lie-algebras-and-their-representations
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Name | Size | Mode | |
.. | |||
sections/complete-reducibility.tex | 47064B | -rw-r--r-- |
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006
\chapter{Semisimplicity \& Complete Reducibility} \label{start-47} Having hopefully established in the previous chapter that Lie algebras and their representations are indeed useful, we are now faced with the Herculean task of trying to understand them. We have seen that representations can be used to derive geometric information about groups, but the question remains: how do we go about classifying the representations of a given Lie algebra? This question has sparked an entire field of research, and we cannot hope to provide a comprehensive answer in the \pagedifference{start-47}{end-47} pages we have left. Nevertheless, we can work on particular cases. For instance, one can readily check that a \(K^n\)-module \(M\) -- here \(K^n\) denotes the \(n\)-dimensional Abelian Lie algebra -- is nothing more than a choice of \(n\) commuting operators \(M \to M\) -- corresponding to the action of the canonical basis elements \(e_1, \ldots, e_n \in K^n\). In particular, a \(1\)-dimensional \(K^n\)-module is just a choice of \(n\) scalars \(\lambda_1, \ldots, \lambda_n\). Different choices of scalars yield non-isomorphic modules, so that the \(1\)-dimensional \(K^n\)-modules are parameterized by points in \(K^n\). This goes to show that classifying the representations of Abelian algebras is not that interesting of a problem. Instead, we focus on a less trivial, yet reasonably well behaved case: the finite-dimensional modules of a finite-dimensional semisimple Lie algebra \(\mathfrak{g}\) over an algebraically closed field \(K\) of characteristic \(0\). But why are the modules of a semisimple Lie algebras simpler -- or perhaps \emph{semisimpler} -- to understand than those of any old Lie algebra? We will get back to this question in a moment, but for now we simply note that, when solving a classification problem, it is often profitable to break down our structure is smaller pieces. This leads us to the following definitions. \begin{definition}\index{\(\mathfrak{g}\)-module!indecomposable module} A \(\mathfrak{g}\)-module is called \emph{indecomposable} if it is not isomorphic to the direct sum of two nonzero \(\mathfrak{g}\)-modules. \end{definition} \begin{definition}\index{\(\mathfrak{g}\)-module!simple module}\index{simple!\(\mathfrak{g}\)-module} A \(\mathfrak{g}\)-module is called \emph{simple} if it has no nonzero proper \(\mathfrak{g}\)-modules. \end{definition} \begin{example} The trivial \(\mathfrak{g}\)-module \(K\) is an example of a simple \(\mathfrak{g}\)-module. In fact, every \(1\)-dimensional \(\mathfrak{g}\)-module \(M\) is simple: \(M\) has no nonzero proper \(K\)-subspaces, let alone \(\mathfrak{g}\)-submodules. \end{example} \begin{example}\label{ex:all-simple-reps-are-tensor-prod} Given a finite-dimensional simple \(\mathfrak{g}_1\)-module \(M_1\) and a finite-dimensional simple \(\mathfrak{g}_2\)-module \(M_2\), the tensor product \(M_1 \otimes M_2\) is a simple \(\mathfrak{g}_1 \oplus \mathfrak{g}_2\)-module. All finite-dimensional simple \(\mathfrak{g}_1 \oplus \mathfrak{g}_2\)-modules have the form \(M_1 \otimes M_2\) for unique (up to isomorphism) \(M_1\) and \(M_2\). In light of Example~\ref{ex:univ-enveloping-of-sum-is-tensor}, this is a particular case of the fact that, given \(K\)-algebras \(A\) and \(B\), all finite-dimensional simple \(A \otimes_K B\)-modules are given tensor products of simple \(A\)-modules with simple \(B\)-modules -- see \cite[ch.~3]{etingof}. \end{example} The general strategy for classifying finite-dimensional modules over an algebra is to classify the indecomposable modules. This is because\dots \begin{theorem}[Krull-Schmidt]\label{thm:krull-schmidt} Let \(\mathfrak{g}\) be a Lie algebra. Then every finite-dimensional \(\mathfrak{g}\)-module can be uniquely -- up to isomorphisms and reordering of the summands -- decomposed into a direct sum of indecomposable \(\mathfrak{g}\)-modules. \end{theorem} Hence finding the indecomposable \(\mathfrak{g}\)-modules suffices to find \emph{all} finite-dimensional \(\mathfrak{g}\)-modules: they are the direct sum of indecomposable \(\mathfrak{g}\)-modules. The existence of the decomposition should be clear from the definitions. Indeed, if \(M\) is a finite-dimensional \(\mathfrak{g}\)-modules a simple argument via induction in \(\dim M\) suffices to prove the existence: if \(M\) is indecomposable then there is nothing to prove, and if \(M\) is not indecomposable then \(M = N \oplus L\) for some nonzero submodules \(N, L \subsetneq M\), so that their dimensions are both strictly smaller than \(\dim M\) and the existence follows from the induction hypothesis. For a proof of uniqueness please refer to \cite{etingof}. Finding the indecomposable modules of an arbitrary Lie algebra, however, turns out to be a bit of a circular problem: the indecomposable \(\mathfrak{g}\)-modules are the ones that cannot be decomposed, which is to say, those that are \emph{not} decomposable. Ideally, we would like to find some other condition, equivalent to indecomposability, but which is easier to work with. It is clear from the definitions that every simple \(\mathfrak{g}\)-module is indecomposable, but there is no reason to believe the converse is true. Indeed, this is not always the case. For instance\dots \begin{example}\label{ex:indecomposable-not-irr} The space \(M = K^2\) endowed with the action \begin{align*} x \cdot e_1 & = e_1 & x \cdot e_2 = e_1 + e_2 \end{align*} of the Lie algebra \(K[x]\) is a \(K[x]\)-module. Notice \(M\) has a single nonzero proper submodule, which is spanned by the vector \(e_1\). This is because if \((a + b) e_1 + b e_2 = x \cdot (a e_1 + b e_2) = \lambda \cdot (a e_1 + b e_2)\) for some \(\lambda \in K\) then \(\lambda = 1\) and \(b = 0\). Hence \(M\) is indecomposable -- it cannot be broken into a direct sum of \(1\)-dimensional submodules -- but it is evidently not simple. \end{example} This counterexample poses an interesting question: are there conditions one can impose on an algebra \(\mathfrak{g}\) under which every indecomposable \(\mathfrak{g}\)-module is simple? This is what is known in representation theory as \emph{complete reducibility}. \begin{definition}\index{\(\mathfrak{g}\)-module!completely reducible module} A \(\mathfrak{g}\)-module \(M\) is called \emph{completely reducible} if every \(\mathfrak{g}\)-submodule of \(M\) has a \(\mathfrak{g}\)-invariant complement -- i.e. given \(N \subset M\), there is a submodule \(L \subset M\) such that \(M = N \oplus L\). \end{definition} \begin{definition}\index{\(\mathfrak{g}\)-module!semisimple module}\index{semisimple!\(\mathfrak{g}\)-module} A \(\mathfrak{g}\)-module \(M\) is called \emph{semisimple} if it is the direct sum of simple \(\mathfrak{g}\)-modules. \end{definition} In case the relationship between complete reducibility, semisimplicity of \(\mathfrak{g}\)-modules and the simplicity of indecomposable modules is unclear, the following results should clear things up. \begin{proposition} The following conditions are equivalent. \begin{enumerate} \item Every submodule of a finite-dimensional \(\mathfrak{g}\)-module is completely reducible. \item Every exact sequence of finite-dimensional \(\mathfrak{g}\)-modules splits. \item Every indecomposable finite-dimensional \(\mathfrak{g}\)-module is simple. \item Every finite-dimensional \(\mathfrak{g}\)-module is semisimple. \end{enumerate} \end{proposition} \begin{proof} We begin by \(\textbf{(i)} \implies \textbf{(ii)}\). Let \begin{center} \begin{tikzcd} 0 \rar & N \rar{f} & M \rar{g} & L \rar & 0 \end{tikzcd} \end{center} be an exact sequence of \(\mathfrak{g}\)-modules. We can suppose without loss of generality that \(N \subset M\) is a submodule and \(f\) is its inclusion in \(M\), for if this is not the case there is an isomorphism of sequences \begin{center} \begin{tikzcd} 0 \rar & N \rar{f} \dar[swap]{f} & M \rar{g} \dar[Rightarrow, no head] & L \rar \dar[Rightarrow, no head] & 0 \\ 0 \rar & f(N) \rar & M \rar[swap]{g} & L \rar & 0 \end{tikzcd} \end{center} It then follows from \textbf{(i)} that there exists a \(\mathfrak{g}\)-submodule \(L' \subset M\) such that \(M = N \oplus L'\). Finally, the projection \(s : M \to N\) is \(\mathfrak{g}\)-homomorphism satisfying \begin{center} \begin{tikzcd} 0 \rar & N \rar{f} & M \rar{g} \lar[bend left=30]{s} & L \rar & 0 \end{tikzcd} \end{center} Next is \(\textbf{(ii)} \implies \textbf{(iii)}\). If \(M\) is an indecomposable \(\mathfrak{g}\)-module and \(N \subset M\) is a submodule, we have an exact sequence \begin{center} \begin{tikzcd} 0 \rar & N \rar & M \rar & \mfrac{M}{N} \rar & 0 \end{tikzcd} \end{center} of \(\mathfrak{g}\)-modules. Since our sequence splits, we must have \(M \cong N \oplus \mfrac{M}{N}\). But \(M\) is indecomposable, so that either \(M = N\) or \(M \cong \mfrac{M}{N}\), in which case \(N = 0\). Since this holds for all \(N \subset M\), \(M\) is simple. For \(\textbf{(iii)} \implies \textbf{(iv)}\) it suffices to apply Theorem~\ref{thm:krull-schmidt}. Finally, for \(\textbf{(iv)} \implies \textbf{(i)}\), if we assume \(\textbf{(iv)}\) and let \(M\) be a \(\mathfrak{g}\)-module with decomposition into simple submodules \[ M = \bigoplus_i M_i \] and \(N \subset M\) is a submodule. Take some maximal set of indexes \(\{i_1, \ldots, i_r\}\) so that \(\left( \bigoplus_k M_{i_k} \right) \cap M = 0\) and let \(L = \bigoplus_k M_{i_k}\). We want to establish \(M = N \oplus L\). Suppose without any loss in generality that \(i_k = k\) for all \(k\) and let \(j > r\). By the maximality of our set of indexes, there is some nonzero \(n \in (M_j \oplus L) \cap N\). Say \(n = m_j + m_1 + \cdots + m_r\) with each \(m_i \in M_i\). Then \(m_j = n - m_1 - \cdots - m_r \in M_j \cap (N \oplus L)\) is nonzero. Indeed, if this is not the case we find \(0 \ne n = m_1 + \cdots + m_r \in \left( \bigoplus_{i = 1}^r M_i \right) \cap N\), a contradiction. This implies \(M_j \cap (N \oplus L)\) is a nonzero submodule of \(M_j\). Since \(M_j\) is simple, \(M_j = M_j \cap (N \oplus L)\) and therefore \(M_j \subset N \oplus L\). Given the arbitrary choice of \(j\), it then follows \(M = N \oplus L\). \end{proof} While we are primarily interested in indecomposable \(\mathfrak{g}\)-modules -- which is usually a strictly larger class of representations than that of simple \(\mathfrak{g}\)-modules -- it is important to note that simple \(\mathfrak{g}\)-modules are generally much easier to find. The relationship between simple \(\mathfrak{g}\)-modules