lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

NameSizeMode
..
sections/introduction.tex 54542B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
\chapter{Introduction}

\pagenumbering{arabic}
\setcounter{page}{1}

Associative algebras have proven themselves remarkably useful throughout
mathematics. There is no lack of natural and interesting examples coming from a
diverse spectrum of different fields: topology, number theory, analysis, you
name it. Associative algebras have thus been studied at length, specially the
commutative ones. On the other hand, non-associative algebras have never
sustained the same degree of scrutiny. To this day, non-associative algebras
remain remarkably mysterious. Many have given up on attempting a systematic
investigation and focus instead on understanding particular classes of
non-associative algebras -- i.e. algebras satisfying
\emph{pseudo-associativity} conditions.

Perhaps the most fascinating class of non-associative algebras are the so
called \emph{Lie algebras}, and these will be the focus of these notes.

\begin{definition}\index{Lie algebra}
  Given a field \(K\), a Lie algebra over \(K\) is a \(K\)-vector space
  \(\mathfrak{g}\) endowed with an antisymmetric bilinear map \([\, ,] :
  \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}\) -- which we call its
  \emph{Lie bracket} -- satisfying the Jacobi identity
  \[
    [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0
  \]
\end{definition}

\begin{definition}\index{Lie algebra!homomorphism}
  Given two Lie algebras \(\mathfrak{g}\) and \(\mathfrak{h}\) over \(K\), a
  homomorphism of Lie algebras \(\mathfrak{g} \to \mathfrak{h}\) is a
  \(K\)-linear map \(f : \mathfrak{g} \to \mathfrak{h}\) which \emph{preserves
  bracket} in the sense that
  \[
    f([X, Y]) = [f(X), f(Y)]
  \]
  for all \(X, Y \in \mathfrak{g}\). The dimension \(\dim \mathfrak{g}\) of
  \(\mathfrak{g}\) is its dimension as a \(K\)-vector space.
\end{definition}

The collection of Lie algebras over a fixed field \(K\) thus form a category,
which we call \(K\text{-}\mathbf{LieAlg}\). We are primarily interested in
finite-dimensional Lie algebras over algebraically closed fields of
characteristic \(0\). Hence from now on we assume \(K\) is algebraically closed
and \(\operatorname{char} K = 0\) unless explicitly stated otherwise.
Ironically, perhaps the most basic examples of Lie algebras are derived from
associative algebras.

\begin{example}\label{ex:inclusion-alg-in-lie-alg}\index{Lie algebra!Lie algebra of an associative algebra}
  Given an associative \(K\)-algebra \(A\), we can view \(A\) as a Lie algebra
  over \(K\) with the Lie bracket given by the commutator \([a, b] = ab -
  ba\). In particular, given a \(K\)-vector space \(V\) we may view the
  \(K\)-algebra \(\operatorname{End}(V)\) as a Lie algebra, which we call
  \(\mathfrak{gl}(V)\). We may also regard the Lie algebra \(\mathfrak{gl}_n(K)
  = \mathfrak{gl}(K^n)\) as the space of \(n \times n\) matrices with
  coefficients in \(K\).
\end{example}

\begin{example}\label{ex:gln-inclusions}
  Let \(n \le m\). Then the map
  \begin{align*}
    \mathfrak{gl}_n(K) & \to     \mathfrak{gl}_m(K)                          \\
                     X & \mapsto \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix}
  \end{align*}
  is a homomorphism of Lie algebras.
\end{example}

While straightforward enough, I always found the definition of a Lie algebra
unconvincing on its own. Specifically, the Jacobi identity can look very alien
to someone who has never ventured outside of the realms of associativity.
Traditional abstract algebra courses offer little in the way of a motivation
for studying non-associative algebras in general. Why should we drop the
assumption of associativity if every example of an algebraic structure we have
ever seen is an associative one? Instead, the most natural examples of Lie
algebras often come from an entirely different field: geometry.

Here the meaning of \emph{geometry} is somewhat vague. Topics such as
differential and algebraic geometry are prominently featured, but examples
from fields such as the theory of differential operators and \(D\)-modules also
show up a lot in the theory of representations -- which we will soon discuss.
Perhaps one of the most fundamental themes of the study of Lie algebras is
their relationship with groups, specially in geometric contexts. We will now
provide a brief description of this relationship through a series of examples.

\begin{example}\index{Lie algebra!Lie algebra of derivations}
  Let \(A\) be an associative \(K\)-algebra and \(\operatorname{Der}(A)\) be
  the space of all derivations on \(A\) -- i.e. all linear maps \(D : A \to A\)
  satisfying the Leibniz rule \(D(a \cdot b) = a \cdot D b + (D a) \cdot b\).
  The commutator \([D, D']\) of two derivations \(D, D' \in
  \operatorname{Der}(A)\) in the ring \(\operatorname{End}(A)\) of \(K\)-linear
  endomorphisms of \(A\) is a derivation. Hence \(\operatorname{Der}(A)\) is a
  Lie algebra.
\end{example}

One specific instance of this last example is\dots

\begin{example}\index{Lie algebra!Lie algebra of vector fields}
  Given a smooth manifold \(M\), the space \(\mathfrak{X}(M)\) of all smooth
  vector fields is canonically identified with \(\operatorname{Der}(M) =
  \operatorname{Der}(C^\infty(M))\) -- where a field \(X \in \mathfrak{X}(M)\)
  is identified with the map \(C^\infty(M) \to C^\infty(M)\) which takes a
  function \(f \in C^\infty(M)\) to its derivative in the direction of \(X\).
  This gives \(\mathfrak{X}(M)\) the structure of a Lie algebra over
  \(\mathbb{R}\).
\end{example}

\begin{example}\label{ex:lie-alg-of-lie-grp}\index{Lie algebra!Lie algebra of a Lie group}
  Given a Lie group \(G\) -- i.e. a smooth manifold endowed with smooth group
  operations -- we call \(X \in \mathfrak{X}(G)\) left invariant if \((d
  \ell_g)_1 X_1 = X_g\) for all \(g \in G\), where \(\ell_g : G \to G\) denotes
  the left translation by \(g\). The commutator of invariant fields is
  invariant, so the space \(\mathfrak{g} = \operatorname{Lie}(G)\) of all
  invariant vector fields has the structure of a Lie algebra over
  \(\mathbb{R}\) with bracket given by the usual commutator of fields. Notice
  that an invariant field \(X\) is completely determined by \(X_1 \in T_1 G\).
  Hence there is a linear isomorphism \(\mathfrak{g} \isoto T_1 G\). In
  particular, \(\mathfrak{g}\) is finite-dimensional.
\end{example}

We should point out that the Lie algebra \(\mathfrak{g}\) of a complex Lie
group \(G\) -- i.e. a complex manifold endowed with holomorphic group
operations -- has the natural structure of a complex Lie algebra. Indeed, every
left invariant field \(X \in \mathfrak{X}(G)\) is holomorphic, so
\(\mathfrak{g}\) is a (complex) subspace of the complex vector space of
holomorphic vector fields over \(G\). There is also an algebraic analogue of
this last construction.

