lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

NameSizeMode
..
references.bib 5169B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
@book{serganova,
  title =     {A Journey Through Representation Theory: From Finite Groups to Quivers via Algebras},
  author =    {Gruson, Caroline and Serganova, Vera},
  year =      {2018},
}

@book{fulton-harris,
  title =     {Representation Theory: A First Course},
  author =    {Fulton, William and Harris, Joe},
  publisher = {Springer},
  year =      {1991},
  series =    {Graduate Texts in Mathematics / Readings in Mathematics},
  edition =   {Corrected},
}

@book{etingof,
  title =     {Introduction to Representation Theory},
  author =    {Etingof, Pavel and Golberg, Oleg and Hensel, Sebastian and Liu, Tiankai and Schwendner, Alex  and Vaintrob, Dmitry and Yudovina, Elena},
  publisher = {American Mathematical Society},
  year =      {2011},
  series =    {Student Mathematical Library},
}

@book{kirillov,
  title =     {Introduction to Lie Groups and Lie Algebras},
  author =    {Kirillov, Alexander},
  edition =   {Preliminary version},
  year =      {2008},
  url =       {https://www.math.stonybrook.edu/~kirillov/liegroups},
}

@book{lie-groups-serganova-student,
  title =     {261A Lie Groups},
  author =    {Yuan, Qiaochu},
  year =      {2013},
  url =       {https://math.berkeley.edu/~qchu/Notes/261A.pdf},
}

@book{humphreys,
  title =     {Introduction to Lie Algebras and Representation Theory},
  author =    {E. Humphreys, James},
  publisher = {Springer},
  year =      {1973},
  series =    {Graduate Texts in Mathematics},
  edition =   {1},
}

@book{humphreys-cat-o,
  title =     {Representations of Semisimple Lie Algebras in the BGG Category $\mathcal{O}$},
  author =    {E. Humphreys, James},
  publisher = {American Mathematical Society},
  year =      {2008},
  series =    {Graduate Studies in Mathematics},
  volume =    94,
}

@inproceedings{cohomologies-lie,
  booktitle = {Lie Groups and Lie Algebras II},
  title =     {Cohomologies of Lie Groups and Lie Algebras},
  author =    {L. Feigin, Boris and B. Fuchs, Dmitry},
  publisher = {Springer},
  series =    {Encyclopedia of Mathematics},
  volume =    21,
  year =      {2000},
}

@book{harder,
  title =     {Lectures on Algebraic Geometry I: Sheaves, Cohomology of Sheaves, and Applications to Riemann Surfaces},
  author =    {Harder, G{\"u}nter},
  year =      {2008},
  publisher = {Springer}
}

@book{ribeiro,
  title =     {Notes of Everything},
  author =    {Ribeiro, Gabriel},
  year =      {2022},
  url =       {https://perso.pages.math.cnrs.fr/users/gabriel.ribeiro/assets/files/main.pdf}
}

@book{symplectic-physics,
  title =     {Symplectic Techniques in Physics},
  author =    {Guillemin, Victor and Sternberg, Shlomo},
  publisher = {Cambridge University Press},
  year =      {1984},
  edition =   {First Edition},
}

@book{goodearl-warfield,
  title =     {An Introduction to Noncommutative Noetherian Rings},
  author =    {R. Goodearl, Kenneth and Warfield Jr, Robert B.},
  publisher = {Cambridge University Press},
  year =      {2004},
  series =    {London Mathematical Society Student Texts},
  edition =   {Second Edition},
}

@misc{dimitar-exp,
  doi =       {10.48550/ARXIV.2011.09975},
  author =    {Grantcharov, Dimitar and Nguyen, Khoa},
  title =     {Exponentiation and Fourier transform of tensor modules of $\mathfrak { sl} (n+1)$},
  publisher = {arXiv},
  year =      {2020},
  copyright = {Creative Commons Zero v1.0 Universal}
}

@article{nilsson,
  title =     {$\mathcal{U}(\mathfrak{h})$-free modules and coherent families},
  journal =   {Journal of Pure and Applied Algebra},
  author =    {Nilsson, Jonathan},
  volume =    {220},
  number =    {4},
  pages =     {1475-1488},
  year =      {2016},
  doi =       {10.1016/j.jpaa.2015.09.013},
}

@article{fernando,
  title =     {Lie algebra modules with finite-dimensional weight spaces. I},
  author =    {Rupasiri Lakshman Fernando},
  journal =   {Transactions of the American Mathematical Society},
  doi =       {10.1090/S0002-9947-1990-1013330-8},
  year =      {1990},
  volume =    {322},
  pages =     {757-781},
}

@article{mathieu,
  author =    {Mathieu, Olivier},
  journal =   {Annales de l'institut Fourier},
  doi =       {10.5802/aif.1765},
  number =    {2},
  pages =     {537-592},
  publisher = {Association des Annales de l'Institut Fourier},
  title =     {Classification of irreducible weight modules},
  volume =    {50},
  year =      {2000},
}

@book{demazure-gabriel,
  title =     {Groupes Algebriques Tome 1},
  author =    {Demazure, Michel and Gabriel, Pierre},
  publisher = {NH},
  year =      {1970},
}

@book{coutinho,
  title =     {A Primer of Algebraic $D$-modules},
  author =    {C. Coutinho, Severino},
  publisher = {Cambridge University Press},
  year =      {1995},
  series =    {London Mathematical Society student texts 33},
}

@article{frobenius,
  title =     {{\"U}ber Gruppencharakteren},
  author =    {Frobenius, Ferdinand Georg},
  journal =   {Wiss. Berlin},
  pages =     {985--1021},
  year =      {1896}
}

@book{maclane,
   title =     {Categories for the Working Mathematician},
   author =    {Mac Lane, Saunders},
   publisher = {Springer-Verlag},
   year =      {1971},
   edition =   {6},
}