is also well understood. This is because of the following result, known as \emph{Schur's Lemma}. \begin{lemma}[Schur] Let \(M\) and \(N\) be simple \(\mathfrak{g}\)-modules and \(f : M \to N\) be a \(\mathfrak{g}\)-homomorphism. Then \(f\) is either \(0\) or an isomorphism. Furthermore, if \(M = N\) is finite-dimensional then \(f\) is a scalar operator. \end{lemma} \begin{proof} For the first statement, it suffices to notice that \(\ker f\) and \(\operatorname{im} f\) are both submodules. In particular, either \(\ker f = 0\) and \(\operatorname{im} f = N\) or \(\ker f = M\) and \(\operatorname{im} f = 0\). Now suppose \(M = N\) is finite-dimensional. Let \(\lambda \in K\) be an eigenvalue of \(f\) -- which exists because \(K\) is algebraically closed -- and \(M_\lambda\) be its corresponding eigenspace. Given \(m \in M_\lambda\), \(f(X \cdot m) = X \cdot f(m) = \lambda X \cdot m\). In other words, \(M_\lambda\) is a \(\mathfrak{g}\)-submodule. It then follows \(M_\lambda = M\), given that \(M_\lambda \ne 0\). \end{proof} We are now ready to answer our first question: the special thing about semisimple algebras is that the relationship between their indecomposable modules and their simple modules is much clearer. Namely\dots \begin{proposition} Given a finite-dimensional Lie algebra \(\mathfrak{g}\) over \(K\), \(\mathfrak{g}\) is semisimple if, and only if every finite-dimensional \(\mathfrak{g}\)-module is completely reducible. \end{proposition} The proof of the fact that a finite-dimensional Lie algebra \(\mathfrak{g}\) whose finite-dimensional modules are completely reducible is semisimple is actually pretty simple. Namely, it suffices to note that the adjoint \(\mathfrak{g}\)-module is the direct sum of simple submodules, which are all simple ideals of \(\mathfrak{g}\) -- so \(\mathfrak{g}\) is the direct sum of simple Lie algebras. The proof of the converse is more nuanced, and this will be our next milestone. Before proceeding to the proof of complete reducibility, however, we would like to introduce some basic tools which will come in handy later on, known as\dots \section{Invariant Bilinear Forms} \begin{definition}\index{invariant bilinear form} A symmetric bilinear form \(B : \mathfrak{g} \times \mathfrak{g} \to K\) is called \emph{\(\mathfrak{g}\)-invariant} if the operator \(\operatorname{ad}(X) : \mathfrak{g} \to \mathfrak{g}\) is antisymmetric with respect to \(B\) for all \(X \in \mathfrak{g}\). \[ B(\operatorname{ad}(X) Y, Z) + B(Y, \operatorname{ad}(X) Z) = 0 \] \end{definition} \begin{note} The etymology of the term \emph{invariant form} comes from group representation theory. Namely, given a linear action of a group \(G\) on a vector space \(V\) equipped with a bilinear form \(B\), \(B\) is called \(G\)-invariant if all \(g \in G\) act via \(B\)-orthogonal operators. The condition of \(\mathfrak{g}\)-invariance can thus be though-of as an \emph{infinitesimal approximation} of the notion of a \(G\)-invariant form. Indeed \(\operatorname{Lie}(\operatorname{O}(B))\) is precisely the Lie subalgebra of \(\mathfrak{gl}(V)\) consisting of antisymmetric operators \(V \to V\). \end{note} An interesting example of an invariant bilinear form is the so called \emph{Killing form}. \begin{definition}\index{invariant bilinear form!Killing form}\index{Killing form} Given a finite-dimensional Lie algebra \(\mathfrak{g}\), the symmetric bilinear form \begin{align*} \kappa : \mathfrak{g} \times \mathfrak{g} & \to K \\ (X, Y) & \mapsto \operatorname{Tr}(\operatorname{ad}(X) \operatorname{ad}(Y)) \end{align*} is called \emph{the Killing form of \(\mathfrak{g}\)}. \end{definition} The fact that the Killing form is an invariant form follows directly from the identity \(\operatorname{Tr}([X, Y] Z) = \operatorname{Tr}(X [Y, Z])\), \(X, Y, Z \in \mathfrak{gl}_n(K)\). In fact this same identity show\dots \begin{lemma}\index{invariant bilinear form!bilinear form of a \(\mathfrak{g}\)-module} Given a finite-dimensional \(\mathfrak{g}\)-module \(M\), the symmetric bilinear form \begin{align*} \kappa_M : \mathfrak{g} \times \mathfrak{g} & \to K \\ (X, Y) & \mapsto \operatorname{Tr}(X\!\restriction_M \, Y\!\restriction_M) \end{align*} is \(\mathfrak{g}\)-invariant. \end{lemma} The reason why we are discussing invariant bilinear forms is the following characterization of finite-dimensional semisimple Lie algebras, known as \emph{Cartan's criterion for semisimplicity}. \begin{proposition} Let \(\mathfrak{g}\) be a Lie algebra. The following conditions are equivalent. \begin{enumerate} \item \(\mathfrak{g}\) is semisimple. \item For each non-trivial finite-dimensional \(\mathfrak{g}\)-module \(M\), the \(\mathfrak{g}\)-invariant bilinear form \begin{align*} \kappa_M : \mathfrak{g} \times \mathfrak{g} & \to K \\ (X, Y) & \mapsto \operatorname{Tr}(X\!\restriction_M \, Y\!\restriction_M) \end{align*} is non-degenerate\footnote{A symmetric bilinear form $B : \mathfrak{g} \times \mathfrak{g} \to K$ is called non-degenerate if $B(X, Y) = 0$ for all $Y \in \mathfrak{g}$ implies $X = 0$.