latex-setup
My personal LaTeX setup 🦁️⚙️
Name | Size | Mode | |
.. | |||
functional.sty | 4138B | -rw-r--r-- |
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
\NeedsTeXFormat{LaTeX2e}[1994/06/01] \ProvidesPackage{functional} [2020/09/10 1.0.0 Usefull definitions for Category Theory] \RequirePackage{amssymb} \RequirePackage{amsmath} % For the \DeclareMathOperator \RequirePackage{extarrows} % For \xlongrightarrow \RequirePackage{xfrac} % For \sfrac \RequirePackage{relsize} % For \mathlarger % Define symbols for categories \newcommand{\categoryname}[1]{\ensuremath{\mathbf{#1}}} \newcommand{\newcategory}[2]{\newcommand{#1}{\categoryname{#2}}} \newcommand{\renewcategory}[2]{\renewcommand{#1}{\categoryname{#2}}} % Generic stuff \DeclareMathOperator{\Obj}{Obj} % The class of objects of a category \DeclareMathOperator{\Hom}{Hom} % The class of morphisms of a category \DeclareMathOperator{\End}{End} % Endomorphisms \DeclareMathOperator{\Aut}{Aut} % Automorphisms \DeclareMathOperator{\coker}{coker} % Cokernel \newcommand{\normal}{\triangleleft} % A normal subobject in a pointed cathegory \newcommand{\op}{\mathrm{op}} % Dual category \newcommand{\isoto} {\xlongrightarrow{\sim}} % Isomorphism arrow \newcommand{\mfrac}[2] {\mathlarger{\sfrac{#1}{#2}}} % Quotient object \newcommand{\wfrac}[2] {\mathlarger{_{#2}\mkern-.5mu\backslash\mkern-2mu^{#1}}} % Quotient object % Function stuff \DeclareMathOperator{\dom}{dom} % The domain of a morphism \DeclareMathOperator{\codom}{codom} % The codomain of a morphism \DeclareMathOperator{\im}{im} % The image of morphism \DeclareMathOperator{\id}{id} % Identity function \newcommand{\To}{\Rightarrow} % Natural transformation \newcommand{\ot}{\leftarrow} % Reversed morphism \newcommand{\Ot}{\Leftarrow} % Reversed natural transformation \newcommand{\fmapsto}[1] {\overset{#1}{\longmapsto}} % Map declaration % Notable categories \newcategory{\Set}{Set} % The category of sets \newcategory{\Grp}{Grp} % The category of groups \newcategory{\FinGrp}{FinGrp} % The category of finite abelian groups \newcategory{\Ab}{Ab} % The category of abelian groups \newcategory{\FinAb}{FinAb} % The category of finite abelian groups \newcategory{\Ring}{Ring} % The category of rings \newcategory{\CRing}{CRing} % The category of commutative rings \newcategory{\Meas}{Meas} % The category of measurable spaces \newcategory{\Top}{Top} % The category of topological spaces \newcategory{\Haus}{Haus} % The category of Hausdorf spaces \newcategory{\KHaus}{KHaus} % The category of compact Hausdorf spaces \newcategory{\LCHaus}{LCHaus} % The category of locally compact Hausdorf spaces \newcategory{\GrpTop}{GrpTop} % The category of topological groups \newcategory{\LCGpr}{LCGpr} % The category of locally compact groups \newcategory{\LCAb}{LCAb} % The category of locally compact abelian groups \newcategory{\CAb}{CAb} % The category of compact abelian groups \newcategory{\Mfd}{Mfd} % The category of smooth manifilds \newcategory{\LieGrp}{LieGrp} % The category of Lie groups \newcategory{\LieAlg}{LieAlg} % The category of Lie algebras \newcategory{\Graph}{Graph} % The category of graphs \newcategory{\Quiv}{Quiv} % The category of quivers \newcategory{\PSh}{PSh} % The category of presheafs over some category \newcategory{\Sh}{Sh} % The category of sheafs over some site \newcategory{\Bun}{Bun} % The category of principal G-bundles over some % manifold \newcategory{\Rep}{Rep} % The category of representations of an object \newcategory{\rep}{rep} % The category of finite-dimensional % representations of an object \newcategory{\Cat}{Cat} % The category of (small) categories % The category of vector spaces over a (parameterized) field \newcommand{\Vect}[1] {\ensuremath{#1\operatorname{-}\!\categoryname{Vect}}} % The category of modules over a (parameterized) ring \newcommand{\Mod}[1] {\ensuremath{#1\operatorname{-}\!\categoryname{Mod}}} % The category of algebras over a (parameterized) field \newcommand{\Alg}[1] {\ensuremath{#1\operatorname{-}\!\categoryname{Alg}}} \endinput