lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

NameSizeMode
..
sections/complete-reducibility.tex 47064B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
\chapter{Semisimplicity \& Complete Reducibility}

\label{start-47}

Having hopefully established in the previous chapter that Lie algebras and
their representations are indeed useful, we are now faced with the Herculean
task of trying to understand them. We have seen that representations can be
used to derive geometric information about groups, but the question remains:
how do we go about classifying the representations of a given Lie algebra? This
question has sparked an entire field of research, and we cannot hope to provide
a comprehensive answer in the \pagedifference{start-47}{end-47} pages we have
left. Nevertheless, we can work on particular cases.

For instance, one can readily check that a \(K^n\)-module \(M\) -- here \(K^n\)
denotes the \(n\)-dimensional Abelian Lie algebra -- is nothing more than a
choice of \(n\) commuting operators \(M \to M\) -- corresponding to the action
of the canonical basis elements \(e_1, \ldots, e_n \in K^n\). In particular, a
\(1\)-dimensional \(K^n\)-module is just a choice of \(n\) scalars \(\lambda_1,
\ldots, \lambda_n\). Different choices of scalars yield non-isomorphic modules,
so that the \(1\)-dimensional \(K^n\)-modules are parameterized by points in
\(K^n\).

This goes to show that classifying the representations of Abelian algebras is
not that interesting of a problem. Instead, we focus on a less trivial, yet
reasonably well behaved case: the finite-dimensional modules of a
finite-dimensional semisimple Lie algebra \(\mathfrak{g}\) over an
algebraically closed field \(K\) of characteristic \(0\). But why are the
modules of a semisimple Lie algebras simpler -- or perhaps \emph{semisimpler}
-- to understand than those of any old Lie algebra? We will get back to this
question in a moment, but for now we simply note that, when solving a
classification problem, it is often profitable to break down our structure is
smaller pieces. This leads us to the following definitions.

\begin{definition}\index{\(\mathfrak{g}\)-module!indecomposable module}
  A \(\mathfrak{g}\)-module is called \emph{indecomposable} if it is
  not isomorphic to the direct sum of two nonzero \(\mathfrak{g}\)-modules.
\end{definition}

\begin{definition}\index{\(\mathfrak{g}\)-module!simple module}\index{simple!\(\mathfrak{g}\)-module}
  A \(\mathfrak{g}\)-module is called \emph{simple} if it has no nonzero proper
  \(\mathfrak{g}\)-modules.
\end{definition}

\begin{example}
  The trivial \(\mathfrak{g}\)-module \(K\) is an example of a simple
  \(\mathfrak{g}\)-module. In fact, every \(1\)-dimensional
  \(\mathfrak{g}\)-module \(M\) is simple: \(M\) has no nonzero proper
  \(K\)-subspaces, let alone \(\mathfrak{g}\)-submodules.
\end{example}

\begin{example}\label{ex:all-simple-reps-are-tensor-prod}
  Given a finite-dimensional simple \(\mathfrak{g}_1\)-module \(M_1\) and a
  finite-dimensional simple \(\mathfrak{g}_2\)-module \(M_2\), the tensor
  product \(M_1 \otimes M_2\) is a simple \(\mathfrak{g}_1 \oplus
  \mathfrak{g}_2\)-module. All finite-dimensional simple \(\mathfrak{g}_1
  \oplus \mathfrak{g}_2\)-modules have the form \(M_1 \otimes M_2\) for unique
  (up to isomorphism) \(M_1\) and \(M_2\). In light of
  Example~\ref{ex:univ-enveloping-of-sum-is-tensor}, this is a particular case
  of the fact that, given \(K\)-algebras \(A\) and \(B\), all
  finite-dimensional simple \(A \otimes_K B\)-modules are given tensor products
  of simple \(A\)-modules with simple \(B\)-modules -- see
  \cite[ch.~3]{etingof}.
\end{example}

The general strategy for classifying finite-dimensional modules over an algebra
is to classify the indecomposable modules. This is because\dots

\begin{theorem}[Krull-Schmidt]\label{thm:krull-schmidt}
  Let \(\mathfrak{g}\) be a Lie algebra.
  Then every finite-dimensional \(\mathfrak{g}\)-module can be uniquely --
  up to isomorphisms and reordering of the summands -- decomposed into a direct
  sum of indecomposable \(\mathfrak{g}\)-modules.
\end{theorem}

Hence finding the indecomposable \(\mathfrak{g}\)-modules suffices to find
\emph{all} finite-dimensional \(\mathfrak{g}\)-modules: they are the direct sum
of indecomposable \(\mathfrak{g}\)-modules. The existence of the decomposition
should be clear from the definitions. Indeed, if \(M\) is a finite-dimensional
\(\mathfrak{g}\)-modules a simple argument via induction in \(\dim M\) suffices
to prove the existence: if \(M\) is indecomposable then there is nothing to
prove, and if \(M\) is not indecomposable then \(M = N \oplus L\) for some
nonzero submodules \(N, L \subsetneq M\), so that their dimensions are both
strictly smaller than \(\dim M\) and the existence follows from the induction
hypothesis. For a proof of uniqueness please refer to \cite{etingof}.

Finding the indecomposable modules of an arbitrary Lie algebra, however, turns
out to be a bit of a circular problem: the indecomposable
\(\mathfrak{g}\)-modules are the ones that cannot be decomposed, which is to
say, those that are \emph{not} decomposable. Ideally, we would like to find
some other condition, equivalent to indecomposability, but which is easier to
work with. It is clear from the definitions that every simple
\(\mathfrak{g}\)-module is indecomposable, but there is no reason to believe
the converse is true. Indeed, this is not always the case. For instance\dots

\begin{example}\label{ex:indecomposable-not-irr}
  The space \(M = K^2\) endowed with the action
  \begin{align*}
    x \cdot e_1 & = e_1 & x \cdot e_2 = e_1 + e_2
  \end{align*}
  of the Lie algebra \(K[x]\) is a \(K[x]\)-module. Notice \(M\) has a single
  nonzero proper submodule, which is spanned by the vector \(e_1\). This is
  because if \((a + b) e_1 + b e_2 = x \cdot (a e_1 + b e_2) = \lambda \cdot (a
  e_1 + b e_2)\) for some \(\lambda \in K\) then \(\lambda = 1\) and \(b = 0\).
  Hence \(M\) is indecomposable -- it cannot be broken into a direct sum of
  \(1\)-dimensional submodules -- but it is evidently not simple.
\end{example}

This counterexample poses an interesting question: are there conditions one can
impose on an algebra \(\mathfrak{g}\) under which every indecomposable
\(\mathfrak{g}\)-module is simple? This is what is known in representation
theory as \emph{complete reducibility}.

\begin{definition}\index{\(\mathfrak{g}\)-module!completely reducible module}
  A \(\mathfrak{g}\)-module \(M\) is called \emph{completely reducible} if
  every \(\mathfrak{g}\)-submodule of \(M\) has a \(\mathfrak{g}\)-invariant
  complement -- i.e. given \(N \subset M\), there is a submodule \(L \subset
  M\) such that \(M = N \oplus L\).
\end{definition}

\begin{definition}\index{\(\mathfrak{g}\)-module!semisimple module}\index{semisimple!\(\mathfrak{g}\)-module}
  A \(\mathfrak{g}\)-module \(M\) is called \emph{semisimple} if it is the
  direct sum of simple \(\mathfrak{g}\)-modules.
\end{definition}

In case the relationship between complete reducibility, semisimplicity of
\(\mathfrak{g}\)-modules and the simplicity of indecomposable modules is
unclear, the following results should clear things up.

\begin{proposition}
  The following conditions are equivalent.
  \begin{enumerate}
    \item Every submodule of a finite-dimensional \(\mathfrak{g}\)-module is
      completely reducible.