}. \item The Killing form \(\kappa\) is non-degenerate. \end{enumerate} \end{proposition} This proof is somewhat technical, but the idea behind it is simple. First, for \strong{(i)} \(\implies\) \strong{(ii)} we show that \(\mathfrak{a} = \{ X \in \mathfrak{g} : \kappa_M(X, Y) = 0 \, \forall Y \in \mathfrak{g}\}\) is a solvable ideal of \(\mathfrak{g}\). Hence \(\mathfrak{a} = 0\). For \strong{(ii)} \(\implies\) \strong{(iii)} it suffices to take \(M = \mathfrak{g}\) the adjoint \(\mathfrak{g}\)-module. Finally, for \strong{(iii)} \(\implies\) \strong{(i)} we note that the orthogonal complement of any \(\mathfrak{a} \normal \mathfrak{g}\) with respect to the Killing form \(\kappa\) is an ideal \(\mathfrak{b}\) of \(\mathfrak{g}\) with \(\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b}\). Furthermore, the Killing form of \(\mathfrak{a}\) is the restriction \(\kappa\!\restriction_{\mathfrak{a}}\) of the Killing form of \(\mathfrak{g}\) to \(\mathfrak{a} \times \mathfrak{a}\), which is non-degenerate. It then follows from induction in \(\dim \mathfrak{a}\) that \(\mathfrak{g}\) is the sum of simple ideals. We refer the reader to \cite[ch. 5]{humphreys} for a complete proof. Without further ado, we may proceed to our\dots \section{Proof of Complete Reducibility} Let \(\mathfrak{g}\) be a finite-dimensional Lie algebra over \(K\). We want to establish that if \(\mathfrak{g}\) is semisimple then all finite-dimensional \(\mathfrak{g}\)-modules are semisimple. Historically, this was first proved by Herman Weyl for \(K = \mathbb{C}\), using his knowledge of smooth representations of compact Lie groups. Namely, Weyl showed that any finite-dimensional semisimple complex Lie algebra is (isomorphic to) the complexification of the Lie algebra of a unique simply connected compact Lie group, known as its \emph{compact form}. Hence the category of the finite-dimensional modules of a given complex semisimple algebra is equivalent to that of the finite-dimensional smooth representations of its compact form, whose representations are known to be completely reducible because of Maschke's Theorem -- see \cite[ch. 3]{serganova} for instance. This proof, however, is heavily reliant on the geometric structure of \(\mathbb{C}\). In other words, there is no hope for generalizing this for some arbitrary \(K\). Fortunately for us, there is a much simpler, completely algebraic proof of complete reducibility, which works for algebras over any algebraically closed field of characteristic zero. The algebraic proof included in here is mainly based on that of \cite[ch. 6]{kirillov}, and uses some basic homological algebra. Admittedly, much of the homological algebra used in here could be concealed from the reader, which would make the exposition more accessible -- see \cite{humphreys} for instance. However, this does not change the fact the arguments used in this proof are essentially homological in nature. Hence we consider it more productive to use the full force of the language of homological algebra, instead of burring the reader in a pile of unmotivated, yet entirely elementary arguments. Furthermore, the homological algebra used in here is actually \emph{very basic}. In fact, all we need to know is\dots \begin{theorem}\label{thm:ext-exacts-seqs}\index{\(\operatorname{Ext}\) functors} There is a sequence of bifunctors \(\operatorname{Ext}^i : \mathfrak{g}\text{-}\mathbf{Mod}^{\operatorname{op}} \times \mathfrak{g}\text{-}\mathbf{Mod} \to K\text{-}\mathbf{Vect}\), \(i \ge 0\) such that, given a \(\mathfrak{g}\)-module \(L'\), every exact sequence of \(\mathfrak{g}\)-modules \begin{center} \begin{tikzcd} 0 \rar & N \rar{f} & M \rar{g} & L \rar & 0 \end{tikzcd} \end{center} induces long exact sequences \begin{center} \begin{tikzcd} 0 \rar & \operatorname{Hom}_{\mathfrak{g}}(L', N) \rar{f \circ -}\ar[draw=none]{d}[name=X, anchor=center]{} & \operatorname{Hom}_{\mathfrak{g}}(L', M) \rar{g \circ -} & \operatorname{Hom}_{\mathfrak{g}}(L', L) \ar[rounded corners, to path={ -- ([xshift=2ex]\tikztostart.east) |- (X.center) \tikztonodes -| ([xshift=-2ex]\tikztotarget.west) -- (\tikztotarget)}]{dll}[at end]{} \\ & \operatorname{Ext}^1(L', N) \rar\ar[draw=none]{d}[name=Y, anchor=center]{} & \operatorname{Ext}^1(L', M) \rar & \operatorname{Ext}^1(L', L) \ar[rounded corners, to path={ -- ([xshift=2ex]\tikztostart.east) |- (Y.center) \tikztonodes -| ([xshift=-2ex]\tikztotarget.west) -- (\tikztotarget)}]{dll}[at end]{} \\ & \operatorname{Ext}^2(L', N) \rar & \operatorname{Ext}^2(L', M) \rar & \operatorname{Ext}^2(L', L) \rar[dashed] & \cdots \end{tikzcd} \end{center} and \begin{center} \begin{tikzcd} 0 \rar & \operatorname{Hom}_{\mathfrak{g}}(L, L') \rar{- \circ g}\ar[draw=none]{d}[name=X, anchor=center]{} & \operatorname{Hom}_{\mathfrak{g}}(M, L') \rar{- \circ f} & \operatorname{Hom}_{\mathfrak{g}}(N, L') \ar[rounded corners, to path={ -- ([xshift=2ex]\tikztostart.east) |- (X.center) \tikztonodes -| ([xshift=-2ex]\tikztotarget.west) -- (\tikztotarget)}]{dll}[at end]{} \\ & \operatorname{Ext}^1(L, L') \rar\ar[draw=none]{d}[name=Y, anchor=center]{} & \operatorname{Ext}^1(M, L') \rar & \operatorname{Ext}^1(N, L') \ar[rounded corners, to path={ -- ([xshift=2ex]\tikztostart.east) |- (Y.center) \tikztonodes -| ([xshift=-2ex]\tikztotarget.west) -- (\tikztotarget)}]{dll}[at end]{} \\ & \operatorname{Ext}^2(L, L') \rar & \operatorname{Ext}^2(M, L') \rar & \operatorname{Ext}^2(N, L') \rar[dashed] & \cdots \end{tikzcd} \end{center} \end{theorem} \begin{theorem}\label{thm:ext-1-classify-short-seqs} Given \(\mathfrak{g}\)-modules \(N\) and \(L\), there is a one-to-one correspondence between