lie-algebras-and-their-representations
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Name | Size | Mode | |
.. | |||
references.bib | 5169B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
@book{serganova, title = {A Journey Through Representation Theory: From Finite Groups to Quivers via Algebras}, author = {Gruson, Caroline and Serganova, Vera}, year = {2018}, } @book{fulton-harris, title = {Representation Theory: A First Course}, author = {Fulton, William and Harris, Joe}, publisher = {Springer}, year = {1991}, series = {Graduate Texts in Mathematics / Readings in Mathematics}, edition = {Corrected}, } @book{etingof, title = {Introduction to Representation Theory}, author = {Etingof, Pavel and Golberg, Oleg and Hensel, Sebastian and Liu, Tiankai and Schwendner, Alex and Vaintrob, Dmitry and Yudovina, Elena}, publisher = {American Mathematical Society}, year = {2011}, series = {Student Mathematical Library}, } @book{kirillov, title = {Introduction to Lie Groups and Lie Algebras}, author = {Kirillov, Alexander}, edition = {Preliminary version}, year = {2008}, url = {https://www.math.stonybrook.edu/~kirillov/liegroups}, } @book{lie-groups-serganova-student, title = {261A Lie Groups}, author = {Yuan, Qiaochu}, year = {2013}, url = {https://math.berkeley.edu/~qchu/Notes/261A.pdf}, } @book{humphreys, title = {Introduction to Lie Algebras and Representation Theory}, author = {E. Humphreys, James}, publisher = {Springer}, year = {1973}, series = {Graduate Texts in Mathematics}, edition = {1}, } @book{humphreys-cat-o, title = {Representations of Semisimple Lie Algebras in the BGG Category $\mathcal{O}$}, author = {E. Humphreys, James}, publisher = {American Mathematical Society}, year = {2008}, series = {Graduate Studies in Mathematics}, volume = 94, } @inproceedings{cohomologies-lie, booktitle = {Lie Groups and Lie Algebras II}, title = {Cohomologies of Lie Groups and Lie Algebras}, author = {L. Feigin, Boris and B. Fuchs, Dmitry}, publisher = {Springer}, series = {Encyclopedia of Mathematics}, volume = 21, year = {2000}, } @book{harder, title = {Lectures on Algebraic Geometry I: Sheaves, Cohomology of Sheaves, and Applications to Riemann Surfaces}, author = {Harder, G{\"u}nter}, year = {2008}, publisher = {Springer} } @book{ribeiro, title = {Notes of Everything}, author = {Ribeiro, Gabriel}, year = {2022}, url = {https://perso.pages.math.cnrs.fr/users/gabriel.ribeiro/assets/files/main.pdf} } @book{symplectic-physics, title = {Symplectic Techniques in Physics}, author = {Guillemin, Victor and Sternberg, Shlomo}, publisher = {Cambridge University Press}, year = {1984}, edition = {First Edition}, } @book{goodearl-warfield, title = {An Introduction to Noncommutative Noetherian Rings}, author = {R. Goodearl, Kenneth and Warfield Jr, Robert B.}, publisher = {Cambridge University Press}, year = {2004}, series = {London Mathematical Society Student Texts}, edition = {Second Edition}, } @misc{dimitar-exp, doi = {10.48550/ARXIV.2011.09975}, author = {Grantcharov, Dimitar and Nguyen, Khoa}, title = {Exponentiation and Fourier transform of tensor modules of $\mathfrak { sl} (n+1)$}, publisher = {arXiv}, year = {2020}, copyright = {Creative Commons Zero v1.0 Universal} } @article{nilsson, title = {$\mathcal{U}(\mathfrak{h})$-free modules and coherent families}, journal = {Journal of Pure and Applied Algebra}, author = {Nilsson, Jonathan}, volume = {220}, number = {4}, pages = {1475-1488}, year = {2016}, doi = {10.1016/j.jpaa.2015.09.013}, } @article{fernando, title = {Lie algebra modules with finite-dimensional weight spaces. I}, author = {Rupasiri Lakshman Fernando}, journal = {Transactions of the American Mathematical Society}, doi = {10.1090/S0002-9947-1990-1013330-8}, year = {1990}, volume = {322}, pages = {757-781}, } @article{mathieu, author = {Mathieu, Olivier}, journal = {Annales de l'institut Fourier}, doi = {10.5802/aif.1765}, number = {2}, pages = {537-592}, publisher = {Association des Annales de l'Institut Fourier}, title = {Classification of irreducible weight modules}, volume = {50}, year = {2000}, } @book{demazure-gabriel, title = {Groupes Algebriques Tome 1}, author = {Demazure, Michel and Gabriel, Pierre}, publisher = {NH}, year = {1970}, } @book{coutinho, title = {A Primer of Algebraic $D$-modules}, author = {C. Coutinho, Severino}, publisher = {Cambridge University Press}, year = {1995}, series = {London Mathematical Society student texts 33}, } @article{frobenius, title = {{\"U}ber Gruppencharakteren}, author = {Frobenius, Ferdinand Georg}, journal = {Wiss. Berlin}, pages = {985--1021}, year = {1896} } @book{maclane, title = {Categories for the Working Mathematician}, author = {Mac Lane, Saunders}, publisher = {Springer-Verlag}, year = {1971}, edition = {6}, }