\infty(I, M)\), the map \(\exp_\gamma : H^1(W_\gamma) \to U_\gamma\) is bijective. The collection \(\{(U_\gamma, \exp_\gamma^{-1} : U_\gamma \to H^1(\gamma^* TM))\}_{\gamma \in {C'}^\infty(I, M)}\) is an atlas for \(H^1(I, M)\) under the final topology of the maps \(\exp_\gamma\) -- i.e. the coarsest topology such that such maps are continuous. This atlas gives \(H^1(I, M)\) the structure of a \emph{separable} Banach manifold modeled after separable Hilbert spaces, with typical representatives\footnote{Any trivialization of $\gamma^* TM$ induces an isomorphism $H^1(\gamma^* TM) \isoto H^1(I \times \mathbb{R}^n) \cong H^1(I, \mathbb{R}^n)$.} \(H^1(\gamma^* TM) \cong H^1(I, \mathbb{R}^n)\). \end{theorem} The fact that \(\exp_\gamma\) is bijective should be clear from the definition of \(U_\gamma\) and \(W_\gamma\). That each \(\exp_\gamma^{-1}\) is a homeomorphism is also clear from the definition of the topology of \(H^1(I, M)\). Moreover, since \({C'}^\infty(I, M)\) is dense, \(\{U_\gamma\}_{\gamma \in {C'}^\infty(I, M)}\) is an open cover of \(H^1(I, M)\). The real difficulty of this proof is showing that the transition maps \[ \exp_\eta^{-1} \circ \exp_\gamma : \exp_\gamma^{-1}(U_\gamma \cap U_\eta) \subset H^1(\gamma^* TM) \to H^1(\eta^* TM) \] are diffeomorphisms, as well as showing that \(H^1(I, M)\) is separable. We leave these details as an exercise to the reader -- see theorem 2.3.12 of \cite{klingenberg} for a full proof. It's interesting to note that this construction is functorial. More precisely\dots \begin{theorem} Given finite-dimensional Riemannian manifolds \(M\) and \(N\) and a smooth map \(f : M \to N\), the map \begin{align*} H^1(I, f) : H^1(I, M) & \to H^1(I, N) \\ \gamma & \mapsto f \circ \gamma \end{align*} is smooth. In addition, \(H^1(I, f \circ g) = H^1(I, f) \circ H^1(I, g)\) and \(H^1(I, \operatorname{id}) = \operatorname{id}\) for any composable smooth maps \(f\) and \(g\). We thus have a functor \(H^1(I, -) : \mathbf{Rmnn} \to \mathbf{BMnfd}\) from the category \(\mathbf{Rmnn}\) of finite-dimensional Riemannian manifolds and smooth maps onto the category \(\mathbf{BMnfd}\) of Banach manifolds and smooth maps. \end{theorem} We would also like to point out that this is a particular case of a more general construction: that of the Banach manifold \(H^1(E)\) of class \(H^1\) sections of a smooth fiber bundle \(E \to I\) -- not necessarily a vector bundle. Our construction of \(H^1(I, M)\) is equivalent to that of the manifold \(H^1(I \times M)\), in the sense that the canonical map \[ \arraycolsep=1pt \begin{array}{rl} \tilde{\cdot} : H^1(I, M) \to & H^1(I \times M) \\ \gamma \mapsto & \begin{array}[t]{rl} \tilde\gamma : I & \to I \times M \\ t & \mapsto (t, \gamma(t)) \end{array} \end{array} \] can be easily checked to be a diffeomorphism. The space \(H^1(E)\) is modeled after the Hilbert spaces \(H^1(F)\) of class \(H^1\) sections of open sub-bundles \(F \subset E\) which have the structure of a vector bundle -- the so called \emph{vector bundle neighborhoods of \(E\)}. This construction is highlighted in great detail and generality in the first section of \cite[ch.