elements of \(\operatorname{Ext}^1(L, N)\) and isomorphism classes of short exact sequences \begin{center} \begin{tikzcd} 0 \rar & N \rar & M \rar & L \rar & 0 \end{tikzcd} \end{center} In particular, \(\operatorname{Ext}^1(L, N) = 0\) if, and only if every short exact sequence of \(\mathfrak{g}\)-modules with \(N\) and \(L\) in the extremes splits. \end{theorem} We should point out that, although we have not provided an explicit definition of the bifunctors \(\operatorname{Ext}^i\), they are uniquely determined by the conditions of Theorem~\ref{thm:ext-exacts-seqs} and some additional minimality constraints. This is, of course, \emph{far} from a comprehensive account of homological algebra. Nevertheless, this is all we need. We refer the reader to \cite{harder} for a complete exposition, or to part II of \cite{ribeiro} for a more modern account using derived categories. We are particularly interested in the case where \(L' = K\) is the trivial \(\mathfrak{g}\)-module. Namely, we may define\dots \begin{definition}\index{Lie algebra!cohomology}\index{cohomology of Lie algebras} Given a Lie algebra \(\mathfrak{g}\) and a \(\mathfrak{g}\)-module \(M\), we refer to the Abelian group \(H^i(\mathfrak{g}, M) = \operatorname{Ext}^i(K, M)\) as \emph{the \(i\)-th Lie algebra cohomology group of \(\mathfrak{g}\) with coefficients in \(M\)}. \end{definition} \begin{definition}\index{cohomology of Lie algebras!invariants} Given a \(\mathfrak{g}\)-module \(M\), we call the vector space \(M^{\mathfrak{g}} = \{m \in M : X \cdot m = 0 \; \forall X \in \mathfrak{g}\}\) \emph{the space of invariants of \(M\)}. A simple calculations shows that a \(\mathfrak{g}\)-homomorphism \(f : M \to N\) takes invariants to invariants, so that \(f\) restricts to a map \(M^{\mathfrak{g}} \to N^{\mathfrak{g}}\). This construction thus yields a functor \(-^{\mathfrak{g}} : \mathfrak{g}\text{-}\mathbf{Mod} \to K\text{-}\mathbf{Vect}\). \end{definition} \begin{example} Let \(M\) be a \(\mathfrak{g}\)-module. Then \(M\) is a direct sum of copies of the trivial \(\mathfrak{g}\)-module if, and only if \(M = M^{\mathfrak{g}}\). \end{example} \begin{example}\label{ex:hom-invariants-are-g-homs} Let \(M\) and \(N\) be \(\mathfrak{g}\)-modules. Then \(\operatorname{Hom}(M, N)^{\mathfrak{g}} = \operatorname{Hom}_{\mathfrak{g}}(M, N)\). Indeed, given a \(K\)-linear map \(f : M \to N\) we find \[ \begin{split} f \in \operatorname{Hom}(M, N)^{\mathfrak{g}} & \iff X \cdot f(m) - f(X \cdot m) = (X \cdot f)(m) = 0 \; \forall X \in \mathfrak{g}, m \in M \\ & \iff X \cdot f(m) = f(X \cdot m) \; \forall X \in \mathfrak{g}, m \in M \\ & \iff f \in \operatorname{Hom}_{\mathfrak{g}}(M, N) \end{split} \] \end{example} The Lie algebra cohomology groups are very much related to invariants of \(\mathfrak{g}\)-modules. Namely, constructing a \(\mathfrak{g}\)-homomorphism \(f : K \to M\) is precisely the same as fixing an invariant of \(M\) -- corresponding to \(f(1)\), which must be an invariant for \(f\) to be a \(\mathfrak{g}\)-homomorphism. Formally, this translates to the existence of a canonical isomorphism of functors \(\operatorname{Hom}_{\mathfrak{g}}(K, -) \isoto {-}^{\mathfrak{g}}\) given by \begin{align*} \operatorname{Hom}_{\mathfrak{g}}(K, M) & \isoto M^{\mathfrak{g}} \\ f & \mapsto f(1) \end{align*} This implies\dots \begin{corollary} Every short exact sequence of \(\mathfrak{g}\)-modules \begin{center} \begin{tikzcd} 0 \rar & N \rar{f} & M \rar{g} & L \rar & 0 \end{tikzcd} \end{center} induces a long exact sequence \begin{center} \begin{tikzcd} 0 \rar & N^{\mathfrak{g}} \rar{f} \ar[draw=none]{d}[name=X, anchor=center]{} & M^{\mathfrak{g}} \rar{g} & L^{\mathfrak{g}} \ar[rounded corners, to path={ -- ([xshift=2ex]\tikztostart.east) |- (X.center) \tikztonodes -| ([xshift=-2ex]\tikztotarget.west) -- (\tikztotarget)}]{dll}[at end]{} \\ & H^1(\mathfrak{g}, N) \rar\ar[draw=none]{d}[name=Y, anchor=center]{} & H^1(\mathfrak{g}, M) \rar & H^1(\mathfrak{g}, L) \ar[rounded corners, to path={ -- ([xshift=2ex]\tikztostart.east) |- (Y.center) \tikztonodes -| ([xshift=-2ex]\tikztotarget.west) -- (\tikztotarget)}]{dll}[at end]{} \\ & H^2(\mathfrak{g}, N) \rar & H^2(\mathfrak{g}, M) \rar & H^2(\mathfrak{g}, L) \rar[dashed] & \cdots \end{tikzcd} \end{center} \end{corollary} \begin{proof} We have an isomorphism of sequences \begin{center} \begin{tikzcd} 0 \rar & \operatorname{Hom}_{\mathfrak{g}}(K, N) \rar{f \circ -} \dar & \operatorname{Hom}_{\mathfrak{g}}(K, M) \rar{g \circ -} \dar & \operatorname{Hom}_{\mathfrak{g}}(K, L) \rar \dar & H^1(\mathfrak{g}, N) \rar[dashed]\dar[Rightarrow, no head] & \cdots \\ 0 \rar & N^{\mathfrak{g}} \rar[swap]{f} & M^{\mathfrak{g}} \rar[swap]{g} & L^{\mathfrak{g}} \rar & H^1(\mathfrak{g}, N) \rar[dashed] & \cdots \end{tikzcd} \end{center} By Theorem~\ref{thm:ext-exacts-seqs} the sequence on the top is exact. Hence so is the sequence on the bottom. \end{proof} This is all well and good, but what does any of this have to do with complete reducibility? Well, in general cohomology theories really shine when one is trying to control obstructions of some kind. In our case, the bifunctor \(H^1(\mathfrak{g}, \operatorname{Hom}(-, -)) : \mathfrak{g}\text{-}\mathbf{Mod}^{\operatorname{op}} \times \mathfrak{g}\text{-}\mathbf{Mod} \to K\text{-}\mathbf{Vect}\) classifies obstructions to complete