    \item Every exact sequence of finite-dimensional \(\mathfrak{g}\)-modules
      splits.

    \item Every indecomposable finite-dimensional \(\mathfrak{g}\)-module is
      simple.

    \item Every finite-dimensional \(\mathfrak{g}\)-module is semisimple.
  \end{enumerate}
\end{proposition}

\begin{proof}
  We begin by \(\textbf{(i)} \implies \textbf{(ii)}\). Let
  \begin{center}
    \begin{tikzcd}
      0 \rar    &
      N \rar{f} &
      M \rar{g} &
      L \rar    &
      0
    \end{tikzcd}
  \end{center}
  be an exact sequence of \(\mathfrak{g}\)-modules. We can suppose without loss
  of generality that \(N \subset M\) is a submodule and \(f\) is its inclusion
  in \(M\), for if this is not the case there is an isomorphism of sequences
  \begin{center}
    \begin{tikzcd}
         0 \rar                                    &
         N \rar{f}       \dar[swap]{f}             &
         M \rar{g}       \dar[Rightarrow, no head] &
         L \rar          \dar[Rightarrow, no head] &
         0                                         \\
         0 \rar                                    &
      f(N) \rar                                    &
         M \rar[swap]{g}                           &
         L \rar                                    &
         0
    \end{tikzcd}
  \end{center}

  It then follows from \textbf{(i)} that there exists a
  \(\mathfrak{g}\)-submodule \(L' \subset M\) such that \(M = N \oplus L'\).
  Finally, the projection \(s : M \to N\) is \(\mathfrak{g}\)-homomorphism
  satisfying
  \begin{center}
    \begin{tikzcd}
      0 \rar                          &
      N \rar{f}                       &
      M \rar{g} \lar[bend left=30]{s} &
      L \rar                          &
      0
    \end{tikzcd}
  \end{center}

  Next is \(\textbf{(ii)} \implies \textbf{(iii)}\). If \(M\) is an
  indecomposable \(\mathfrak{g}\)-module and \(N \subset M\) is a submodule, we
  have an exact sequence
  \begin{center}
    \begin{tikzcd}
                 0 \rar &
                 N \rar &
                 M \rar &
      \mfrac{M}{N} \rar &
                 0
    \end{tikzcd}
  \end{center}
  of \(\mathfrak{g}\)-modules.

  Since our sequence splits, we must have \(M \cong N \oplus \mfrac{M}{N}\).
  But \(M\) is indecomposable, so that either \(M = N\) or \(M \cong
  \mfrac{M}{N}\), in which case \(N = 0\). Since this holds for all \(N \subset
  M\), \(M\) is simple. For \(\textbf{(iii)} \implies \textbf{(iv)}\) it
  suffices to apply Theorem~\ref{thm:krull-schmidt}.

  Finally, for \(\textbf{(iv)} \implies \textbf{(i)}\), if we assume
  \(\textbf{(iv)}\) and let \(M\) be a \(\mathfrak{g}\)-module with
  decomposition into simple submodules
  \[
    M = \bigoplus_i M_i
  \]
  and \(N \subset M\) is a submodule. Take some maximal set of indexes \(\{i_1,
  \ldots, i_r\}\) so that \(\left( \bigoplus_k M_{i_k} \right) \cap M = 0\) and
  let \(L = \bigoplus_k M_{i_k}\). We want to establish \(M = N \oplus L\).

  Suppose without any loss in generality that \(i_k = k\) for all \(k\) and let
  \(j > r\). By the maximality of our set of indexes, there is some nonzero \(n
  \in (M_j \oplus L) \cap N\). Say \(n = m_j + m_1 + \cdots + m_r\) with each
  \(m_i \in M_i\). Then \(m_j = n - m_1 - \cdots - m_r \in M_j \cap (N \oplus
  L)\) is nonzero. Indeed, if this is not the case we find \(0 \ne n = m_1 +
  \cdots + m_r \in \left( \bigoplus_{i = 1}^r M_i \right) \cap N\), a
  contradiction. This implies \(M_j \cap (N \oplus L)\) is a nonzero submodule
  of \(M_j\). Since \(M_j\) is simple, \(M_j = M_j \cap (N \oplus L)\) and
  therefore \(M_j \subset N \oplus L\). Given the arbitrary choice of \(j\), it
  then follows \(M = N \oplus L\).
\end{proof}

While we are primarily interested in indecomposable \(\mathfrak{g}\)-modules --
which is usually a strictly larger class of representations than that of simple
\(\mathfrak{g}\)-modules -- it is important to note that simple
\(\mathfrak{g}\)-modules are generally much easier to find. The relationship
between simple \(\mathfrak{g}\)-modules is also well understood. This is
because of the following result, known as \emph{Schur's Lemma}.

\begin{lemma}[Schur]
  Let \(M\) and \(N\) be simple \(\mathfrak{g}\)-modules and \(f : M \to N\) be
  a \(\mathfrak{g}\)-homomorphism. Then \(f\) is either \(0\) or an
  isomorphism. Furthermore, if \(M = N\) is finite-dimensional then \(f\) is a
  scalar operator.
\end{lemma}

\begin{proof}
  For the first statement, it suffices to notice that \(\ker f\) and
  \(\operatorname{im} f\) are both submodules. In particular, either \(\ker f =
  0\) and \(\operatorname{im} f = N\) or \(\ker f = M\) and \(\operatorname{im}
  f = 0\). Now suppose \(M = N\) is finite-dimensional. Let \(\lambda \in K\)
  be an eigenvalue of \(f\) -- which exists because \(K\) is algebraically
  closed -- and \(M_\lambda\) be its corresponding eigenspace. Given \(m \in
  M_\lambda\), \(f(X \cdot m) = X \cdot f(m) = \lambda X \cdot m\). In other
  words, \(M_\lambda\) is a \(\mathfrak{g}\)-submodule. It then follows
  \(M_\lambda = M\), given that \(M_\lambda \ne 0\).
\end{proof}

We are now ready to answer our first question: the special thing about
semisimple algebras is that the relationship between their indecomposable
modules and their simple modules is much clearer. Namely\dots

\begin{proposition}
  Given a finite-dimensional Lie algebra \(\mathfrak{g}\) over \(K\),
  \(\mathfrak{g}\) is semisimple if, and only if every finite-dimensional
  \(\mathfrak{g}\)-module is completely reducible.
\end{proposition}

The proof of the fact that a finite-dimensional Lie algebra \(\mathfrak{g}\)
whose finite-dimensional modules are completely reducible is semisimple is
actually pretty simple. Namely, it suffices to note that the adjoint
\(\mathfrak{g}\)-module is the direct sum of simple submodules, which are all
simple ideals of \(\mathfrak{g}\) -- so \(\mathfrak{g}\) is the direct sum of
simple Lie algebras. The proof of the converse is more nuanced, and this will
be our next milestone.