\begin{example}\index{Lie algebra!Lie algebra of an algebraic group}
  Let \(G\) be an affine algebraic \(K\)-group -- i.e. an affine variety over
  \(K\) with rational group operations -- and \(K[G]\) denote the ring of
  regular functions \(G \to K\). We call a derivation \(D : K[G] \to K[G]\)
  left invariant if \(D(g \cdot f) = g \cdot D f\) for all \(g \in G\) and \(f
  \in K[G]\) -- where the action of \(G\) on \(K[G]\) is given by \((g \cdot
  f)(h) = f(g^{-1} h)\). The commutator of left invariant derivations is
  invariant too, so the space \(\operatorname{Lie}(G) =
  \operatorname{Der}(G)^G\) of invariant derivations in \(K[G]\) has the
  structure of a Lie algebra over \(K\) with bracket given by the commutator
  of derivations. Again, \(\operatorname{Lie}(G)\) is isomorphic to the Zariski
  tangent space \(T_1 G\), which is finite-dimensional.
\end{example}

\begin{example}
  The Lie algebra \(\operatorname{Lie}(\operatorname{GL}_n(K))\) is canonically
  isomorphic to the Lie algebra \(\mathfrak{gl}_n(K)\). Likewise, the Lie
  algebra \(\operatorname{Lie}(\operatorname{SL}_n(K))\) is canonically
  isomorphic to the Lie algebra \(\mathfrak{sl}_n(K)\) of traceless \(n \times
  n\) matrices.
  \[
    \mathfrak{sl}_n(K)
    = \{ X \in \mathfrak{gl}_n(K) : \operatorname{Tr} X = 0 \}
  \]
\end{example}

\begin{example}\label{ex:sl2-basis}
  The elements
  \begin{align*}
    e & = \begin{pmatrix} 0 & 1 \\ 0 &  0 \end{pmatrix} &
    f & = \begin{pmatrix} 0 & 0 \\ 1 &  0 \end{pmatrix} &
    h & = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
  \end{align*}
  form a basis for \(\mathfrak{sl}_2(K)\) and are subject to the following
  relations.
  \begin{align*}
    [e, f] & = h & [h, f] & = -2 f & [h, e] = 2 e
  \end{align*}
\end{example}

\begin{example}\label{ex:sp2n}
  The Lie algebra of the affine algebraic group
  \[
    \operatorname{Sp}_{2 n}(K)
    = \{
        g \in \operatorname{GL}_{2 n}(K) :
        \omega(g \cdot v, g \cdot w) = \omega(v, w) \, \forall v, w \in K^{2n}
      \}
  \]
  is canonically isomorphic to the Lie algebra
  \[
    \mathfrak{sp}_{2 n}(K) =
    \left\{
      \begin{pmatrix}
        X &  Y      \\
        Z & -X^\top
      \end{pmatrix}
      : X, Y, Z \in \mathfrak{gl}_n(K), Y = Y^\top, Z = Z^\top
    \right\},
  \]
  with bracket given by the usual commutator of matrices -- where
  \[
    \omega(
      (v_1, \ldots, v_n, \dot v_1, \ldots, \dot v_n),
      (w_1, \ldots, w_n, \dot w_1, \ldots, \dot w_n)
    )
    = v_1 \dot w_1 + \cdots + v_n \dot w_n
    - \dot v_1 w_1 - \cdots - \dot v_n w_n
  \]
  is, of course, the standard symplectic form of \(K^{2n}\).
\end{example}

It is important to point out that the construction of the Lie algebra
\(\mathfrak{g}\) of a Lie group \(G\) in Example~\ref{ex:lie-alg-of-lie-grp} is
functorial. Specifically, one can show the derivative \(d f_1 : \mathfrak{g}
\cong T_1 G \to T_1 H \cong \mathfrak{h}\) of a smooth group homomorphism \(f :
G \to H\) is a homomorphism of Lie algebras, and the chain rule implies \(d (f
\circ g)_1 = d f_1 \circ d g_1\). This is known as the \emph{the Lie functor}
\(\operatorname{Lie} : \mathbf{LieGrp} \to \mathbb{R}\text{-}\mathbf{LieAlg}\)
between the category of Lie groups and smooth group homomorphisms and the
category of Lie algebras.

This goes to show Lie algebras are invariants of Lie groups. What is perhaps
more surprising is the fact that, in certain contexts, Lie algebras are perfect
invariants. Even more so\dots

\begin{theorem}[Lie]\label{thm:lie-theorems}
  The restriction \(\operatorname{Lie} : \mathbf{LieGrp}_{\operatorname{simpl}}
  \to \mathbb{R}\text{-}\mathbf{LieAlg}\) of the Lie functor to the full
  subcategory of simply connected Lie groups is an equivalence of categories
  onto the full subcategory of finite-dimensional real Lie algebras.
\end{theorem}

This last theorem is a direct corollary of the so called \emph{first and third
fundamental Lie Theorems}. Lie's first Theorem establishes that if \(G\) is a
simply connected Lie group and \(H\) is a connected Lie group then the induced
map \(\operatorname{Hom}(G, H) \to \operatorname{Hom}(\mathfrak{g},
\mathfrak{h})\) is bijective, which implies the Lie functor is fully faithful.
On the other hand, Lie's third Theorem states that every finite-dimensional
real Lie algebra is the Lie algebra of a simply connected Lie group -- i.e. the
Lie functor is essentially surjective.

This goes to show that the relationship between Lie groups and Lie algebras is
deeper than the fact they share a name: in a very strong sense, studying simply
connected Lie groups is \emph{precisely} the same as studying
finite-dimensional Lie algebras. Such a vital connection between apparently
distant subjects is bound to produce interesting results. Indeed, the passage
from the geometric setting to its algebraic counterpart and vice-versa has
proven itself a fruitful one.

This correspondence can be extended to the complex case too. In other words,
the Lie functor \(\mathbf{CLieGrp}_{\operatorname{simpl}} \to
\mathbb{C}\text{-}\mathbf{LieAlg}\) is also an equivalence of categories
between the category of simply connected complex Lie groups and the full
subcategory of finite-dimensional complex Lie algebras. The situation is more
delicate in the algebraic case. For instance, consider the complex Lie algebra
homomorphism
\begin{align*}
  f : \mathbb{C} & \to     \mathfrak{sl}_2(\mathbb{C}) \\
         \lambda & \mapsto \lambda h =
                   \begin{pmatrix} \lambda & 0 \\ 0 & - \lambda \end{pmatrix}
\end{align*}

Since \(\mathfrak{sl}_2(\mathbb{C}) =
\operatorname{Lie}(\operatorname{SL}_2(\mathbb{C}))\) and
\(\operatorname{SL}_2(\mathbb{C})\) is simply connected, we know there exists a
unique holomorphic group homomorphism \(g : \mathbb{C} \to
\operatorname{SL}_2(\mathbb{C})\) between the affine line \(\mathbb{C}\) and
the complex \emph{algebraic} group \(\operatorname{SL}_2(\mathbb{C})\) such
that \(f = d g_1\). Indeed, this homomorphism is
\begin{align*}
  g : \mathbb{C} & \to     \operatorname{SL}_2(\mathbb{C}) \\
         \lambda & \mapsto \operatorname{exp}(\lambda h) =
                   \begin{pmatrix} e^\lambda & 0 \\ 0 & e^{-\lambda} \end{pmatrix},
\end{align*}
which is not a rational map. It then follows from the uniqueness of \(g\) that
there is no rational group homomorphism \(\mathbb{C} \to
\operatorname{SL}_2(\mathbb{C})\) whose derivative at the identity is \(f\).

In particular, the Lie functor
\(\mathbb{C}\text{-}\mathbf{Grp}_{\operatorname{simpl}} \to
\mathbb{C}\text{-}\mathbf{LieAlg}\) -- between the category
\(\mathbb{C}\text{-}\mathbf{Grp}_{\operatorname{simpl}}\) of simply connected
complex algebraic groups and the category of complex Lie algebras -- fails to
be full. Similarly, the functor
\(\mathbb{C}\text{-}\mathbf{Grp}_{\operatorname{simpl}} \to
\mathbb{C}\text{-}\mathbf{LieAlg}\) is \emph{not} essentially surjective onto
the subcategory of finite-dimensional algebras: every finite-dimensional
complex Lie algebra is isomorphic to the Lie algebra of a unique simply
connected complex Lie group, but there are simply connected complex Lie groups
which are not algebraic groups. Nevertheless, Lie algebras are still powerful
invariants of algebraic groups. An interesting discussion of some of these
delicacies can be found in sixth section of \cite[ch.~II]{demazure-gabriel}.

All in all, there is a profound connection between groups and
finite-dimensional Lie algebras throughout multiple fields. While perhaps
unintuitive at first, the advantages of working with Lie algebras over their
group-theoretic counterparts are numerous. First, Lie algebras allow us to
avoid much of the delicacies of geometric objects such as real and complex Lie
groups. Even when working without additional geometric considerations, groups
can be complicated beasts themselves. They are, after all, nonlinear objects.
On the other hand, Lie algebras are linear by nature, which makes them much
more flexible than groups.