~11]{palais}, but unfortunately we cannot afford such a diversion in these short notes. Having said that, we are now finally ready to layout the Riemannian structure of \(H^1(I, M)\). \subsection{The Metric of \(H^1(I, M)\)} We begin our discussion of the Riemannian structure of \(H^1(I, M)\) by looking at its tangent bundle. Notice that for each \(\gamma \in {C'}^\infty(I, M)\) the chart \(\exp_\gamma^{-1} : U_\gamma \to H^1(\gamma^* TM)\) induces a canonical isomorphism \(\phi_\gamma = \phi_{\gamma, \gamma} : T_\gamma H^1(I, M) \isoto H^1(\gamma^* TM)\), as described in proposition~\ref{thm:tanget-space-topology}. In fact, these isomorphisms may be extended to a canonical isomorphism of vector bundles, as seen in\dots \begin{lemma}\label{thm:alpha-fiber-bundles-definition} Given \(i = 0, 1\), the collection \(\{(\psi_{i, \gamma}(H^1(W_\gamma) \times H^i(\gamma^* TM)), \psi_{i, \gamma}^{-1})\}_{\gamma \in {C'}^\infty(I, M)}\) with \[ \arraycolsep=1pt \begin{array}{rl} \psi_{i, \gamma} : H^1(W_\gamma) \times H^i(\gamma^* TM) \to & \coprod_{\eta \in H^1(I, M)} H^i(\eta^* TM) \\ (X, Y) \mapsto & \begin{array}[t]{rl} \psi_{i, \gamma}(X) : I & \to \exp_\gamma(X)^* TM \\ t & \mapsto (d \exp)_{X_t} Y_t \end{array} \end{array} \] gives \(\coprod_{\gamma \in {C'}^\infty(I, M)} H^i(\gamma^* TM) \to H^1(I, M)\) the structure of a smooth vector bundle\footnote{Here we use the canonical identification $T_{\gamma(t)} M \cong T_{X_t} TM$ to apply the vector $Y_t \in T_{\gamma(t)} M$ to the map $(d \exp)_{X_t} : T_{X_t} TM \to T_{\exp_{\gamma(t)}(X_t)} M$.}. \end{lemma} \begin{proposition} There is a canonical isomorphism of vector bundles \[ T H^1(I, M) \isoto \coprod_{\gamma \in H^1(I, M)} H^1(\gamma^* TM) \] whose restriction \(T_\gamma H^1(I, M) \isoto H^1(\gamma^* TM)\) is given by \(\phi_\gamma\) for all \(\gamma \in {C'}^\infty(I, M)\). \end{proposition} \begin{proof} Note that the sets \(H^1(W_\gamma) \times T_\gamma H^1(I, M)\) are precisely the images of the charts \[ \varphi_\gamma^{-1} : \varphi_\gamma(H^1(W_\gamma) \times T_\gamma H^1(I, M)) \subset T H^1(I, M) \to H^1(W_\gamma) \times T_\gamma H^1(I, M) \] of \(T H^1(I, M)\) given by\footnote{Once more, we use the canonical identification $T_X H^1(W_\gamma) \cong H^1(\gamma^* TM)$ to apply the vector $\phi_\gamma(Y) \in H^1(\gamma^* TM)$ to $(d \exp_\gamma)_X : T_X H^1(W_\gamma) \to T_{\exp_\gamma(X)} H^1(I, M)$.} \begin{align*} \varphi_\gamma : H^1(W_\gamma) \times T_\gamma H^1(I, M) & \to T H^1(I, M) \\ (X, Y) & \mapsto (d \exp_\gamma)_X \phi_\gamma(Y) \end{align*} By composing charts we get a fiber-preserving, fiber-wise linear diffeomorphism \[ \varphi_\gamma(H^1(W_\gamma) \times T_\gamma H^1(I, M)) \subset T H^1(I, M) \isoto \psi_{1, \gamma}(H^1(W_\gamma) \times H^1(\gamma^* TM)), \] which takes \(\varphi_\gamma(X, Y) \in T_{\exp_\gamma(X)} H^1(I, M)\) to \(\psi_{1, \gamma}(X, \phi_\gamma(Y)) \in H^1(\exp_\gamma(X)^* TM)\). With enough patience, one can deduce from the fact that \(\varphi_\gamma^{-1}\) and \(\psi_{1, \gamma}^{-1}\) are charts that these maps agree in the intersections of the open subsets \(\varphi_\gamma(H^1(W_\gamma) \times T_\gamma H^1(I, M))\), so that they may be glued together into a global smooth map \(\Phi : T H^1(I, M) \to \coprod_{\eta \in H^1(I, M)} H^1(\eta^* TM)\). Since this map is a fiber-preserving, fiber-wise linear local diffeomorphism, this is an isomorphism of vector bundles. Furthermore, by construction \[ \Phi(X)_t = \psi_{1, \gamma}(0, \phi_\gamma(X))_t = (d \exp)_{0_{\gamma(t)}} \phi_\gamma(X)_t = \phi_\gamma(X)_t \] for each \(\gamma \in {C'}^\infty(I, M)\) and \(X \in T_\gamma H^1(I, M)\). In other words, \(\Phi\!\restriction_{T_\gamma H^1(I, M)} = \phi_\gamma\) as required. \end{proof} At this point it may be tempting to think that we could now define the metric of \(H^1(I, M)\) in a fiber-wise basis via the identification \(T_\gamma H^1(I, M) \cong H^1(\gamma^* TM)\). In a very real sense this is what we are about to do, but unfortunately there are still technicalities in our way. The issue we face is that proposition~\ref{thm:h0-bundle-is-complete} only applies for \emph{smooth} vector bundles \(E \to I\), which may not be the case for \(E = \gamma^* TM\) if \(\gamma \in H^1(I, M)\) lies outside of \({C'}^\infty(I, M)\). In fact, neither \(\langle X , Y \rangle_0\) nor \(\langle \, , \rangle_1\) are defined \emph{a priori} for \(X, Y \in H^0(\gamma^* TM)\) with \(\gamma \notin {C'}^\infty(I, M)\). Nevertheless, we can get around this limitation by extending the metric \(\langle \, , \rangle_0\) and the covariant derivative \(\frac\nabla\dt = \nabla_{\frac\dd\dt}\) to those \(H^0(\gamma^* TM)\) with \(\gamma \notin {C'}^\infty(I, M)\). In other words, we'll show\dots \begin{theorem}\label{thm:h0-has-metric-extension} The vector bundle \(\coprod_{\gamma \in H^1(I, M)} H^0(\gamma^* TM) \to H^1(I, M)\) admits a canonical Riemannian metric whose restriction to the fibers \(H^0(\gamma^* TM) = \left.\coprod_{\eta \in H^1(I, M)} H^0(\eta^* TM)\right|_\gamma\) for \(\gamma \in {C'}^\infty(I, M)\) is given by \(\langle \, , \rangle_0\) as defined in proposition~\ref{thm:h0-bundle-is-complete}. \end{theorem} \begin{proof} Given \(\gamma \in {C'}^\infty(I, M)\) and \(X \in H^1(\gamma^* TM)\), let \begin{align*} g_X^\gamma : H^0(\gamma^* TM) \times H^0(\gamma^* TM) & \to \mathbb{R} \\ (Y, Z) & \mapsto \int_0^1 \langle (d\exp)_{X_t} Y_t, (d\exp)_{X_t} Z_t \rangle \; \dt \end{align*} This is clearly a Riemannian metric in the bundle \(H^1(W_\gamma) \times H^0(\gamma^* TM) \to H^1(W_\gamma)\). Now by composing with the chart \(\psi_{0, \gamma}^{-1}\) as in lemma~\ref{thm:alpha-fiber-bundles-definition} we get a Riemannian metric \(g_\gamma\) in the bundle \(\coprod_{\eta \in U_\gamma} H^0(\eta^* TM) = \left. \coprod_{\eta \in H^1(I, M)} H^0(\eta^* TM) \right|_{U_\gamma} \to U_\gamma\). One