Before proceeding to the proof of complete reducibility, however, we would like
to introduce some basic tools which will come in handy later on, known as\dots

\section{Invariant Bilinear Forms}

\begin{definition}\index{invariant bilinear form}
  A symmetric bilinear form \(B : \mathfrak{g} \times \mathfrak{g} \to K\) is
  called \emph{\(\mathfrak{g}\)-invariant} if the operator
  \(\operatorname{ad}(X) : \mathfrak{g} \to \mathfrak{g}\) is antisymmetric
  with respect to \(B\) for all \(X \in \mathfrak{g}\).
  \[
    B(\operatorname{ad}(X) Y, Z) + B(Y, \operatorname{ad}(X) Z) = 0
  \]
\end{definition}

\begin{note}
  The etymology of the term \emph{invariant form} comes from group
  representation theory. Namely, given a linear action of a group \(G\) on a
  vector space \(V\) equipped with a bilinear form \(B\), \(B\) is called
  \(G\)-invariant if all \(g \in G\) act via \(B\)-orthogonal operators. The
  condition of \(\mathfrak{g}\)-invariance can thus be though-of as an
  \emph{infinitesimal approximation} of the notion of a \(G\)-invariant form.
  Indeed \(\operatorname{Lie}(\operatorname{O}(B))\) is precisely the Lie
  subalgebra of \(\mathfrak{gl}(V)\) consisting of antisymmetric operators \(V
  \to V\).
\end{note}

An interesting example of an invariant bilinear form is the so called
\emph{Killing form}.

\begin{definition}\index{invariant bilinear form!Killing form}\index{Killing form}
  Given a finite-dimensional Lie algebra \(\mathfrak{g}\), the symmetric
  bilinear form
  \begin{align*}
    \kappa : \mathfrak{g} \times \mathfrak{g} & \to K \\
    (X, Y) &
    \mapsto \operatorname{Tr}(\operatorname{ad}(X) \operatorname{ad}(Y))
  \end{align*}
  is called \emph{the Killing form of \(\mathfrak{g}\)}.
\end{definition}

The fact that the Killing form is an invariant form follows directly from the
identity \(\operatorname{Tr}([X, Y] Z) = \operatorname{Tr}(X [Y, Z])\), \(X, Y,
Z \in \mathfrak{gl}_n(K)\). In fact this same identity show\dots

\begin{lemma}\index{invariant bilinear form!bilinear form of a \(\mathfrak{g}\)-module}
  Given a finite-dimensional \(\mathfrak{g}\)-module \(M\), the symmetric
  bilinear form
  \begin{align*}
    \kappa_M : \mathfrak{g} \times \mathfrak{g} & \to K \\
    (X, Y) & \mapsto \operatorname{Tr}(X\!\restriction_M \, Y\!\restriction_M)
  \end{align*}
  is \(\mathfrak{g}\)-invariant.
\end{lemma}

The reason why we are discussing invariant bilinear forms is the following
characterization of finite-dimensional semisimple Lie algebras, known as
\emph{Cartan's criterion for semisimplicity}.

\begin{proposition}
  Let \(\mathfrak{g}\) be a Lie algebra. The following conditions are
  equivalent.
  \begin{enumerate}
    \item \(\mathfrak{g}\) is semisimple.
    \item For each non-trivial finite-dimensional \(\mathfrak{g}\)-module
      \(M\), the \(\mathfrak{g}\)-invariant bilinear form
      \begin{align*}
        \kappa_M : \mathfrak{g} \times \mathfrak{g}                          &
        \to K                                                                \\
        (X, Y)                                                               &
        \mapsto \operatorname{Tr}(X\!\restriction_M \, Y\!\restriction_M)
      \end{align*}
      is non-degenerate\footnote{A symmetric bilinear form $B : \mathfrak{g}
      \times \mathfrak{g} \to K$ is called non-degenerate if $B(X, Y) = 0$ for
      all $Y \in \mathfrak{g}$ implies $X = 0$.}.
    \item The Killing form \(\kappa\) is non-degenerate.
  \end{enumerate}
\end{proposition}

This proof is somewhat technical, but the idea behind it is simple. First, for
\strong{(i)} \(\implies\) \strong{(ii)} we show that \(\mathfrak{a} = \{ X \in
\mathfrak{g} : \kappa_M(X, Y) = 0 \, \forall Y \in \mathfrak{g}\}\) is a
solvable ideal of \(\mathfrak{g}\). Hence \(\mathfrak{a} = 0\). For
\strong{(ii)} \(\implies\) \strong{(iii)} it suffices to take \(M =
\mathfrak{g}\) the adjoint \(\mathfrak{g}\)-module. Finally, for \strong{(iii)}
\(\implies\) \strong{(i)} we note that the orthogonal complement of any
\(\mathfrak{a} \normal \mathfrak{g}\) with respect to the Killing form
\(\kappa\) is an ideal \(\mathfrak{b}\) of \(\mathfrak{g}\) with \(\mathfrak{g}
= \mathfrak{a} \oplus \mathfrak{b}\). Furthermore, the Killing form of
\(\mathfrak{a}\) is the restriction \(\kappa\!\restriction_{\mathfrak{a}}\) of
the Killing form of \(\mathfrak{g}\) to \(\mathfrak{a} \times \mathfrak{a}\),
which is non-degenerate. It then follows from induction in \(\dim
\mathfrak{a}\) that \(\mathfrak{g}\) is the sum of simple ideals.

We refer the reader to \cite[ch. 5]{humphreys} for a complete proof. Without
further ado, we may proceed to our\dots

\section{Proof of Complete Reducibility}

Let \(\mathfrak{g}\) be a finite-dimensional Lie algebra over \(K\). We want to
establish that if \(\mathfrak{g}\) is semisimple then all finite-dimensional
\(\mathfrak{g}\)-modules are semisimple. Historically, this was first proved by
Herman Weyl for \(K = \mathbb{C}\), using his knowledge of smooth
representations of compact Lie groups. Namely, Weyl showed that any
finite-dimensional semisimple complex Lie algebra is (isomorphic to) the
complexification of the Lie algebra of a unique simply connected compact Lie
group, known as its \emph{compact form}. Hence the category of the
finite-dimensional modules of a given complex semisimple algebra is equivalent
to that of the finite-dimensional smooth representations of its compact form,
whose representations are known to be completely reducible because of Maschke's
Theorem -- see \cite[ch. 3]{serganova} for instance.