Having thus hopefully established that Lie algebras are interesting, we are now
ready to dive deeper into them. We begin by analyzing some of their most basic
properties.

\section{Lie Algebras}

However bizarre Lie algebras may seem at a first glance, they actually share a
lot a structural features with their associative counterparts. For instance, it
is only natural to define\dots

\begin{definition}\index{Lie subalgebra}\index{Lie subalgebra!ideals}
  Given a Lie algebra \(\mathfrak{g}\), a subspace \(\mathfrak{h} \subset
  \mathfrak{g}\) is called \emph{a subalgebra of \(\mathfrak{g}\)} if \([X, Y]
  \in \mathfrak{h}\) for all \(X, Y \in \mathfrak{h}\). A subalgebra
  \(\mathfrak{a} \subset \mathfrak{g}\) is called \emph{an ideal of
  \(\mathfrak{g}\)} if \([X, Y] \in \mathfrak{a}\) for all \(X \in
  \mathfrak{g}\) and \(Y \in \mathfrak{a}\), in which case we write
  \(\mathfrak{a} \normal \mathfrak{g}\).
\end{definition}

\begin{note}
  In the context of associative algebras, it is usual practice to distinguish
  between \emph{left ideals} and \emph{right ideals}. This is not necessary
  when dealing with Lie algebras, however, since any ``left ideal'' of a Lie
  algebra is also a ``right ideal'': given \(\mathfrak{a} \normal
  \mathfrak{g}\), \([Y, X] = - [X, Y] \in \mathfrak{a}\) for all \(X \in
  \mathfrak{g}\) and \(Y \in \mathfrak{a}\).
\end{note}

\begin{example}
  Let \(f : \mathfrak{g} \to \mathfrak{h}\) be a homomorphism between Lie
  algebras \(\mathfrak{g}\) and \(\mathfrak{h}\). Then \(\ker f \subset
  \mathfrak{g}\) and \(\operatorname{im} f \subset \mathfrak{h}\) are
  subalgebras. Furthermore, \(\ker f \normal \mathfrak{g}\).
\end{example}

\begin{example}
  Let \(\mathfrak{g}_1\) and \(\mathfrak{g}_2\) be a Lie algebras over \(K\).
  Then the space \(\mathfrak{g}_1 \oplus \mathfrak{g}_2\) is a Lie algebra with
  bracket
  \[
    [X_1 + X_2, Y_1 + Y_2] = [X_1, Y_1] + [X_2, Y_2],
  \]
  and \(\mathfrak{g}_1, \mathfrak{g}_2 \normal \mathfrak{g}_1 \oplus
  \mathfrak{g}_2\).
\end{example}

\begin{example}
  Let \(G\) be an affine algebraic \(K\)-group and \(H \subset G\) be a
  connected closed subgroup. Denote by \(\mathfrak{g}\) and \(\mathfrak{h}\)
  the Lie algebras of \(G\) and \(H\), respectively. The inclusion \(H \to G\)
  induces an injective homomorphism \(\mathfrak{h} \to \mathfrak{g}\). We may
  thus regard \(\mathfrak{h}\) as a subalgebra of \(\mathfrak{g}\). In
  addition, \(\mathfrak{h} \normal \mathfrak{g}\) if, and only if \(H \normal
  G\).
\end{example}

There is also a natural analogue of quotients.

\begin{definition}
  Given a Lie algebra \(\mathfrak{g}\) and \(\mathfrak{a} \normal
  \mathfrak{g}\), the space \(\mfrac{\mathfrak{g}}{\mathfrak{a}}\) has the
  natural structure of a Lie algebra over \(K\), where
  \[
    [X + \mathfrak{a}, Y + \mathfrak{a}] = [X, Y] + \mathfrak{a}
  \]
\end{definition}

\begin{proposition}
  Given a Lie algebra \(\mathfrak{g}\) and \(\mathfrak{a} \normal
  \mathfrak{g}\), every homomorphism of Lie algebras \(f : \mathfrak{g} \to
  \mathfrak{h}\) such that \(\mathfrak{a} \subset \ker f\) uniquely factors
  through the projection \(\mathfrak{g} \to
  \mfrac{\mathfrak{g}}{\mathfrak{a}}\).
  \begin{center}
    \begin{tikzcd}
      \mathfrak{g}                       \rar{f} \dar       & \mathfrak{h} \\
      \mfrac{\mathfrak{g}}{\mathfrak{a}} \arrow[dotted]{ur} &
    \end{tikzcd}
  \end{center}
\end{proposition}

\begin{definition}\index{Lie algebra!Abelian Lie algebra}
  A Lie algebra \(\mathfrak{g}\) is called \emph{Abelian}  if \([X, Y] = 0\)
  for all \(X, Y \in \mathfrak{g}\).
\end{definition}

\begin{example}
  Let \(G\) be a connected algebraic \(K\)-group and \(\mathfrak{g}\) be its
  Lie algebra. Then \(G\) is Abelian if, and only if \(\mathfrak{g}\) is
  Abelian.
\end{example}

\begin{note}
  Notice that an Abelian Lie algebra is determined by its dimension. Indeed,
  any linear map \(\mathfrak{g} \to \mathfrak{h}\) between Abelian Lie algebras
  \(\mathfrak{g}\) and \(\mathfrak{h}\) is a homomorphism of Lie algebras. In
  particular, any linear isomorphism \(\mathfrak{g} \isoto K^n\) -- where
  \(K^n\) is endowed with the trivial bracket \([v, w] = 0\), \(v, w \in K^n\)
  -- is an isomorphism of Lie algebras for Abelian \(\mathfrak{g}\).
\end{note}

\begin{example}\index{Lie algebra!center}
  Let \(\mathfrak{g}\) be a Lie algebra and \(\mathfrak{z} = \{ X \in
  \mathfrak{g} : [X, Y] = 0, Y \in \mathfrak{g}\}\). Then \(\mathfrak{z}\) is
  an Abelian ideal of \(\mathfrak{g}\), known as \emph{the center of
  \(\mathfrak{z}\)}.
\end{example}

Due to their relationship with Lie groups and algebraic groups, Lie algebras
also share structural features with groups. For example\dots

\begin{definition}\index{Lie algebra!solvable Lie algebra}
  A Lie algebra \(\mathfrak{g}\) is called \emph{solvable} if its derived
  series
  \[
    \mathfrak{g}
    \supseteq [\mathfrak{g}, \mathfrak{g}]
    \supseteq [[\mathfrak{g}, \mathfrak{g}], [\mathfrak{g}, \mathfrak{g}]]
    \supseteq
    [
      [[\mathfrak{g}, \mathfrak{g}], [\mathfrak{g}, \mathfrak{g}]],
      [[\mathfrak{g}, \mathfrak{g}], [\mathfrak{g}, \mathfrak{g}]]
    ]
    \supseteq \cdots
  \]
  converges to \(0\) in finite time.
\end{definition}

\begin{example}
  Let \(G\) be a connected affine algebraic \(K\)-group and \(\mathfrak{g}\) be
  its Lie algebra. Then \(G\) is solvable if, and only if \(\mathfrak{g}\) is.
\end{example}

\begin{definition}\index{Lie algebra!nilpotent Lie algebra}
  A Lie algebra \(\mathfrak{g}\) is called \emph{nilpotent} if its lower
  central series
  \[
    \mathfrak{g}
    \supseteq [\mathfrak{g}, \mathfrak{g}]
    \supseteq [\mathfrak{g}, [\mathfrak{g}, \mathfrak{g}]]
    \supseteq [\mathfrak{g}, [\mathfrak{g}, [\mathfrak{g}, \mathfrak{g}]]]
    \supseteq \cdots
  \]
  converges to \(0\) in finite time.
\end{definition}

\begin{example}
  Let \(G\) be a connected affine algebraic \(K\)-group and \(\mathfrak{g}\) be
  its Lie algebra. Then \(G\) is nilpotent if, and only if \(\mathfrak{g}\) is.
\end{example}

Other interesting classes of Lie algebras are the so called \emph{simple} and
\emph{semisimple} Lie algebras.