can then quickly verify that the \(g^\gamma\)'s agree in the intersection of the \(U_\gamma\)'s, so that they define a global Riemannian metric \(g\) in \(\coprod_{\eta \in H^1(I, M)} H^0(\eta^* TM)\). Furthermore, given \(\gamma \in {C'}^\infty(I, M)\) and \(X, Y \in H^0(\gamma^* TM)\) by construction we have \[ g_\gamma(X, Y) = g_0^\gamma(X, Y) = \int_0^1 \langle (d \exp)_{0_{\gamma(t)}} X_t, (d \exp)_{0_{\gamma(t)}} Y_t \rangle \; \dt = \int_0^1 \langle X_t, Y_t \rangle \; \dt = \langle X, Y \rangle_0 \] \end{proof} \begin{proposition}\label{thm:partial-is-smooth-sec} The map \begin{align*} \partial : H^1(I, M) & \to \coprod_{\gamma} H^0(\gamma^* TM) \\ \gamma & \mapsto \dot\gamma \end{align*} is a smooth section of \(\coprod_{\gamma \in H^1(I, M)} H^0(\gamma^* TM) \to H^1(I, M)\). \end{proposition} \begin{proposition}\label{thm:covariant-derivative-h0} Denote by \(\nabla^0 : \mathfrak{X}(H^1(I, M)) \times \Gamma\left(\coprod_\gamma H^0(\gamma^* TM)\right) \to \Gamma\left(\coprod_{\gamma} H^0(\gamma^* TM)\right)\) the Levi-Civita connection of \(\coprod_\gamma H^0(\gamma^* TM)\). The map \begin{align*} \mathfrak{X}(H^1(I, M)) & \to \Gamma\left(\coprod_\gamma H^0(\gamma^* TM)\right) \\ \tilde X & \mapsto \nabla_{\tilde X}^0 \partial \end{align*} is such that \[ (\nabla_X^0 \partial)_\gamma = \nabla_{\frac\dd\dt} X = \frac\nabla\dt X \] for all \(\gamma \in {C'}^\infty(I, M)\) and \(X \in H^1(\gamma^* TM) \cong T_\gamma H^1(I, M)\). Given some arbitrary \(\gamma \in H^1(I, M)\) and \(X \in H^1(\gamma^* TM)\) we therefore denote \((\nabla_X^0 \partial)_\gamma\) simply by \(\frac\nabla\dt X\). \end{proposition} The proofs of these last two propositions were deemed too technical to be included in here, but see proposition 2.3.16 and 2.3.18 of \cite{klingenberg}. We may now finally describe the canonical Riemannian metric of \(H^1(I, M)\). \begin{definition}\label{def:h1-metric} Given \(\gamma \in H^1(I, M)\) and \(X, Y \in H^1(\gamma^* TM)\), let \[ \langle X, Y \rangle_1 = \langle X, Y \rangle_0 + \left\langle \frac\nabla\dt X, \frac\nabla\dt Y \right\rangle_0 \] \end{definition} At this point it should be obvious that definition~\ref{def:h1-metric} does indeed endow \(H^1(I, M)\) with the structure of a Riemannian manifold: the inner products \(\langle \, , \rangle_1 : H^1(\gamma^* TM) \times H^1(\gamma^* TM) \to \mathbb{R}\) may be glued together into a single positive-definite section \(\langle \, , \rangle_1 \in \Gamma\left(\operatorname{Sym}^2 \coprod_\gamma H^1(\gamma^* TM)\right)\) -- whose smoothness follows from theorem~\ref{thm:h0-has-metric-extension}, proposition~\ref{thm:partial-is-smooth-sec} and proposition~\ref{thm:covariant-derivative-h0} -- which is then mapped to a positive-definite section of \(\operatorname{Sym}^2 T H^1(I, M)\) by the induced isomorphism \[ \Gamma\left(\operatorname{Sym}^2 \coprod_\gamma H^1(\gamma^* TM)\right) \isoto \Gamma(\operatorname{Sym}^2 T H^1(I, M)) \] We are finally ready to discuss some applications.