This proof, however, is heavily reliant on the geometric structure of
\(\mathbb{C}\). In other words, there is no hope for generalizing this for some
arbitrary \(K\). Fortunately for us, there is a much simpler, completely
algebraic proof of complete reducibility, which works for algebras over any
algebraically closed field of characteristic zero. The algebraic proof included
in here is mainly based on that of \cite[ch. 6]{kirillov}, and uses some basic
homological algebra. Admittedly, much of the homological algebra used in here
could be concealed from the reader, which would make the exposition more
accessible -- see \cite{humphreys} for instance.

However, this does not change the fact the arguments used in this proof are
essentially homological in nature. Hence we consider it more productive to use
the full force of the language of homological algebra, instead of burring the
reader in a pile of unmotivated, yet entirely elementary arguments.
Furthermore, the homological algebra used in here is actually \emph{very
basic}. In fact, all we need to know is\dots

\begin{theorem}\label{thm:ext-exacts-seqs}\index{\(\operatorname{Ext}\) functors}
  There is a sequence of bifunctors \(\operatorname{Ext}^i :
  \mathfrak{g}\text{-}\mathbf{Mod}^{\operatorname{op}} \times
  \mathfrak{g}\text{-}\mathbf{Mod} \to K\text{-}\mathbf{Vect}\), \(i \ge 0\)
  such that, given a \(\mathfrak{g}\)-module \(L'\), every exact sequence of
  \(\mathfrak{g}\)-modules
  \begin{center}
    \begin{tikzcd}
      0 \rar & N \rar{f} & M \rar{g} & L \rar & 0
    \end{tikzcd}
  \end{center}
  induces long exact sequences
  \begin{center}
    \begin{tikzcd}
      0 \rar                                                    &
      \operatorname{Hom}_{\mathfrak{g}}(L', N)
      \rar{f \circ -}\ar[draw=none]{d}[name=X, anchor=center]{} &
      \operatorname{Hom}_{\mathfrak{g}}(L', M) \rar{g \circ -}  &
      \operatorname{Hom}_{\mathfrak{g}}(L', L)
      \ar[rounded corners,
          to path={ -- ([xshift=2ex]\tikztostart.east)
                    |- (X.center) \tikztonodes
                    -| ([xshift=-2ex]\tikztotarget.west)
                    -- (\tikztotarget)}]{dll}[at end]{} \\      &
      \operatorname{Ext}^1(L', N)
      \rar\ar[draw=none]{d}[name=Y, anchor=center]{}            &
      \operatorname{Ext}^1(L', M) \rar                          &
      \operatorname{Ext}^1(L', L)
      \ar[rounded corners,
          to path={ -- ([xshift=2ex]\tikztostart.east)
                    |- (Y.center) \tikztonodes
                    -| ([xshift=-2ex]\tikztotarget.west)
                    -- (\tikztotarget)}]{dll}[at end]{} \\      &
      \operatorname{Ext}^2(L', N) \rar                          &
      \operatorname{Ext}^2(L', M) \rar                          &
      \operatorname{Ext}^2(L', L) \rar[dashed]                  &
      \cdots
    \end{tikzcd}
  \end{center}
  and
  \begin{center}
    \begin{tikzcd}
      0 \rar                                                    &
      \operatorname{Hom}_{\mathfrak{g}}(L, L')
      \rar{- \circ g}\ar[draw=none]{d}[name=X, anchor=center]{} &
      \operatorname{Hom}_{\mathfrak{g}}(M, L') \rar{- \circ f}  &
      \operatorname{Hom}_{\mathfrak{g}}(N, L')
      \ar[rounded corners,
          to path={ -- ([xshift=2ex]\tikztostart.east)
                    |- (X.center) \tikztonodes
                    -| ([xshift=-2ex]\tikztotarget.west)
                    -- (\tikztotarget)}]{dll}[at end]{} \\      &
      \operatorname{Ext}^1(L, L')
      \rar\ar[draw=none]{d}[name=Y, anchor=center]{}            &
      \operatorname{Ext}^1(M, L') \rar                          &
      \operatorname{Ext}^1(N, L')
      \ar[rounded corners,
          to path={ -- ([xshift=2ex]\tikztostart.east)
                    |- (Y.center) \tikztonodes
                    -| ([xshift=-2ex]\tikztotarget.west)
                    -- (\tikztotarget)}]{dll}[at end]{} \\      &
      \operatorname{Ext}^2(L, L') \rar                          &
      \operatorname{Ext}^2(M, L') \rar                          &
      \operatorname{Ext}^2(N, L') \rar[dashed]                  &
      \cdots
    \end{tikzcd}
  \end{center}
\end{theorem}

\begin{theorem}\label{thm:ext-1-classify-short-seqs}
  Given \(\mathfrak{g}\)-modules \(N\) and \(L\), there is a one-to-one
  correspondence between elements of \(\operatorname{Ext}^1(L, N)\) and
  isomorphism classes of short exact sequences
  \begin{center}
    \begin{tikzcd}
      0 \rar & N \rar & M \rar & L \rar & 0
    \end{tikzcd}
  \end{center}

  In particular, \(\operatorname{Ext}^1(L, N) = 0\) if, and only if every short
  exact sequence of \(\mathfrak{g}\)-modules with \(N\) and \(L\) in the
  extremes splits.
\end{theorem}

We should point out that, although we have not provided an explicit definition
of the bifunctors \(\operatorname{Ext}^i\), they are uniquely determined by
the conditions of Theorem~\ref{thm:ext-exacts-seqs} and some additional
minimality constraints. This is, of course, \emph{far} from a comprehensive
account of homological algebra. Nevertheless, this is all we need. We refer the
reader to \cite{harder} for a complete exposition, or to part II of
\cite{ribeiro} for a more modern account using derived categories.