\begin{definition}\index{simple!Lie algebra}\index{Lie algebra!simple Lie algebra}
  A non-Abelian Lie algebra \(\mathfrak{s}\) over \(K\) is called \emph{simple}
  if its only ideals are \(0\) and \(\mathfrak{s}\).
\end{definition}

\begin{example}
  The Lie algebra \(\mathfrak{sl}_2(K)\) is simple. To see this, notice that
  any ideal \(\mathfrak{a} \normal \mathfrak{sl}_2(K)\) must be stable under
  the operator \(\operatorname{ad}(h) : \mathfrak{sl}_2(K) \to
  \mathfrak{sl}_2(K)\) given by \(\operatorname{ad}(h) X = [h, X]\). But
  Example~\ref{ex:sl2-basis} implies \(\operatorname{ad}(h)\) is
  diagonalizable, with eigenvalues \(0\) and \(\pm 2\). Hence \(\mathfrak{a}\)
  must be spanned by some of the eigenvectors \(e, f, h\) of
  \(\operatorname{ad}(h)\). If \(h \in \mathfrak{a}\), then \([e, h] = - 2 e
  \in \mathfrak{a}\) and \([f, h] = 2 f \in \mathfrak{a}\), so \(\mathfrak{a} =
  \mathfrak{sl}_2(K)\). If \(e \in \mathfrak{a}\) then \([f, e] = - h \in
  \mathfrak{a}\), so again \(\mathfrak{a} = \mathfrak{sl}_2(K)\). Similarly, if
  \(f \in \mathfrak{a}\) then \([e, f] = h \in \mathfrak{a}\) and
  \(\mathfrak{a} = \mathfrak{sl}_2(K)\). More generally, the Lie algebra
  \(\mathfrak{sl}_n(K)\) is simple for each \(n > 1\) -- see the section of
  \cite[ch. 6]{kirillov} on invariant bilinear forms and the semisimplicity of
  classical Lie algebras.
\end{example}

\begin{example}
  The Lie algebras \(\mathfrak{sp}_{2n}(K)\) are simple for all \(n \ge 1\) --
  agina, see \cite[ch. 6]{kirillov}.
\end{example}

\begin{definition}\label{thm:sesimple-algebra}\index{semisimple!Lie algebra}\index{Lie algebra!semisimple Lie algebra}
  A Lie algebra \(\mathfrak{g}\) is called \emph{semisimple} if it is the
  direct sum of simple Lie algebras. Equivalently, a Lie algebra
  \(\mathfrak{g}\) is called \emph{semisimple} if it has no nonzero solvable
  ideals.
\end{definition}

\begin{example}
  Let \(G\) be a connected affine algebraic \(K\)-group. Then \(G\) is
  semisimple if, and only if \(\mathfrak{g}\) semisimple.
\end{example}

A slight generalization is\dots

\begin{definition}\index{Lie algebra!reductive Lie algebra}
  A Lie algebra \(\mathfrak{g}\) is called \emph{reductive} if \(\mathfrak{g}\)
  is the direct sum of a semisimple Lie algebra and an Abelian Lie algebra.
\end{definition}

\begin{example}
  The Lie algebra \(\mathfrak{gl}_n(K)\) is reductive. Indeed,
  \[
    X
    =
    \begin{pmatrix}
      a_{1 1} - \frac{\operatorname{Tr}(X)}{n} & \cdots & a_{1 n} \\
       \vdots & \ddots &  \vdots \\
      a_{n 1} & \cdots & a_{n n} - \frac{\operatorname{Tr}(X)}{n}
    \end{pmatrix}
    +
    \begin{pmatrix}
      \frac{\operatorname{Tr}(X)}{n} & \cdots & 0 \\
      \vdots & \ddots & \vdots \\
      0 & \cdots & \frac{\operatorname{Tr}(X)}{n}
    \end{pmatrix}
  \]
  for each matrix \(X = (a_{i j})_{i j}\). In other words,
  \(\mathfrak{gl}_n(K) = \mathfrak{sl}_n(K) \oplus K \operatorname{Id} \cong
  \mathfrak{sl}_n(K) \oplus K\).
\end{example}

As suggested by their names, simple and semisimple algebras are quite well
behaved when compared with the general case. To a lesser degree, reductive
algebras are also unusually well behaved. In the next chapter we will explore
the question of why this is the case, but for now we note that we can get
semisimple and reductive algebras by modding out by certain ideals, known as
\emph{radicals}.

\begin{definition}\index{Lie algebra!radical}
  Let \(\mathfrak{g}\) be a finite-dimensional Lie algebra. The sum
  \(\mathfrak{a} + \mathfrak{b}\) of solvable ideals \(\mathfrak{a},
  \mathfrak{b} \normal \mathfrak{g}\) is again a solvable ideal. Hence the sum
  of all solvable ideals of \(\mathfrak{g}\) is a maximal solvable ideal, known
  as \emph{the radical \(\mathfrak{rad}(\mathfrak{g})\) of \(\mathfrak{g}\)}.
  \[
    \mathfrak{rad}(\mathfrak{g})
    = \sum_{\substack{\mathfrak{a} \normal \mathfrak{g}\\\text{solvable}}}
      \mathfrak{a}
  \]
\end{definition}

\begin{definition}\index{Lie algebra!nilradical}
  Let \(\mathfrak{g}\) be a finite-dimensional Lie algebra. The sum of
  nilpotent ideals is a nilpotent ideal. Hence the sum of all nilpotent ideals
  of \(\mathfrak{g}\) is a maximal nilpotent ideal, known as \emph{the
  nilradical \(\mathfrak{nil}(\mathfrak{g})\) of \(\mathfrak{g}\)}.
  \[
    \mathfrak{nil}(\mathfrak{g})
    = \sum_{\substack{\mathfrak{a} \normal \mathfrak{g}\\\text{nilpotent}}}
      \mathfrak{a}
  \]
\end{definition}

\begin{proposition}\label{thm:quotients-by-rads}
  Let \(\mathfrak{g}\) be a Lie algebra. Then
  \(\mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})}\) is semisimple and
  \(\mfrac{\mathfrak{g}}{\mathfrak{nil}(\mathfrak{g})}\) is reductive.
\end{proposition}

We have seen in Example~\ref{ex:inclusion-alg-in-lie-alg} that we can pass from
an associative algebra \(A\) to a Lie algebra by taking its bracket as the
commutator \([a, b] = ab - ba\). We should also not that any homomorphism of
\(K\)-algebras \(f : A \to B\) preserves commutators, so that \(f\) is also a
homomorphism of Lie algebras. Hence we have a functor \(\operatorname{Lie} :
K\text{-}\mathbf{Alg} \to K\text{-}\mathbf{LieAlg}\). We can also go the other
direction by embedding a Lie algebra \(\mathfrak{g}\) in an associative
algebra, known as \emph{the universal enveloping algebra of \(\mathfrak{g}\)}.

\begin{definition}\index{universal enveloping algebra}
  Let \(\mathfrak{g}\) be a Lie algebra and \(T \mathfrak{g} = \bigoplus_n
  \mathfrak{g}^{\otimes n}\) be its tensor algebra -- i.e. the free
  \(K\)-algebra generated by the elements of \(\mathfrak{g}\). We call the
  \(K\)-algebra \(\mathcal{U}(\mathfrak{g}) = \mfrac{T \mathfrak{g}}{I}\)
  \emph{the universal enveloping algebra of \(\mathfrak{g}\)}, where \(I\) is
  the left ideal of \(T \mathfrak{g}\) generated by the elements \([X, Y] - (X
  \otimes Y - Y \otimes X)\).
\end{definition}

Notice there is a canonical homomorphism \(\mathfrak{g} \to
\mathcal{U}(\mathfrak{g})\) given by the composition
\begin{center}
  \begin{tikzcd}
    \mathfrak{g}                                          \rar &
    T \mathfrak{g}                                        \rar &
    \mfrac{T \mathfrak{g}}{I} = \mathcal{U}(\mathfrak{g})
  \end{tikzcd}
\end{center}