reducibility. Explicitly\dots \begin{theorem} There is a natural isomorphism \(\operatorname{Ext}^1 \isoto H^1(\mathfrak{g}, \operatorname{Hom}(-, -))\). In particular, given \(\mathfrak{g}\)-modules \(N\) and \(L\), there is a one-to-one correspondence between elements of \(H^1(\mathfrak{g}, \operatorname{Hom}(L, N))\) and isomorphism classes of short exact sequences \begin{center} \begin{tikzcd} 0 \rar & N \rar & M \rar & L \rar & 0 \end{tikzcd} \end{center} \end{theorem} This is essentially a consequence of Example~\ref{ex:hom-invariants-are-g-homs} and Theorem~\ref{thm:ext-1-classify-short-seqs}, as well as the minimality conditions that characterize \(\operatorname{Ext}^1\). For the readers already familiar with homological algebra: the correspondence between \(H^1(\mathfrak{g}, \operatorname{Hom}(L, N))\) and short exact sequences of \(\mathfrak{g}\)-modules can be described in very concrete terms by considering a canonical free resolution \begin{center} \begin{tikzcd} \cdots \rar[dashed] & \mathcal{U}(\mathfrak{g}) \otimes (\wedge^2 \mathfrak{g}) \rar & \mathcal{U}(\mathfrak{g}) \otimes \mathfrak{g} \rar & \mathcal{U}(\mathfrak{g}) \rar & K \rar & 0 \end{tikzcd} \end{center} of the trivial \(\mathfrak{g}\)-module \(K\), known as \emph{the Chevalley-Eilenberg resolution}, which provides an explicit construction of the cohomology groups -- see \cite[sec.~1.3C]{cohomologies-lie} or \cite[sec.~24]{symplectic-physics} for further details. We will use the previous result implicitly in our proof, but we will not prove it in its full force. Namely, we will show that if \(\mathfrak{g}\) is semisimple then \(H^1(\mathfrak{g}, M) = 0\) for all finite-dimensional \(M\), and that the fact that \(H^1(\mathfrak{g}, \operatorname{Hom}(L, N)) = 0\) for all finite-dimensional \(N\) and \(L\) implies complete reducibility. To that end, we introduce a distinguished element of \(\mathcal{U}(\mathfrak{g})\), known as \emph{the Casimir element of a \(\mathfrak{g}\)-module}. \begin{definition}\label{def:casimir-element}\index{Casimir element} Let \(\mathfrak{g}\) be a finite-dimensional semisimple Lie algebra and \(M\) be a finite-dimensional \(\mathfrak{g}\)-module. Let \(\{X_i\}_i\) be a basis for \(\mathfrak{g}\) and denote by \(\{X^i\}_i \subset \mathfrak{g}\) its dual basis with respect to the form \(\kappa_M\) -- i.e. the unique basis for \(\mathfrak{g}\) satisfying \(\kappa_M(X_i, X^j) = \delta_{i j}\), whose existence is a consequence of the non-degeneracy of \(\kappa_M\). We call \[ \Omega_M = X_1 X^1 + \cdots + X_r X^r \in \mathcal{U}(\mathfrak{g}) \] the \emph{Casimir element of \(M\)}. \end{definition} \begin{lemma} The definition of \(\Omega_M\) is independent of the choice of basis \(\{X_i\}_i\). \end{lemma} \begin{proof} Whatever basis \(\{X_i\}_i\) we choose, the image of \(\Omega_M\) under the canonical isomorphism \(\mathfrak{g} \otimes \mathfrak{g} \isoto \mathfrak{g} \otimes \mathfrak{g}^* \isoto \operatorname{End}(\mathfrak{g})\) is the identity operator\footnote{Here the isomorphism $\mathfrak{g} \otimes \mathfrak{g} \isoto \mathfrak{g} \otimes \mathfrak{g}^*$ is given by tensoring the identity $\mathfrak{g} \to \mathfrak{g}$ with the isomorphism $\mathfrak{g} \isoto \mathfrak{g}^*$ induced by the form $\kappa_M$.}. \end{proof} \begin{proposition} The Casimir element \(\Omega_M \in \mathcal{U}(\mathfrak{g})\) is central, so that \(\Omega_M\!\restriction_N : N \to N\) is a \(\mathfrak{g}\)-homomorphism for any \(\mathfrak{g}\)-module \(N\). Furthermore, \(\Omega_M\) acts on \(M\) as a nonzero scalar operator whenever \(M\) is a non-trivial finite-dimensional simple \(\mathfrak{g}\)-module. \end{proposition} \begin{proof} To see that \(\Omega_M\) is central fix a basis \(\{X_i\}_i\) for \(\mathfrak{g}\) and denote by \(\{X^i\}_i\) its dual basis with respect to \(\kappa_M\), as in Definition~\ref{def:casimir-element}. Given any \(X \in \mathfrak{g}\), it follows from definition of the \(X^i\) that \(X = \kappa_M(X, X^1) X_1 + \cdots + \kappa_M(X, X^r) X_r = \kappa_M(X, X_1) X^1 + \cdots + \kappa_M(X, X_r) X^r\). In particular, it follows from the invariance of \(\kappa_M\) that \[ \begin{split} [X, \Omega_M] & = \sum_i [X, X_i X^i] \\ & = \sum_i [X, X_i] X^i + \sum_i X_i [X, X^i] \\ & = \sum_{i j} \kappa_M([X, X_i], X^j) X_j X^i + \sum_{i j} \kappa_M([X, X^i], X_j) X_i X^j \\ & = \sum_{i j} (\kappa_M([X, X_j], X^i) + \kappa_M(X_j, [X, X^i])) X_i X^j \\ & = 0 \end{split}, \] and \(\Omega_M\) is central. This implies that \(\Omega_M\!\restriction_N : N \to N\) is a \(\mathfrak{g}\)-homomorphism for all \(\mathfrak{g}\)-modules \(N\): its action commutes with the action of any other element of \(\mathfrak{g}\). In particular, it follows from Schur's Lemma that if \(M\) is finite-dimensional and simple then \(\Omega_M\) acts on \(M\) as a scalar operator. To see that this scalar is nonzero we compute \[ \operatorname{Tr}(\Omega_M\!\restriction_M) = \operatorname{Tr}(X_1\!\restriction_M X^1\!\restriction_M) + \cdots + \operatorname{Tr}(X_r\!\restriction_M X^r\!\restriction_M) = \dim \mathfrak{g}, \] so that \(\Omega_M\!