We are particularly interested in the case where \(L' = K\) is the trivial
\(\mathfrak{g}\)-module. Namely, we may define\dots

\begin{definition}\index{Lie algebra!cohomology}\index{cohomology of Lie algebras}
  Given a Lie algebra \(\mathfrak{g}\) and a \(\mathfrak{g}\)-module \(M\), we
  refer to the Abelian group \(H^i(\mathfrak{g}, M) = \operatorname{Ext}^i(K,
  M)\) as \emph{the \(i\)-th Lie algebra cohomology group of \(\mathfrak{g}\)
  with coefficients in \(M\)}.
\end{definition}

\begin{definition}\index{cohomology of Lie algebras!invariants}
  Given a \(\mathfrak{g}\)-module \(M\), we call the vector space
  \(M^{\mathfrak{g}} = \{m \in M : X \cdot m = 0 \; \forall X \in
  \mathfrak{g}\}\) \emph{the space of invariants of \(M\)}. A simple
  calculations shows that a \(\mathfrak{g}\)-homomorphism \(f : M \to N\) takes
  invariants to invariants, so that \(f\) restricts to a map \(M^{\mathfrak{g}}
  \to N^{\mathfrak{g}}\). This construction thus yields a functor
  \(-^{\mathfrak{g}} : \mathfrak{g}\text{-}\mathbf{Mod} \to
  K\text{-}\mathbf{Vect}\).
\end{definition}

\begin{example}
  Let \(M\) be a \(\mathfrak{g}\)-module. Then \(M\) is a direct sum of copies
  of the trivial \(\mathfrak{g}\)-module if, and only if \(M =
  M^{\mathfrak{g}}\).
\end{example}

\begin{example}\label{ex:hom-invariants-are-g-homs}
  Let \(M\) and \(N\) be \(\mathfrak{g}\)-modules. Then \(\operatorname{Hom}(M,
  N)^{\mathfrak{g}} = \operatorname{Hom}_{\mathfrak{g}}(M, N)\). Indeed, given
  a \(K\)-linear map \(f : M \to N\) we find
  \[
    \begin{split}
      f \in \operatorname{Hom}(M, N)^{\mathfrak{g}}
      & \iff X \cdot f(m) - f(X \cdot m) = (X \cdot f)(m) = 0
      \; \forall X \in \mathfrak{g}, m \in M \\
      & \iff X \cdot f(m) = f(X \cdot m)
      \; \forall X \in \mathfrak{g}, m \in M \\
      & \iff f \in \operatorname{Hom}_{\mathfrak{g}}(M, N)
    \end{split}
  \]
\end{example}

The Lie algebra cohomology groups are very much related to invariants of
\(\mathfrak{g}\)-modules. Namely, constructing a \(\mathfrak{g}\)-homomorphism
\(f : K \to M\) is precisely the same as fixing an invariant of \(M\) --
corresponding to \(f(1)\), which must be an invariant for \(f\) to be a
\(\mathfrak{g}\)-homomorphism. Formally, this translates to the existence of a
canonical isomorphism of functors
\(\operatorname{Hom}_{\mathfrak{g}}(K, -) \isoto {-}^{\mathfrak{g}}\) given by
\begin{align*}
  \operatorname{Hom}_{\mathfrak{g}}(K, M) & \isoto  M^{\mathfrak{g}} \\
                                        f & \mapsto f(1)
\end{align*}

This implies\dots

\begin{corollary}
  Every short exact sequence of \(\mathfrak{g}\)-modules
  \begin{center}
    \begin{tikzcd}
      0 \rar & N \rar{f} & M \rar{g} & L \rar & 0
    \end{tikzcd}
  \end{center}
  induces a long exact sequence
  \begin{center}
    \begin{tikzcd}
      0 \rar                                                              &
      N^{\mathfrak{g}} \rar{f}
      \ar[draw=none]{d}[name=X, anchor=center]{}                          &
      M^{\mathfrak{g}} \rar{g}                                            &
      L^{\mathfrak{g}}
      \ar[rounded corners,
          to path={ -- ([xshift=2ex]\tikztostart.east)
                    |- (X.center) \tikztonodes
                    -| ([xshift=-2ex]\tikztotarget.west)
                    -- (\tikztotarget)}]{dll}[at end]{} \\                &
      H^1(\mathfrak{g}, N) \rar\ar[draw=none]{d}[name=Y, anchor=center]{} &
      H^1(\mathfrak{g}, M) \rar                                           &
      H^1(\mathfrak{g}, L)
      \ar[rounded corners,
          to path={ -- ([xshift=2ex]\tikztostart.east)
                    |- (Y.center) \tikztonodes
                    -| ([xshift=-2ex]\tikztotarget.west)
                    -- (\tikztotarget)}]{dll}[at end]{} \\                &
      H^2(\mathfrak{g}, N) \rar                                           &
      H^2(\mathfrak{g}, M) \rar                                           &
      H^2(\mathfrak{g}, L) \rar[dashed]                                   &
      \cdots
    \end{tikzcd}
  \end{center}
\end{corollary}

\begin{proof}
  We have an isomorphism of sequences
  \begin{center}
    \begin{tikzcd}
      0 \rar &
      \operatorname{Hom}_{\mathfrak{g}}(K, N) \rar{f \circ -} \dar &
      \operatorname{Hom}_{\mathfrak{g}}(K, M) \rar{g \circ -} \dar &
      \operatorname{Hom}_{\mathfrak{g}}(K, L) \rar \dar            &
      H^1(\mathfrak{g}, N) \rar[dashed]\dar[Rightarrow, no head]   & \cdots \\
      0 \rar                                                       &
      N^{\mathfrak{g}} \rar[swap]{f}                               &
      M^{\mathfrak{g}} \rar[swap]{g}                               &
      L^{\mathfrak{g}} \rar                                        &
      H^1(\mathfrak{g}, N) \rar[dashed]                            &
      \cdots
    \end{tikzcd}
  \end{center}

  By Theorem~\ref{thm:ext-exacts-seqs} the sequence on the top is exact. Hence
  so is the sequence on the bottom.
\end{proof}

This is all well and good, but what does any of this have to do with complete
reducibility? Well, in general cohomology theories really shine when one is
trying to control obstructions of some kind. In our case, the bifunctor
\(H^1(\mathfrak{g}, \operatorname{Hom}(-, -)) :
\mathfrak{g}\text{-}\mathbf{Mod}^{\operatorname{op}} \times
\mathfrak{g}\text{-}\mathbf{Mod} \to K\text{-}\mathbf{Vect}\) classifies
obstructions to complete reducibility. Explicitly\dots

\begin{theorem}
  There is a natural isomorphism \(\operatorname{Ext}^1 \isoto
  H^1(\mathfrak{g}, \operatorname{Hom}(-, -))\). In particular, given
  \(\mathfrak{g}\)-modules \(N\) and \(L\), there is a one-to-one
  correspondence between elements of \(H^1(\mathfrak{g}, \operatorname{Hom}(L,
  N))\) and isomorphism classes of short exact sequences
  \begin{center}
    \begin{tikzcd}
      0 \rar & N \rar & M \rar & L \rar & 0
    \end{tikzcd}
  \end{center}
\end{theorem}

This is essentially a consequence of Example~\ref{ex:hom-invariants-are-g-homs}
and Theorem~\ref{thm:ext-1-classify-short-seqs}, as well as the minimality
conditions that characterize \(\operatorname{Ext}^1\). For the readers already
familiar with homological algebra: the correspondence between
\(H^1(\mathfrak{g}, \operatorname{Hom}(L, N))\) and short exact sequences of
\(\mathfrak{g}\)-modules can be described in very concrete terms by considering
a canonical free resolution
\begin{center}
  \begin{tikzcd}
    \cdots                                                    \rar[dashed] &
    \mathcal{U}(\mathfrak{g}) \otimes (\wedge^2 \mathfrak{g}) \rar         &
    \mathcal{U}(\mathfrak{g}) \otimes \mathfrak{g}            \rar         &
    \mathcal{U}(\mathfrak{g})                                 \rar         &
    K                                                         \rar         &
    0
  \end{tikzcd}
\end{center}
of the trivial \(\mathfrak{g}\)-module \(K\), known as \emph{the
Chevalley-Eilenberg resolution}, which provides an explicit construction of the
cohomology groups -- see \cite[sec.~1.3C]{cohomologies-lie} or
\cite[sec.~24]{symplectic-physics} for further details.