Given \(X_1, \ldots, X_n \in \mathfrak{g}\), we identify \(X_i\) with its image
under the inclusion \(\mathfrak{g} \to T \mathfrak{g}\) and we write \(X_1
\cdots X_n\) for \((X_1 \otimes \cdots \otimes X_n) + I\). This notation
suggests the map \(\mathfrak{g} \to \mathcal{U}(\mathfrak{g})\) is injective,
but at this point this is not at all clear -- given that the projection \(T
\mathfrak{g} \to \mathcal{U}(\mathfrak{g})\) is not injective. However, we will
soon see this is the case. Intuitively, \(\mathcal{U}(\mathfrak{g})\) is the
smallest associative \(K\)-algebra containing \(\mathfrak{g}\) as a Lie
subalgebra. In practice this means\dots

\begin{proposition}\label{thm:universal-env-uni-prop}
  Let \(\mathfrak{g}\) be a Lie algebra and \(A\) be an associative
  \(K\)-algebra. Then every homomorphism of Lie algebras \(f : \mathfrak{g} \to
  A\) -- where \(A\) is endowed with the structure of a Lie algebra as in
  Example~\ref{ex:inclusion-alg-in-lie-alg} -- can be uniquely extended to a
  homomorphism of algebras \(\mathcal{U}(\mathfrak{g}) \to A\).
  \begin{center}
    \begin{tikzcd}
      \mathfrak{g}              \rar{f} \dar  & A \\
      \mathcal{U}(\mathfrak{g}) \urar[dotted] &
    \end{tikzcd}
  \end{center}
\end{proposition}

\begin{proof}
  Let \(f : \mathfrak{g} \to A\) be a homomorphism of Lie algebras. By the
  universal property of free algebras, there is a homomorphism of algebras
  \(\tilde f : T \mathfrak{g} \to A\) such that
  \begin{center}
    \begin{tikzcd}
      \mathfrak{g}   \dar \rar{f}                  & A \\
      T \mathfrak{g} \urar[swap, dotted]{\tilde f} &
    \end{tikzcd}
  \end{center}

  Since \(f\) is a homomorphism of Lie algebras,
  \[
    \tilde f([X, Y])
    = f([X, Y])
    = [f(X), f(Y)]
    = [\tilde f(X), \tilde f(Y)]
    = \tilde f(X \otimes Y - Y \otimes X)
  \]
  for all \(X, Y \in \mathfrak{g}\). Hence \(I = ([X, Y] - (X \otimes Y - Y
  \otimes X) : X, Y \in \mathfrak{g}) \subset \ker \tilde f\) and therefore
  \(\tilde f\) factors through the quotient \(\mathcal{U}(\mathfrak{g}) =
  \mfrac{T \mathfrak{g}}{I}\).
  \begin{center}
    \begin{tikzcd}
      T \mathfrak{g} \rar{\tilde f} \dar                                 & A \\
      \mathcal{U}(\mathfrak{g}) \arrow[swap, dotted]{ur}{\bar{\tilde f}} &
    \end{tikzcd}
  \end{center}

  Combining the two previous diagrams, we can see that \(\bar{\tilde f}\) is
  indeed an extension of \(f\). The uniqueness of the extension then follows
  from the uniqueness of \(\tilde f\) and \(\bar{\tilde f}\).
\end{proof}

We should point out this construction is functorial. Indeed, if
\(f : \mathfrak{g} \to \mathfrak{h}\) is a homomorphism of Lie algebras then
Proposition~\ref{thm:universal-env-uni-prop} implies there is a homomorphism of
algebras \(\mathcal{U}(f) : \mathcal{U}(\mathfrak{g}) \to
\mathcal{U}(\mathfrak{h})\) satisfying
\begin{center}
  \begin{tikzcd}
    \mathfrak{g}              \rar{f} \dar                              &
    \mathfrak{h}              \rar                                      &
    \mathcal{U}(\mathfrak{h})                                           \\
    \mathcal{U}(\mathfrak{g}) \arrow[swap, dotted]{urr}{\mathcal{U}(f)} & &
  \end{tikzcd}
\end{center}

It is important to note, however, that \(\mathcal{U} : K\text{-}\mathbf{LieAlg}
\to K\text{-}\mathbf{Alg}\) is not the ``inverse'' of our functor
\(K\text{-}\mathbf{Alg} \to K\text{-}\mathbf{LieAlg}\). For instance, if
\(\mathfrak{g} = K\) is the \(1\)-dimensional Abelian Lie algebra then
\(\mathcal{U}(\mathfrak{g}) \cong K[x]\), which is infinite-dimensional.
Nevertheless, Proposition~\ref{thm:universal-env-uni-prop} may be restated
using the language of adjoint functors -- as described in \cite{maclane} for
instance.

\begin{corollary}
  If \(\operatorname{Lie} : K\text{-}\mathbf{Alg} \to
  K\text{-}\mathbf{LieAlg}\) is the functor described in
  Example~\ref{ex:inclusion-alg-in-lie-alg}, there is an adjunction
  \(\operatorname{Lie} \vdash \mathcal{U}\).
\end{corollary}

The structure of \(\mathcal{U}(\mathfrak{g})\) can often be described in terms
of the structure of \(\mathfrak{g}\). For instance, \(\mathfrak{g}\) is Abelian
if, and only if \(\mathcal{U}(\mathfrak{g})\) is commutative, in which case any
basis \(\{X_i\}_i\) for \(\mathfrak{g}\) induces an isomorphism
\(\mathcal{U}(\mathfrak{g}) \cong K[x_1, x_2, \ldots, x_i, \ldots]\). More
generally, we find\dots

\begin{theorem}[Poincaré-Birkoff-Witt]\index{PBW Theorem}
  Let \(\mathfrak{g}\) be a Lie algebra over \(K\) and \(\{X_i\}_i \subset
  \mathfrak{g}\) be an ordered basis for \(\mathfrak{g}\) -- i.e. a basis
  indexed by an ordered set. Then \(\{X_{i_1} \cdot X_{i_2} \cdots X_{i_n} : n
  \ge 0, i_1 \le i_2 \le \cdots \le i_n\}\) is a basis for
  \(\mathcal{U}(\mathfrak{g})\).
\end{theorem}

This last result is known as \emph{the PBW Theorem}. It is hugely important and
will come up again and again throughout these notes. Among other things, it
implies\dots

\begin{corollary}
  Let \(\mathfrak{g}\) be a Lie algebra over \(K\). Then
  \(\mathcal{U}(\mathfrak{g})\) is a domain and the inclusion \(\mathfrak{g}
  \to \mathcal{U}(\mathfrak{g})\) is injective.
\end{corollary}

The PBW Theorem can also be used to compute a series of
examples.

\begin{example}
  Consider the Lie algebra \(\mathfrak{gl}_n(K)\) and its canonical basis
  \(\{E_{i j}\}_{i j}\). Even though \(E_{i j} E_{j k} = E_{i k}\) in the
  associative algebra \(\operatorname{End}(K^n)\), the PBW
  Theorem implies \(E_{i j} E_{j k} \ne E_{i k}\) in
  \(\mathcal{U}(\mathfrak{gl}_n(K))\). In general, if \(A\) is an associative
  \(K\)-algebra then the elements in the image of the inclusion \(A \to
  \mathcal{U}(A)\) do not satisfy the same relations as the elements of \(A\).
\end{example}

\begin{example}
  Let \(\mathfrak{g}\) be an Abelian Lie algebra. As previously stated, any
  choice of basis \(\{X_i\}_i \subset \mathfrak{g}\) induces an isomorphism of
  algebras \(\mathcal{U}(\mathfrak{g}) \isoto K[x_1, x_2, \ldots, x_i,
  \ldots]\) which takes \(X_i \in \mathfrak{g}\) to the variable \(x_i \in
  K[x_1, x_2, \ldots, x_i, \ldots]\).
\end{example}

\begin{example}\label{ex:univ-enveloping-of-sum-is-tensor}
  Let \(\mathfrak{g}_1\) and \(\mathfrak{g}_2\) be Lie algebras over \(K\). We
  claim that the natural map
  \begin{align*}
    f: \mathcal{U}(\mathfrak{g}_1) \otimes_K \mathcal{U}(\mathfrak{g}_2) &
    \to \mathcal{U}(\mathfrak{g}_1 \oplus \mathfrak{g}_2) \\
    u \otimes v & \mapsto u \cdot v
  \end{align*}
  is an isomorphism of algebras. Since the elements of \(\mathfrak{g}_1\)
  commute with the elements of \(\mathfrak{g}_2\) in \(\mathfrak{g}_1 \oplus
  \mathfrak{g}_2\), a simple calculation shows that \(f\) is indeed a
  homomorphism of algebras. In addition, the PBW Theorem implies that \(f\) is
  a linear isomorphism.
\end{example}

