latex-pictures
A collection of TikZ drawings and other images 🖌️
projective-system-universal-property.tikz (1268B)
1 % This diagram represents the universal property of a projective limit 2 % \varphojlim X_i, i.e. the fact the a projective limit is the limit of the 3 % functor between I^op and the category of obejcts of the projective system 4 % given my the projective system itself (for each index i it yields X_i and for 5 % each inequality i <= j it yeilds \varphi_{i, j} 6 % Copyright Pablo (C) 2021 7 \begin{tikzpicture}[ampersand replacement=\&] 8 % The objects 9 \matrix(m)[matrix of math nodes,row sep=3em,column sep=3em,minimum width=2em] 10 { \& X \& \\ 11 \& \varprojlim X_i \& \\ 12 X_i \& \& X_j \\}; 13 14 % The morphism 15 \draw[->] (m-2-2) -- node[above right]{$\pi_j$} (m-3-3); 16 \draw[->] (m-2-2) -- node[above left]{$\pi_i$} (m-3-1); 17 18 % The projections 19 \draw[dotted, ->] (m-1-2) -- node[right]{$\theta$} (m-2-2); 20 21 % The arrow from the projective system 22 \draw[->] (m-3-3) -- node[below]{$\phi_{i j}$} (m-3-1); 23 24 % The arrows from the compatible family of morphisms 25 \draw[->] (m-1-2) 26 to[relative, out=-30, in=-150] 27 node[left]{$\theta_i$} 28 (m-3-1); 29 \draw[->] (m-1-2) 30 to[relative, out=30, in=150] 31 node[right]{$\theta_j$} 32 (m-3-3); 33 \end{tikzpicture}