We will use the previous result implicitly in our proof, but we will not prove
it in its full force. Namely, we will show that if \(\mathfrak{g}\) is
semisimple then \(H^1(\mathfrak{g}, M) = 0\) for all finite-dimensional \(M\),
and that the fact that \(H^1(\mathfrak{g}, \operatorname{Hom}(L, N)) = 0\) for
all finite-dimensional \(N\) and \(L\) implies complete reducibility. To that
end, we introduce a distinguished element of \(\mathcal{U}(\mathfrak{g})\),
known as \emph{the Casimir element of a \(\mathfrak{g}\)-module}.

\begin{definition}\label{def:casimir-element}\index{Casimir element}
  Let \(\mathfrak{g}\) be a finite-dimensional semisimple Lie algebra and \(M\)
  be a finite-dimensional \(\mathfrak{g}\)-module. Let \(\{X_i\}_i\) be a basis
  for \(\mathfrak{g}\) and denote by \(\{X^i\}_i \subset \mathfrak{g}\) its
  dual basis with respect to the form \(\kappa_M\) -- i.e. the unique basis for
  \(\mathfrak{g}\) satisfying \(\kappa_M(X_i, X^j) = \delta_{i j}\), whose
  existence is a consequence of the non-degeneracy of \(\kappa_M\). We call
  \[
    \Omega_M = X_1 X^1 + \cdots + X_r X^r \in \mathcal{U}(\mathfrak{g})
  \]
  the \emph{Casimir element of \(M\)}.
\end{definition}

\begin{lemma}
  The definition of \(\Omega_M\) is independent of the choice of basis
  \(\{X_i\}_i\).
\end{lemma}

\begin{proof}
  Whatever basis \(\{X_i\}_i\) we choose, the image of \(\Omega_M\) under the
  canonical isomorphism \(\mathfrak{g} \otimes \mathfrak{g} \isoto \mathfrak{g}
  \otimes \mathfrak{g}^* \isoto \operatorname{End}(\mathfrak{g})\) is the
  identity operator\footnote{Here the isomorphism $\mathfrak{g} \otimes
  \mathfrak{g} \isoto \mathfrak{g} \otimes \mathfrak{g}^*$ is given by
  tensoring the identity $\mathfrak{g} \to \mathfrak{g}$ with the isomorphism
  $\mathfrak{g} \isoto \mathfrak{g}^*$ induced by the form $\kappa_M$.}.
\end{proof}

\begin{proposition}
  The Casimir element \(\Omega_M \in \mathcal{U}(\mathfrak{g})\) is central, so
  that \(\Omega_M\!\restriction_N : N \to N\) is a
  \(\mathfrak{g}\)-homomorphism for any \(\mathfrak{g}\)-module \(N\).
  Furthermore, \(\Omega_M\) acts on \(M\) as a nonzero scalar operator whenever
  \(M\) is a non-trivial finite-dimensional simple \(\mathfrak{g}\)-module.
\end{proposition}

\begin{proof}
  To see that \(\Omega_M\) is central fix a basis \(\{X_i\}_i\) for
  \(\mathfrak{g}\) and denote by \(\{X^i\}_i\) its dual basis with respect to
  \(\kappa_M\), as in
  Definition~\ref{def:casimir-element}. Given any \(X \in \mathfrak{g}\), it
  follows from definition of the \(X^i\) that \(X = \kappa_M(X, X^1) X_1 +
  \cdots + \kappa_M(X, X^r) X_r = \kappa_M(X, X_1) X^1 + \cdots + \kappa_M(X,
  X_r) X^r\).

  In particular, it follows from the invariance of \(\kappa_M\) that
  \[
    \begin{split}
      [X, \Omega_M]
      & = \sum_i [X, X_i X^i] \\
      & = \sum_i [X, X_i] X^i + \sum_i X_i [X, X^i] \\
      & = \sum_{i j} \kappa_M([X, X_i], X^j) X_j X^i
        + \sum_{i j} \kappa_M([X, X^i], X_j) X_i X^j \\
      & = \sum_{i j} (\kappa_M([X, X_j], X^i) + \kappa_M(X_j, [X, X^i]))
          X_i X^j \\
      & = 0
    \end{split},
  \]
  and \(\Omega_M\) is central. This implies that \(\Omega_M\!\restriction_N : N
  \to N\) is a \(\mathfrak{g}\)-homomorphism for all \(\mathfrak{g}\)-modules
  \(N\): its action commutes with the action of any other element of
  \(\mathfrak{g}\).

  In particular, it follows from Schur's Lemma that if \(M\) is
  finite-dimensional and simple then \(\Omega_M\) acts on \(M\) as a scalar
  operator. To see that this scalar is nonzero we compute
  \[
    \operatorname{Tr}(\Omega_M\!\restriction_M)
    = \operatorname{Tr}(X_1\!\restriction_M X^1\!\restriction_M)
    + \cdots
    + \operatorname{Tr}(X_r\!\restriction_M X^r\!\restriction_M)
    = \dim \mathfrak{g},
  \]
  so that \(\Omega_M\!\restriction_M = \lambda \operatorname{Id}\) for
  \(\lambda = \frac{\dim \mathfrak{g}}{\dim M} \ne 0\).
\end{proof}

As promised, the Casimir element of a \(\mathfrak{g}\)-module can be used to
establish\dots

\begin{proposition}\label{thm:first-cohomology-vanishes}
  Suppose \(\mathfrak{g}\) is semisimple and let \(M\) be a finite-dimensional
  \(\mathfrak{g}\)-module. Then \(H^1(\mathfrak{g}, M) = 0\).
\end{proposition}

\begin{proof}
  We begin by the case where \(M\) is simple. Due to
  Theorem~\ref{thm:ext-1-classify-short-seqs}, it suffices to show that any
  exact sequence of the form
  \begin{equation}\label{eq:exact-seq-h1-vanishes}
    \begin{tikzcd}
      0 \rar & M \rar{f} & N \rar{g} & K \rar & 0
    \end{tikzcd}
  \end{equation}
  splits.

   If \(M = K\) is the trivial \(\mathfrak{g}\)-module then the exactness of
  \begin{equation}\label{eq:trivial-extrems-exact-seq}
    \begin{tikzcd}
      0 \rar & K \rar{f} & N \rar{g} & K \rar & 0
    \end{tikzcd}
  \end{equation}
  implies \(N\) is 2-dimensional. Take any nonzero \(n \in N\) outside of the
  image of \(f\).

  % TODOOOOOOOOO: Fix this
  % TODO: U(g) w doesn't need to be irreducible a priori. In fact we will show
  % U(g) w = 0, so this whole argument is inconsistant
  % TODO: The way to fix this is to prove that rho(g) is both nilpotent --
  % because the action of every element of g is strictly upper triangular -- and
  % semisimple -- because it is a quotient of g, which is semisimple. We thus
  % have rho(g) = 0, so that W is trivial
  Since \(\dim N = 2\), the simple component \(\mathcal{U}(\mathfrak{g}) \cdot
  n\) of \(n\) in \(N\) is either \(K n\) or \(N\) itself. But this component
  cannot be \(N\), since the image of \(f\) is a \(1\)-dimensional
  \(\mathfrak{g}\)-module -- i.e. a proper nonzero submodule. Hence \(K n\) is
  invariant under the action of \(\mathfrak{g}\). In particular, \(X \cdot n =
  0\) for all \(X \in \mathfrak{g}\). Since \(n\) lies outside the image of
  \(f\), \(g(n) \ne 0\) -- which is to say, \(n \notin \ker g =
  \operatorname{im} f\). This implies the map \(K \to N\) that takes \(1\) to
  \(\sfrac{n}{g(n)}\) is a splitting of (\ref{eq:trivial-extrems-exact-seq}).

  Now suppose that \(M\) is non-trivial, so that \(\Omega_M\) acts on \(M\) as
  \(\lambda\) for some \(\lambda \ne 0\). Denote by \(N^\mu\) the generalized
  eigenspace of \(\Omega_M\!\restriction_N : N \to N\) associated with \(\mu
  \in K\). If we identify \(M\) with \(f(M)\), it is clear that \(M \subset
  N^\lambda\). The exactness of (\ref{eq:exact-seq-h1-vanishes}) implies \(\dim
  N = \dim M + 1\), so that either \(N^\lambda = M\) or \(N^\lambda = N\). But
  if \(N^\lambda = N\) then there is some nonzero \(n \in N^\lambda\) with \(n
  \notin M = \ker g\) such that
  \[
    0
    = (\Omega_M - \lambda)^r \cdot n
    = \sum_{k = 0}^r (-1)^k \binom{r}{k} \lambda^k \Omega_M^{r - k} \cdot n
  \]
  for some \(r \ge 1\).

  In particular,
  \[
    (- \lambda)^{r - 1} g(n)
    = \sum_{k = 0}^{r - 1} (-1)^k \binom{r}{k} \lambda^k
                           g(\Omega_M^{r - k} \cdot n)
    = \sum_{k = 0}^{r - 1} (-1)^k \binom{r}{k} \lambda^k
      \underbrace{\Omega_M^{r - k} \cdot g(n)}_{= \; 0}
    = 0,
  \]
  which is a contradiction -- given that neither \((-\lambda)^{r - 1}\) nor
  \(g(n)\) are nil. Hence \(M = N^\lambda\) and there must be some other
  eigenvalue \(\mu\) of \(\Omega_M\!\restriction_N\). For any such \(\mu\) and
  any eigenvector \(n \in N_\mu\),
  \[
    \mu g(n)
    = g(\mu n)
    = g(\Omega_M \cdot n)
    = \Omega_M \cdot g(n)
    = 0
  \]
  implies \(\mu = 0\), so that the eigenvalues of the action of \(\Omega_M\) on
  \(N\) are precisely \(\lambda\) and \(0\).

  Now notice that \(N^0\) is in fact a submodule of \(N\). Indeed,
  given \(n \in N^0\) and \(X \in \mathfrak{g}\), it follows from the fact that
  \(\Omega_M\) is central that
  \[
    \Omega_M^r \cdot (X \cdot n) = X \cdot (\Omega_M^r \cdot n) = X \cdot 0 = 0
  \]
  for some \(r\). Hence \(N = M \oplus N^0\) as \(\mathfrak{g}\)-modules. The
  homomorphism \(g\) thus induces an isomorphism \(N^0 \cong \mfrac{N}{M}
  \isoto K\), which translates to a splitting of
  (\ref{eq:exact-seq-h1-vanishes}).

  Finally, we consider the case where \(M\) is not simple. Suppose
  \(H^1(\mathfrak{g}, N) = 0\) for all \(\mathfrak{g}\)-modules with \(\dim N <
  \dim M\) and let \(N \subset M\) be a proper nonzero submodule. Then the
  exact sequence
  \begin{center}
    \begin{tikzcd}
      0 \rar & N \rar & M \rar & \sfrac{M}{N} \rar & 0
    \end{tikzcd}
  \end{center}
  induces a long exact sequence of the form
  \begin{equation}\label{eq:standard-h1-ext-seq}
    \begin{tikzcd}
      \cdots                          \rar[dashed] &
      H^1(\mathfrak{g}, N)            \rar         &
      H^1(\mathfrak{g}, M)            \rar         &
      H^1(\mathfrak{g}, \sfrac{M}{N}) \rar[dashed] &
      \cdots
    \end{tikzcd}
  \end{equation}

  Since \(\dim N < \dim M\), it follows \(H^1(\mathfrak{g}, N) = 0\). In
  addition, since \(\dim N > 0\), we find \(\dim \mfrac{M}{N} < \dim M\) and
  thus \(H^1(\mathfrak{g}, \sfrac{M}{N}) = 0\). The exactness of
  (\ref{eq:standard-h1-ext-seq}) then implies \(H^1(\mathfrak{g}, M) = 0\).
  Hence by induction in \(\dim M\) we find \(H^1(\mathfrak{g}, M) = 0\) for all
  finite-dimensional \(M\). We are done.
\end{proof}

We are now finally ready to prove\dots

\begin{theorem}[Weyl]\label{thm:weyl-theorem}
  Given a semisimple Lie algebra \(\mathfrak{g}\), every finite-dimensional
  \(\mathfrak{g}\)-module is semisimple.
\end{theorem}

\begin{proof}
  Let
  \begin{equation}\label{eq:generict-exact-sequence}
    \begin{tikzcd}
      0 \rar & N \rar{f} & M \rar{g} & L \rar & 0
    \end{tikzcd}
  \end{equation}
  be a short exact sequence of finite-dimensional \(\mathfrak{g}\)-modules. We
  want to establish that (\ref{eq:generict-exact-sequence}) splits.