The construction of \(\mathcal{U}(\mathfrak{g})\) may seem like a purely
algebraic affair, but the universal enveloping algebra of the Lie algebra of a
Lie group \(G\) is in fact intimately related with the algebra
\(\operatorname{Diff}(G)\) of differential operators \(C^\infty(G) \to
C^\infty(G)\) -- i.e. \(\mathbb{R}\)-linear endomorphisms \(C^\infty(G) \to
C^\infty(G)\) of finite order, as defined in \cite[ch.~3]{coutinho} for
example. Algebras of differential operators and their modules are the subject
of the theory of \(D\)-modules, which has seen remarkable progress in the past
century. Specifically, we find\dots

\begin{proposition}\label{thm:geometric-realization-of-uni-env}
  Let \(G\) be a Lie group and \(\mathfrak{g}\) be its Lie algebra. Denote by
  \(\operatorname{Diff}(G)^G\) the algebra of \(G\)-invariant differential
  operators in \(G\) -- i.e. the algebra of all differential operators \(P :
  C^\infty(G) \to C^\infty(G)\) such that \(g \cdot P f = P (g \cdot f)\) for
  all \(f \in C^\infty(G)\) and \(g \in G\). There is a canonical isomorphism
  of algebras \(\mathcal{U}(\mathfrak{g}) \isoto \operatorname{Diff}(G)^G\).
\end{proposition}

\begin{proof}
  An order \(0\) \(G\)-invariant differential operator in \(G\) is simply
  multiplication by a constant in \(\mathbb{R}\). A homogeneous order \(1\)
  \(G\)-invariant differential operator in \(G\) is simply a left invariant
  derivation \(C^\infty(G) \to C^\infty(G)\). All other \(G\)-invariant
  differential operators are generated by invariant operators of order \(0\)
  and \(1\). Hence \(\operatorname{Diff}(G)^G\) is generated by
  \(\operatorname{Der}(G)^G + \mathbb{R}\) -- here \(\operatorname{Der}(G)^G
  \subset \operatorname{Der}(G)\) denotes the Lie subalgebra of invariant
  derivations.

  Now recall that there is a canonical isomorphism of Lie algebras
  \(\mathfrak{X}(G) \isoto \operatorname{Der}(G)\). This isomorphism takes left
  invariant fields to left invariant derivations, so it restricts to an
  isomorphism \(f : \mathfrak{g} \isoto \operatorname{Der}(G)^G \subset
  \operatorname{Diff}(G)^G\). Since \(f\) is a homomorphism of Lie algebras, it
  can be extended to an algebra homomorphism \(\tilde f :
  \mathcal{U}(\mathfrak{g}) \to \operatorname{Diff}(G)^G\). We claim \(\tilde
  f\) is an isomorphism.

  To see that \(\tilde f\) is injective, it suffices to notice
  \[
    \tilde f(X_1 \cdots X_n)
    = \tilde f(X_1) \cdots \tilde f(X_n)
    = f(X_1) \cdots f(X_n)
    \ne 0
  \]
  for all nonzero \(X_1, \ldots, X_n \in \mathfrak{g}\) -- the product of
  operators of positive order has positive order and is therefore nonzero.
  Since \(\mathcal{U}(\mathfrak{g})\) is generated by the image of the
  inclusion \(\mathfrak{g} \to \mathcal{U}(\mathfrak{g})\), this implies \(\ker
  \tilde f = 0\). Given that \(\operatorname{Diff}(G)^G\) is generated by
  \(\operatorname{Der}(G)^G + \mathbb{R}\), this also goes to show \(\tilde f\)
  is surjective.
\end{proof}

As one would expect, the same holds for complex Lie groups and algebraic groups
too -- if we replace \(C^\infty(G)\) by \(\mathcal{O}(G)\) and \(K[G]\),
respectively. This last proposition has profound implications. For example, it
affords us an analytic proof of certain particular cases of the
PBW Theorem. Most surprising of all,
Proposition~\ref{thm:geometric-realization-of-uni-env} implies
\(\mathcal{U}(\mathfrak{g})\)-modules are \emph{precisely} the same as modules
over the ring of \(G\)-invariant differential operators -- i.e.
\(\operatorname{Diff}(G)^G\)-modules. We can thus use
\(\mathcal{U}(\mathfrak{g})\) and its modules to understand the geometry of
\(G\).

Proposition~\ref{thm:geometric-realization-of-uni-env} is in fact only the
beginning of a profound connection between the theory of \(D\)-modules and
\emph{representation theory}, the latter of which we now explore in the
following section.

\section{Representation Theory}

First introduced in 1896 by Georg Frobenius in his paper \citetitle{frobenius}
\cite{frobenius} in the context of group theory, representation theory is now
one of the cornerstones of modern mathematics. In this section we provide a
brief overview of basic concepts of the representation theory of Lie algebras.
We should stress, however, that the representation theory of Lie algebras is
only a small fragment of what is today known as ``representation theory'',
which is in general concerned with a diverse spectrum of algebraic and
combinatorial structures -- such as groups, quivers and associative algebras.
An introductory exploration of some of these structures can be found in
\cite{etingof}.

We begin by noting that any \(\mathcal{U}(\mathfrak{g})\)-module \(M\) may be
regarded as a \(K\)-vector space endowed with a ``linear action'' of
\(\mathfrak{g}\). Indeed, by restricting the action map
\(\mathcal{U}(\mathfrak{g}) \to \operatorname{End}(M)\) to \(\mathfrak{g}
\subset \mathcal{U}(\mathfrak{g})\) yields a homomorphism of Lie algebras
\(\mathfrak{g} \to \mathfrak{gl}(M) = \operatorname{End}(M)\). In fact
Proposition~\ref{thm:universal-env-uni-prop} implies that given a vector space
\(M\) there is a one-to-one correspondence between
\(\mathcal{U}(\mathfrak{g})\)-module structures for \(M\) and homomorphisms
\(\mathfrak{g} \to \mathfrak{gl}(M)\). This leads us to the following
definition.

\begin{definition}
  Given a Lie algebra \(\mathfrak{g}\) over \(K\), \emph{a representation \(V\)
  of \(\mathfrak{g}\)} is a \(K\)-vector space endowed with a homomorphism of
  Lie algebras \(\rho : \mathfrak{g} \to \mathfrak{gl}(V)\).
\end{definition}

Hence there is a one-to-one correspondence between representations of
\(\mathfrak{g}\) and \(\mathcal{U}(\mathfrak{g})\)-modules.

\begin{example}\index{\(\mathfrak{g}\)-module!trivial module}
  Given a Lie algebra \(\mathfrak{g}\), the zero map \(0 : \mathfrak{g} \to K\)
  gives \(K\) the structure of a representation of \(\mathfrak{g}\), known as
  \emph{the trivial representation}.
\end{example}

\begin{example}\index{\(\mathfrak{g}\)-module!adjoint module}
  Given a Lie algebra \(\mathfrak{g}\), consider the homomorphism
  \(\operatorname{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})\) given by
  \(\operatorname{ad}(X) Y = [X, Y]\). This gives \(\mathfrak{g}\) the
  structure of a representation of \(\mathfrak{g}\), known as \emph{the adjoint
  representation}.
\end{example}

\begin{example}\index{\(\mathfrak{g}\)-module!regular module}
  Given a Lie algebra \(\mathfrak{g}\), the map \(\rho : \mathfrak{g} \to
  \mathfrak{gl}(\mathcal{U}(\mathfrak{g}))\) given by left multiplication
  endows \(\mathcal{U}(\mathfrak{g})\) with the structure of a representation
  of \(\mathfrak{g}\), known as \emph{the regular representation of
  \(\mathfrak{g}\)}.
  \[
    \arraycolsep=1.4pt
    \begin{array}[t]{rl}
      \rho : \mathfrak{g} & \to \mathfrak{gl}(\mathcal{U}(\mathfrak{g})) \\
      X & \mapsto
      \begin{array}[t]{rl}
        \rho(X) : \mathcal{U}(\mathfrak{g}) & \to \mathcal{U}(\mathfrak{g}) \\
        u & \mapsto X \cdot u
      \end{array}
    \end{array}
  \]
\end{example}

\begin{example}\index{\(\mathfrak{g}\)-module!natural module}
  Given a subalgebra \(\mathfrak{g} \subset \mathfrak{gl}_n(K)\), the inclusion
  \(\mathfrak{g} \to \mathfrak{gl}_n(K)\) endows \(K^n\) with the structure of
  a representation of \(\mathfrak{g}\), known as \emph{the natural
  representation of \(\mathfrak{g}\)}.
\end{example}