\restriction_M = \lambda \operatorname{Id}\) for \(\lambda = \frac{\dim \mathfrak{g}}{\dim M} \ne 0\). \end{proof} As promised, the Casimir element of a \(\mathfrak{g}\)-module can be used to establish\dots \begin{proposition}\label{thm:first-cohomology-vanishes} Suppose \(\mathfrak{g}\) is semisimple and let \(M\) be a finite-dimensional \(\mathfrak{g}\)-module. Then \(H^1(\mathfrak{g}, M) = 0\). \end{proposition} \begin{proof} We begin by the case where \(M\) is simple. Due to Theorem~\ref{thm:ext-1-classify-short-seqs}, it suffices to show that any exact sequence of the form \begin{equation}\label{eq:exact-seq-h1-vanishes} \begin{tikzcd} 0 \rar & M \rar{f} & N \rar{g} & K \rar & 0 \end{tikzcd} \end{equation} splits. If \(M = K\) is the trivial \(\mathfrak{g}\)-module then the exactness of \begin{equation}\label{eq:trivial-extrems-exact-seq} \begin{tikzcd} 0 \rar & K \rar{f} & N \rar{g} & K \rar & 0 \end{tikzcd} \end{equation} implies \(N\) is 2-dimensional. Take any nonzero \(n \in N\) outside of the image of \(f\). % TODOOOOOOOOO: Fix this % TODO: U(g) w doesn't need to be irreducible a priori. In fact we will show % U(g) w = 0, so this whole argument is inconsistant % TODO: The way to fix this is to prove that rho(g) is both nilpotent -- % because the action of every element of g is strictly upper triangular -- and % semisimple -- because it is a quotient of g, which is semisimple. We thus % have rho(g) = 0, so that W is trivial Since \(\dim N = 2\), the simple component \(\mathcal{U}(\mathfrak{g}) \cdot n\) of \(n\) in \(N\) is either \(K n\) or \(N\) itself. But this component cannot be \(N\), since the image of \(f\) is a \(1\)-dimensional \(\mathfrak{g}\)-module -- i.e. a proper nonzero submodule. Hence \(K n\) is invariant under the action of \(\mathfrak{g}\). In particular, \(X \cdot n = 0\) for all \(X \in \mathfrak{g}\). Since \(n\) lies outside the image of \(f\), \(g(n) \ne 0\) -- which is to say, \(n \notin \ker g = \operatorname{im} f\). This implies the map \(K \to N\) that takes \(1\) to \(\sfrac{n}{g(n)}\) is a splitting of (\ref{eq:trivial-extrems-exact-seq}). Now suppose that \(M\) is non-trivial, so that \(\Omega_M\) acts on \(M\) as \(\lambda\) for some \(\lambda \ne 0\). Denote by \(N^\mu\) the generalized eigenspace of \(\Omega_M\!\restriction_N : N \to N\) associated with \(\mu \in K\). If we identify \(M\) with \(f(M)\), it is clear that \(M \subset N^\lambda\). The exactness of (\ref{eq:exact-seq-h1-vanishes}) implies \(\dim N = \dim M + 1\), so that either \(N^\lambda = M\) or \(N^\lambda = N\). But if \(N^\lambda = N\) then there is some nonzero \(n \in N^\lambda\) with \(n \notin M = \ker g\) such that \[ 0 = (\Omega_M - \lambda)^r \cdot n = \sum_{k = 0}^r (-1)^k \binom{r}{k} \lambda^k \Omega_M^{r - k} \cdot n \] for some \(r \ge 1\). In particular, \[ (- \lambda)^{r - 1} g(n) = \sum_{k = 0}^{r - 1} (-1)^k \binom{r}{k} \lambda^k g(\Omega_M^{r - k} \cdot n) = \sum_{k = 0}^{r - 1} (-1)^k \binom{r}{k} \lambda^k \underbrace{\Omega_M^{r - k} \cdot g(n)}_{= \; 0} = 0, \] which is a contradiction -- given that neither \((-\lambda)^{r - 1}\) nor \(g(n)\) are nil. Hence \(M = N^\lambda\) and there must be some other eigenvalue \(\mu\) of \(\Omega_M\!\restriction_N\). For any such \(\mu\) and any eigenvector \(n \in N_\mu\), \[ \mu g(n) = g(\mu n) = g(\Omega_M \cdot n) = \Omega_M \cdot g(n) = 0 \] implies \(\mu = 0\), so that the eigenvalues of the action of \(\Omega_M\) on \(N\) are precisely \(\lambda\) and \(0\). Now notice that \(N^0\) is in fact a submodule of \(N\). Indeed, given \(n \in N^0\) and \(X \in \mathfrak{g}\), it follows from the fact that \(\Omega_M\) is central that \[ \Omega_M^r \cdot (X \cdot n) = X \cdot (\Omega_M^r \cdot n) = X \cdot 0 = 0 \] for some \(r\). Hence \(N = M \oplus N^0\) as \(\mathfrak{g}\)-modules. The homomorphism \(g\) thus induces an isomorphism \(N^0 \cong \mfrac{N}{M} \isoto K\), which translates to a splitting of (\ref{eq:exact-seq-h1-vanishes}). Finally, we consider the case where \(M\) is not simple. Suppose \(H^1(\mathfrak{g}, N) = 0\) for all \(\mathfrak{g}\)-modules with \(\dim N < \dim M\) and let \(N \subset M\) be a proper nonzero submodule. Then the exact sequence \begin{center} \begin{tikzcd} 0 \rar & N \rar & M \rar & \sfrac{M}{N} \rar & 0 \end{tikzcd} \end{center} induces a long exact sequence of the form \begin{equation}\label{eq:standard-h1-ext-seq} \begin{tikzcd} \cdots \rar[dashed] & H^1(\mathfrak{g}, N) \rar & H^1(\mathfrak{g}, M) \rar & H^1(\mathfrak{g}, \sfrac{M}{N}) \rar[dashed] & \cdots \end{tikzcd} \end{equation} Since \(\dim N < \dim M\), it follows \(H^1(\mathfrak{g}, N) = 0\). In addition, since \(\dim N > 0\), we find \(\dim \mfrac{M}{N} < \dim M\) and thus \(H^1(\mathfrak{g}, \sfrac{M}{N}) = 0\). The exactness of (\ref{eq:standard-h1-ext-seq}) then implies \(H^1(\mathfrak{g}, M) = 0\). Hence by induction in \(\dim M\) we find \(H^1(\mathfrak{g}, M) = 0\) for all finite-dimensional \(M\). We are done. \end{proof} We are now finally ready to prove\dots \begin{theorem}[Weyl]\label{thm:weyl-theorem} Given a semisimple Lie algebra \(\mathfrak{g}\), every finite-dimensional \(\mathfrak{g}\)-module is semisimple. \end{theorem} \begin{proof} Let \begin{equation}\label{eq:generict-exact-sequence} \begin{tikzcd} 0 \rar & N \rar{f} & M \rar{g} & L \rar & 0 \end{tikzcd} \end{equation} be a short exact sequence of finite-dimensional \(\mathfrak{g}\)-modules. We want to establish that (\ref{eq:generict-exact-sequence}) splits. We have an exact sequence \begin{center} \begin{tikzcd} 0 \rar & \operatorname{Hom}(L, N) \rar{f \circ -} & \operatorname{Hom}(L, M) \rar{g \circ -} & \operatorname{Hom}(L, L) \rar & 0 \end{tikzcd} \end{center} of vector spaces. Since all maps involved are \(\mathfrak{g}\)-homomorphisms, this is an exact sequence of \(\mathfrak{g}\)-modules. This then induces a long exact sequence \begin{center} \begin{tikzcd} 0 \rar & \operatorname{Hom}(L, N)^{\mathfrak{g}} \rar{f \circ -} \ar[draw=none]{d}[name=X, anchor=center]{} & \operatorname{Hom}(L, M)^{\mathfrak{g}} \rar{g \circ -} & \operatorname{Hom}(L, L)^{\mathfrak{g}} \ar[rounded corners, to path={ -- ([xshift=2ex]\tikztostart.east) |- (X.center) \tikztonodes -| ([xshift=-2ex]\tikztotarget.west) -- (\tikztotarget)}]{dll}[at end]{} \\ & H^1(\mathfrak{g}, \operatorname{Hom}(L, N)) \rar & H^1(\mathfrak{g}, \operatorname{Hom}(L, M)) \rar & H^1(\mathfrak{g}, \operatorname{Hom}(L, L)) \rar[dashed] & \cdots \end{tikzcd} \end{center} of vector spaces. But \(H^1(\mathfrak{g}, \operatorname{Hom}(L, N))\) vanishes because of Proposition~\ref{thm:first-cohomology-vanishes}. In addition, recall from Example~\ref{ex:hom-invariants-are-g-homs} that \(\operatorname{Hom}(L, L')^{\mathfrak{g}} = \operatorname{Hom}_{\mathfrak{g}}(L, L')\). We thus have a short exact sequence \begin{center} \begin{tikzcd} 0 \rar & \operatorname{Hom}_{\mathfrak{g}}(L, N) \rar{f \circ -} & \operatorname{Hom}_{\mathfrak{g}}(L, M) \rar{g \circ -} & \operatorname{Hom}_{\mathfrak{g}}(L, L) \rar & 0 \end{tikzcd} \end{center} In particular, there is some \(\mathfrak{g}\)-homomorphism \(s : L \to M\) such that \(g \circ s : L \to L\) is the identity operator. In other words \begin{center} \begin{tikzcd} 0 \rar & N \rar{f} & M \rar{g} & L \rar \lar[bend left]{s} & 0 \end{tikzcd} \end{center} is a splitting of (\ref{eq:generict-exact-sequence}). \end{proof} Theorem~\ref{thm:weyl-theorem} typically fails in the infinite-dimensional setting. For instance, consider\dots \begin{example}\label{ex:regular-mod-is-not-semisimple} The regular \(\mathfrak{g}\)-module \(\mathcal{U}(\mathfrak{g})\) is an indecomposable module which is not simple. In particular, \(\mathcal{U}(\mathfrak{g})\) is not semisimple. To see this, notice that the submodules of \(\mathcal{U}(\mathfrak{g})\) are precisely its left ideals. If we suppose that \(I, J \normal \mathcal{U}(\mathfrak{g})\) are such that \(\mathcal{U}(\mathfrak{g}) = I \oplus J\) as \(\mathfrak{g}\)-modules, we can find \(u \in I\) and \(v \in J\) such that \(1 = u + v\). The PBW Theorem then implies that \(u\) and \(v\) commute, so that \(uv = vu \in I \cap J = 0\). Since \(\mathcal{U}(\mathfrak{g})\) is a domain, either \(u = 0\) or \(v = 0\). Given that \(1 = u + v\), \(u = 1\) or \(v = 1\). Hence either \(I = \mathcal{U}(\mathfrak{g})\) and \(J = 0\) or \(I = 0\) and \(J = \mathcal{U}(\mathfrak{g})\), as required. \end{example} We should point out that these last results are just the beginning of a well developed cohomology theory. For example, a similar argument involving the Casimir elements can be used to show that \(H^i(\mathfrak{g}, M) = 0\) for all semisimple \(\mathfrak{g}\) and all non-trivial finite-dimensional simple \(M\), \(i > 0\). For \(K = \mathbb{C}\), the Lie algebra cohomology groups of the algebra \(\mathfrak{g} = \mathbb{C} \otimes \operatorname{Lie}(G)\) are intimately related with the topological cohomologies -- i.e. singular cohomology, de Rham cohomology, etc. -- of \(G\) with coefficients in \(\mathbb{C}\). We refer the reader to \cite{cohomologies-lie} and \cite[sec.~24]{symplectic-physics} for further details. Complete reducibility can be generalized for arbitrary -- not necessarily semisimple -- \(\mathfrak{g}\), to a certain extent, by considering the exact sequence \begin{center} \begin{tikzcd} 0 \rar & \mathfrak{rad}(\mathfrak{g}) \rar & \mathfrak{g} \rar & \mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})} \rar & 0 \end{tikzcd} \end{center} This sequence always splits for finite-dimensional \(\mathfrak{g}\), which in light of Example~\ref{ex:all-simple-reps-are-tensor-prod} implies we can deduce information about \(\mathfrak{g}\)-modules by studying the modules of its ``semisimple part'' \(\mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})}\) -- see Proposition~\ref{thm:quotients-by-rads}. In practice this translates to\dots \begin{proposition}[Lie]\label{thm:lie-thm-solvable-reps} Let \(\mathfrak{g}\) be a solvable Lie algebra. Every finite-dimensional simple \(\mathfrak{g}\)-module is \(1\)-dimensional. \end{proposition} \begin{corollary} Let \(\mathfrak{g}\) be a Lie algebra. Every finite-dimensional simple \(\mathfrak{g}\)-module is the tensor product of a simple \(\mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})}\)-module and a \(1\)-dimensional \(\mathfrak{rad}(\mathfrak{g})\)-module. \end{corollary} \begin{proof} This follows at once from Proposition~\ref{thm:lie-thm-solvable-reps} and Example~\ref{ex:all-simple-reps-are-tensor-prod}. \end{proof} Having finally reduced our initial classification problem to that of classifying the finite-dimensional simple \(\mathfrak{g}\)-modules, we can now focus exclusively in this particular class of \(\mathfrak{g}\)-modules. However, there is so far no indication on how we could go about understanding them. In the next chapter we will explore some concrete examples in the hopes of finding a solution to our general problem.