  We have an exact sequence
  \begin{center}
    \begin{tikzcd}
      0                        \rar            &
      \operatorname{Hom}(L, N) \rar{f \circ -} &
      \operatorname{Hom}(L, M) \rar{g \circ -} &
      \operatorname{Hom}(L, L) \rar            &
      0
    \end{tikzcd}
  \end{center}
  of vector spaces. Since all maps involved are \(\mathfrak{g}\)-homomorphisms,
  this is an exact sequence of \(\mathfrak{g}\)-modules. This then induces a
  long exact sequence
  \begin{center}
    \begin{tikzcd}
      0 \rar                                                   &
      \operatorname{Hom}(L, N)^{\mathfrak{g}} \rar{f \circ -}
      \ar[draw=none]{d}[name=X, anchor=center]{}               &
      \operatorname{Hom}(L, M)^{\mathfrak{g}} \rar{g \circ -}  &
      \operatorname{Hom}(L, L)^{\mathfrak{g}}
      \ar[rounded corners,
          to path={ -- ([xshift=2ex]\tikztostart.east)
                    |- (X.center) \tikztonodes
                    -| ([xshift=-2ex]\tikztotarget.west)
                    -- (\tikztotarget)}]{dll}[at end]{} \\     &
      H^1(\mathfrak{g}, \operatorname{Hom}(L, N)) \rar         &
      H^1(\mathfrak{g}, \operatorname{Hom}(L, M)) \rar         &
      H^1(\mathfrak{g}, \operatorname{Hom}(L, L)) \rar[dashed] &
      \cdots
    \end{tikzcd}
  \end{center}
  of vector spaces.

  But \(H^1(\mathfrak{g}, \operatorname{Hom}(L, N))\) vanishes because of
  Proposition~\ref{thm:first-cohomology-vanishes}. In addition, recall from
  Example~\ref{ex:hom-invariants-are-g-homs} that \(\operatorname{Hom}(L,
  L')^{\mathfrak{g}} = \operatorname{Hom}_{\mathfrak{g}}(L, L')\). We thus have
  a short exact sequence
  \begin{center}
    \begin{tikzcd}
      0 \rar &
      \operatorname{Hom}_{\mathfrak{g}}(L, N) \rar{f \circ -} &
      \operatorname{Hom}_{\mathfrak{g}}(L, M) \rar{g \circ -} &
      \operatorname{Hom}_{\mathfrak{g}}(L, L) \rar &
      0
    \end{tikzcd}
  \end{center}

  In particular, there is some \(\mathfrak{g}\)-homomorphism \(s : L \to M\)
  such that \(g \circ s : L \to L\) is the identity operator. In other words
  \begin{center}
    \begin{tikzcd}
      0 \rar & N \rar{f} & M \rar{g} & L \rar \lar[bend left]{s} & 0
    \end{tikzcd}
  \end{center}
  is a splitting of (\ref{eq:generict-exact-sequence}).
\end{proof}

Theorem~\ref{thm:weyl-theorem} typically fails in the infinite-dimensional
setting. For instance, consider\dots

\begin{example}\label{ex:regular-mod-is-not-semisimple}
  The regular \(\mathfrak{g}\)-module \(\mathcal{U}(\mathfrak{g})\) is an
  indecomposable module which is not simple. In particular,
  \(\mathcal{U}(\mathfrak{g})\) is not semisimple. To see this, notice that the
  submodules of \(\mathcal{U}(\mathfrak{g})\) are precisely its left ideals. If
  we suppose that \(I, J \normal \mathcal{U}(\mathfrak{g})\) are such that
  \(\mathcal{U}(\mathfrak{g}) = I \oplus J\) as \(\mathfrak{g}\)-modules, we
  can find \(u \in I\) and \(v \in J\) such that \(1 = u + v\). The PBW Theorem
  then implies that \(u\) and \(v\) commute, so that \(uv = vu \in I \cap J =
  0\). Since \(\mathcal{U}(\mathfrak{g})\) is a domain, either \(u = 0\) or \(v
  = 0\). Given that \(1 = u + v\), \(u = 1\) or \(v = 1\). Hence either \(I =
  \mathcal{U}(\mathfrak{g})\) and \(J = 0\) or \(I = 0\) and \(J =
  \mathcal{U}(\mathfrak{g})\), as required.
\end{example}

We should point out that these last results are just the beginning of a well
developed cohomology theory. For example, a similar argument involving the
Casimir elements can be used to show that \(H^i(\mathfrak{g}, M) = 0\) for all
semisimple \(\mathfrak{g}\) and all non-trivial finite-dimensional simple
\(M\), \(i > 0\). For \(K = \mathbb{C}\), the Lie algebra cohomology groups of
the algebra \(\mathfrak{g} = \mathbb{C} \otimes \operatorname{Lie}(G)\) are
intimately related with the topological cohomologies -- i.e. singular
cohomology, de Rham cohomology, etc. -- of \(G\) with coefficients in
\(\mathbb{C}\). We refer the reader to \cite{cohomologies-lie} and
\cite[sec.~24]{symplectic-physics} for further details.

Complete reducibility can be generalized for arbitrary -- not necessarily
semisimple -- \(\mathfrak{g}\), to a certain extent, by considering the exact
sequence
\begin{center}
  \begin{tikzcd}
    0                                                  \rar &
    \mathfrak{rad}(\mathfrak{g})                       \rar &
    \mathfrak{g}                                       \rar &
    \mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})} \rar &
    0
  \end{tikzcd}
\end{center}

This sequence always splits for finite-dimensional \(\mathfrak{g}\), which in
light of Example~\ref{ex:all-simple-reps-are-tensor-prod} implies we can deduce
information about \(\mathfrak{g}\)-modules by studying the modules of its
``semisimple part'' \(\mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})}\) --
see Proposition~\ref{thm:quotients-by-rads}. In practice this translates
to\dots

\begin{proposition}[Lie]\label{thm:lie-thm-solvable-reps}
  Let \(\mathfrak{g}\) be a solvable Lie algebra. Every finite-dimensional
  simple \(\mathfrak{g}\)-module is \(1\)-dimensional.
\end{proposition}

\begin{corollary}
  Let \(\mathfrak{g}\) be a Lie algebra. Every finite-dimensional simple
  \(\mathfrak{g}\)-module is the tensor product of a simple
  \(\mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})}\)-module and a
  \(1\)-dimensional \(\mathfrak{rad}(\mathfrak{g})\)-module.
\end{corollary}

\begin{proof}
  This follows at once from Proposition~\ref{thm:lie-thm-solvable-reps} and
  Example~\ref{ex:all-simple-reps-are-tensor-prod}.
\end{proof}

Having finally reduced our initial classification problem to that of
classifying the finite-dimensional simple \(\mathfrak{g}\)-modules, we can now
focus exclusively in this particular class of \(\mathfrak{g}\)-modules.
However, there is so far no indication on how we could go about understanding
them. In the next chapter we will explore some concrete examples in the hopes
of finding a solution to our general problem.