When the map \(\rho : \mathfrak{g} \to \mathfrak{gl}(V)\) is clear from context
it is usual practice to denote the \(K\)-endomorphism \(\rho(X) : V \to V\),
\(X \in \mathfrak{g}\), simply by \(X\!\restriction_V\). This leads us to the
natural notion of \emph{transformations} between representations.

\begin{definition}
  Given a Lie algebra \(\mathfrak{g}\) and two representations \(V\) and \(W\)
  of \(\mathfrak{g}\), we call a \(K\)-linear map \(f : V \to W\) \emph{an
  intertwining operator}, or \emph{an intertwiner}, if it commutes with the
  action of \(\mathfrak{g}\) on \(V\) and \(W\), in the sense that the diagram
  \begin{center}
    \begin{tikzcd}
      V \rar{f} \dar[swap]{X\!\restriction_V} & W \dar{X\!\restriction_W} \\
      V \rar[swap]{f}                         & W
    \end{tikzcd}
  \end{center}
  commutes for all \(X \in \mathfrak{g}\). We denote the space of all
  intertwiners \(V \to W\) by \(\operatorname{Hom}_{\mathfrak{g}}(V, W)\) -- as
  opposed the space \(\operatorname{Hom}(V, W)\) of all \(K\)-linear maps
  \(V \to W\).
\end{definition}

The collection of representations of a fixed Lie algebra \(\mathfrak{g}\) thus
forms a category, which we call \(\mathbf{Rep}(\mathfrak{g})\). This allow us
formulate the correspondence between representations of \(\mathfrak{g}\) and
\(\mathcal{U}(\mathfrak{g})\)-modules in more precise terms.

\begin{proposition}
  There is a natural isomorphism of categories \(\mathbf{Rep}(\mathfrak{g})
  \isoto \mathcal{U}(\mathfrak{g})\text{-}\mathbf{Mod}\).
\end{proposition}

\begin{proof}
  We have seen that given a \(K\)-vector space \(M\) there is a one-to-one
  correspondence between \(\mathfrak{g}\)-representation structures for \(M\)
  -- i.e. homomorphisms \(\mathfrak{g} \to \mathfrak{gl}(M)\) -- and
  \(\mathcal{U}(\mathfrak{g})\)-module structures for \(M\) -- i.e.
  homomorphisms \(\mathcal{U}(\mathfrak{g}) \to \operatorname{End}(M)\). This
  gives us a surjective map that takes objects in
  \(\mathbf{Rep}(\mathfrak{g})\) to objects in
  \(\mathcal{U}(\mathfrak{g})\text{-}\mathbf{Mod}\).

  As for the corresponding maps \(\operatorname{Hom}_{\mathfrak{g}}(M, N) \to
  \operatorname{Hom}_{\mathcal{U}(\mathfrak{g})}(M, N)\), it suffices to note
  that a \(K\)-linear map between representations \(M\) and \(N\) is an
  intertwiner if, and only if it is a homomorphism of
  \(\mathcal{U}(\mathfrak{g})\)-modules. Our functor thus takes an intertwiner
  \(M \to N\) to itself. It should then be clear that our functor
  \(\mathbf{Rep}(\mathfrak{g}) \to \mathfrak{g}\text{-}\mathbf{Mod}\) is
  invertible.
\end{proof}

The language of representation is thus equivalent to that of
\(\mathcal{U}(\mathfrak{g})\)-modules, which we call
\emph{\(\mathfrak{g}\)-modules}. Correspondingly, we refer to the category
\(\mathcal{U}(\mathfrak{g})\text{-}\mathbf{Mod}\) as
\(\mathfrak{g}\text{-}\mathbf{Mod}\). The terms
\emph{\(\mathfrak{g}\)-submodule} and \emph{\(\mathfrak{g}\)-homomorphism}
should also be self-explanatory. To avoid any confusion, we will, for the most
part, exclusively use the language of \(\mathfrak{g}\)-modules. It should be
noted, however, that both points of view are profitable.

For starters, the notation for \(\mathfrak{g}\)-modules is much cleaner than
that of representations: it is much easier to write ``\(X \cdot m\)'' than
``\((\rho(X))(m)\)'' or even ``\(X\!\restriction_M(m)\)''. By using the
language of \(\mathfrak{g}\)-modules we can also rely on the general theory of
modules over associative algebras -- which we assume the reader is already
familiarized with. On the other hand, it is usually easier to express geometric
considerations in terms of the language representations, particularly in group
representation theory.

Often times it is easier to define a \(\mathfrak{g}\)-module \(M\) in terms of
the corresponding map \(\mathfrak{g} \to \mathfrak{gl}(M)\) -- this is
technique we will use throughout the text. In general, the equivalence between
both languages makes it clear that to understand the action of
\(\mathcal{U}(\mathfrak{g})\) on \(M\) it suffices to understand the action of
\(\mathfrak{g} \subset \mathcal{U}(\mathfrak{g})\). For instance, for defining
a \(\mathfrak{g}\)-module \(M\) it suffices to define the action of each \(X
\in \mathfrak{g}\) and verify this action respects the commutator relations of
\(\mathfrak{g}\) -- indeed, \(\mathfrak{g}\) generates
\(\mathcal{U}(\mathfrak{g})\) as an algebra, and the only relations between
elements of \(\mathfrak{g}\) are the ones derived from the commutator
relations.

\begin{example}\label{ex:sl2-polynomial-rep}
  The space \(K[x, y]\) is a \(\mathfrak{sl}_2(K)\)-module with
  \begin{align*}
    e \cdot p & = x \frac{\mathrm{d}}{\mathrm{d}y} p &
    f \cdot p & = y \frac{\mathrm{d}}{\mathrm{d}x} p &
    h \cdot p & =
    \left(
      x \frac{\mathrm{d}}{\mathrm{d}x} - y \frac{\mathrm{d}}{\mathrm{d}y}
    \right) p
  \end{align*}
\end{example}

\begin{example}
  Given a Lie algebra \(\mathfrak{g}\) and \(\mathfrak{g}\)-modules \(M\) and
  \(N\), the space \(\operatorname{Hom}(M, N)\) of \(K\)-linear maps \(M \to
  N\) is a \(\mathfrak{g}\)-module where \((X \cdot f)(m) = X \cdot f(m) - f(X
  \cdot m)\) for all \(X \in \mathfrak{g}\) and \(f \in \operatorname{Hom}(M,
  N)\). In particular, if we take \(N = K\) the trivial
  \(\mathfrak{g}\)-module, we can view \(M^*\) -- the dual of \(M\) in the
  category of \(K\)-vector spaces -- as a \(\mathfrak{g}\)-module where \((X
  \cdot f)(m) = - f(X \cdot m)\) for all \(f : M \to K\).
\end{example}

The fundamental problem of representation theory is a simple one: classifying
all representations of a given Lie algebra up to isomorphism. However,
understanding the relationship between representations is also of huge
importance. In other words, to understand the whole of
\(\mathfrak{g}\text{-}\mathbf{Mod}\) we need to study the collective behavior
of representations -- as opposed to individual examples. For instance, we may
consider \(\mathfrak{g}\)-submodules, quotients and tensor products.

\begin{example}\label{ex:sl2-polynomial-subrep}
  Let \(K[x, y]\) be the \(\mathfrak{sl}_2(K)\)-module as in
  Example~\ref{ex:sl2-polynomial-rep}. Since \(e\), \(f\) and \(h\) all
  preserve the degree of monomials, the space \(K[x, y]^{(d)} = \bigoplus_{k +
  \ell = d} K x^k y^\ell\) of homogeneous polynomials of degree \(d\) is a
  finite-dimensional \(\mathfrak{sl}_2(K)\)-submodule of \(K[x, y]\).
\end{example}

\begin{example}
  Given a Lie algebra \(\mathfrak{g}\), a \(\mathfrak{g}\)-module \(M\) and \(m
  \in M\), the subspace \(\mathcal{U}(\mathfrak{g}) \cdot m = \{ u \cdot m : u
  \in \mathcal{U}(\mathfrak{g}) \}\) is a \(\mathfrak{g}\)-submodule of \(M\),
  which we call \emph{the submodule generated by \(m\)}.
\end{example}

\begin{example}\index{\(\mathfrak{g}\)-module!tensor product}
  Given a Lie algebra \(\mathfrak{g}\) and \(\mathfrak{g}\)-modules \(M\) and
  \(N\), the space \(M \otimes N = M \otimes_K N\) is a \(\mathfrak{g}\)-module
  where \(X \cdot (m \otimes n) = X \cdot m \otimes n + m \otimes X \cdot n\).
  The exterior and symmetric products \(M \wedge N\) and \(M \odot N\) are both
  quotients of \(M \otimes N\) by \(\mathfrak{g}\)-submodules. In particular,
  the exterior and symmetric powers \(\wedge^r M\) and \(\operatorname{Sym}^r
  M\) are \(\mathfrak{g}\)-modules.
\end{example}

\begin{note}
  We would like to stress that the monoidal structure of
  \(\mathfrak{g}\text{-}\mathbf{Mod}\) we've just described is \emph{not} given
  by the usual tensor product of modules. In other words, \(M \otimes N\) is
  not the same as \(M \otimes_{\mathcal{U}(\mathfrak{g})} N\).
\end{note}

It is also interesting to consider the relationship between representations of
separate algebras. In particular, we may define\dots

\begin{example}\index{\(\mathfrak{g}\)-module!restriction}
  Let \(\mathfrak{g}\) be a Lie algebra and \(\mathfrak{h}\) be a subalgebra.
  Given a \(\mathfrak{g}\)-module \(M\), denote by
  \(\operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} M = M\) the
  \(\mathfrak{h}\)-module where the action of \(\mathfrak{h}\) is given by
  restricting the map \(\mathfrak{g} \to \mathfrak{gl}(M)\) to
  \(\mathfrak{h}\). Any homomorphism of \(\mathfrak{g}\)-modules \(M \to N\) is
  also a homomorphism of \(\mathfrak{h}\)-modules and this construction is
  clearly functorial.
  \[
    \operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} :
    \mathfrak{g}\text{-}\mathbf{Mod} \to
    \mathfrak{h}\text{-}\mathbf{Mod}
  \]
\end{example}

\begin{example}
  Given a Lie algebra \(\mathfrak{g}\), the adjoint \(\mathfrak{g}\)-module is
  a submodule of the restriction of the adjoint
  \(\mathcal{U}(\mathfrak{g})\)-module -- where we consider
  \(\mathcal{U}(\mathfrak{g})\) a Lie algebra as in
  Example~\ref{ex:inclusion-alg-in-lie-alg}, not as an associative algebra --
  to \(\mathfrak{g}\).
\end{example}

Surprisingly, this functor has a right adjoint.

\begin{example}\index{\(\mathfrak{g}\)-module!induction}
  Let \(\mathfrak{g}\) be a Lie algebra and \(\mathfrak{h}\) be a subalgebra.
  Given a \(\mathfrak{h}\)-module \(M\), let
  \(\operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} M =
  \mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{h})} M\) -- where
  the right \(\mathfrak{h}\)-module structure of \(\mathcal{U}(\mathfrak{g})\)
  is given by right multiplication. Any \(\mathfrak{h}\)-homomorphism \(f : M
  \to N\) induces a \(\mathfrak{g}\)-homomorphism
  \(\operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} f = \operatorname{id}
  \otimes f : \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} M \to
  \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} N\) and this construction is
  clearly functorial.
  \[
    \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} :
    \mathfrak{h}\text{-}\mathbf{Mod} \to \mathfrak{g}\text{-}\mathbf{Mod}
  \]
\end{example}

\begin{proposition}\label{thm:frobenius-reciprocity}
  Given a Lie algebra \(\mathfrak{g}\), a subalgebra \(\mathfrak{h} \subset
  \mathfrak{g}\), a \(\mathfrak{h}\)-module \(M\) and a \(\mathfrak{g}\)-module
  \(N\), the map
  \[
    \arraycolsep=1.4pt
    \begin{array}[t]{rl}
    \alpha :
    \operatorname{Hom}_{\mathfrak{g}}(
      \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} M,
      N
    ) & \to
    \operatorname{Hom}_{\mathfrak{h}}(
      M,
      \operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} N
    ) \\
    f & \mapsto
    \begin{array}[t]{rl}
    \alpha(f) : M & \to \operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} N \\
                m & \mapsto f(1 \otimes m)
    \end{array}
    \end{array}
  \]
  is a \(K\)-linear isomorphism. In other words, there is an adjunction
  \(\operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} \vdash
  \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}}\).
\end{proposition}

\begin{proof}
  It suffices to note that the map
  \[
    \arraycolsep=1.4pt
    \begin{array}[t]{rl}
    \beta :
    \operatorname{Hom}_{\mathfrak{h}}(
      M,
      \operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} N
    ) & \to
    \operatorname{Hom}_{\mathfrak{g}}(
      \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} M,
      N
    ) \\
    f & \mapsto
    \begin{array}[t]{rl}
    \beta(f) : \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} M & \to N \\
               u \otimes m & \mapsto u \cdot f(m)
    \end{array}
    \end{array}
  \]
  is the inverse of \(\alpha\).
\end{proof}

This last proposition is known as \emph{Frobenius reciprocity}, and was first
proved by Frobenius himself in the context of finite groups. Another
interesting construction is\dots

\begin{example}\label{ex:tensor-prod-separate-algs}\index{\(\mathfrak{g}\)-module!tensor product}
  Given two \(K\)-algebras \(A\) and \(B\), an \(A\)-module \(M\) and a
  \(B\)-module \(N\), \(M \otimes N = M \otimes_K N\) has the natural structure
  of an \(A \otimes_K B\)-module. In light of
  Example~\ref{ex:univ-enveloping-of-sum-is-tensor}, this implies that given
  Lie algebras \(\mathfrak{g}_1\) and \(\mathfrak{g}_2\), a
  \(\mathfrak{g}_1\)-module \(M_1\) and a \(\mathfrak{g}_2\)-module \(M_2\),
  the space \(M_1 \otimes M_2\) has the natural structure of a \(\mathfrak{g}_1
  \oplus \mathfrak{g}_2\)-module, where the action of \(\mathfrak{g}_1 \oplus
  \mathfrak{g}_2\) is given by
  \[
    (X_1 + X_2) \cdot (m \otimes n)
    = X_1 \cdot m \otimes n + m \otimes X_2 \cdot n
  \]
\end{example}

Example~\ref{ex:tensor-prod-separate-algs} thus provides a way to describe
representations of \(\mathfrak{g}_1 \oplus \mathfrak{g}_2\) in terms of the
representations of \(\mathfrak{g}_1\) and \(\mathfrak{g}_2\). We will soon see
that in many cases \emph{all} (simple) \(\mathfrak{g}_1 \oplus
\mathfrak{g}_2\)-modules can be constructed in such a manner. This concludes
our initial remarks on \(\mathfrak{g}\)-modules. In the following chapters we
will explore the fundamental problem of representation theory: that of
classifying all representations of a given algebra up to isomorphism.