lie-algebras-and-their-representations
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Name | Size | Mode | |
.. | |||
sections/introduction.tex | 54542B | -rw-r--r-- |
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
\chapter{Introduction} \pagenumbering{arabic} \setcounter{page}{1} Associative algebras have proven themselves remarkably useful throughout mathematics. There is no lack of natural and interesting examples coming from a diverse spectrum of different fields: topology, number theory, analysis, you name it. Associative algebras have thus been studied at length, specially the commutative ones. On the other hand, non-associative algebras have never sustained the same degree of scrutiny. To this day, non-associative algebras remain remarkably mysterious. Many have given up on attempting a systematic investigation and focus instead on understanding particular classes of non-associative algebras -- i.e. algebras satisfying \emph{pseudo-associativity} conditions. Perhaps the most fascinating class of non-associative algebras are the so called \emph{Lie algebras}, and these will be the focus of these notes. \begin{definition}\index{Lie algebra} Given a field \(K\), a Lie algebra over \(K\) is a \(K\)-vector space \(\mathfrak{g}\) endowed with an antisymmetric bilinear map \([\, ,] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}\) -- which we call its \emph{Lie bracket} -- satisfying the Jacobi identity \[ [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 \] \end{definition} \begin{definition}\index{Lie algebra!homomorphism} Given two Lie algebras \(\mathfrak{g}\) and \(\mathfrak{h}\) over \(K\), a homomorphism of Lie algebras \(\mathfrak{g} \to \mathfrak{h}\) is a \(K\)-linear map \(f : \mathfrak{g} \to \mathfrak{h}\) which \emph{preserves bracket} in the sense that \[ f([X, Y]) = [f(X), f(Y)] \] for all \(X, Y \in \mathfrak{g}\). The dimension \(\dim \mathfrak{g}\) of \(\mathfrak{g}\) is its dimension as a \(K\)-vector space. \end{definition} The collection of Lie algebras over a fixed field \(K\) thus form a category, which we call \(K\text{-}\mathbf{LieAlg}\). We are primarily interested in finite-dimensional Lie algebras over algebraically closed fields of characteristic \(0\). Hence from now on we assume \(K\) is algebraically closed and \(\operatorname{char} K = 0\) unless explicitly stated otherwise. Ironically, perhaps the most basic examples of Lie algebras are derived from associative algebras. \begin{example}\label{ex:inclusion-alg-in-lie-alg}\index{Lie algebra!Lie algebra of an associative algebra} Given an associative \(K\)-algebra \(A\), we can view \(A\) as a Lie algebra over \(K\) with the Lie bracket given by the commutator \([a, b] = ab - ba\). In particular, given a \(K\)-vector space \(V\) we may view the \(K\)-algebra \(\operatorname{End}(V)\) as a Lie algebra, which we call \(\mathfrak{gl}(V)\). We may also regard the Lie algebra \(\mathfrak{gl}_n(K) = \mathfrak{gl}(K^n)\) as the space of \(n \times n\) matrices with coefficients in \(K\). \end{example} \begin{example}\label{ex:gln-inclusions} Let \(n \le m\). Then the map \begin{align*} \mathfrak{gl}_n(K) & \to \mathfrak{gl}_m(K) \\ X & \mapsto \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} \end{align*} is a homomorphism of Lie algebras. \end{example} While straightforward enough, I always found the definition of a Lie algebra unconvincing on its own. Specifically, the Jacobi identity can look very alien to someone who has never ventured outside of the realms of associativity. Traditional abstract algebra courses offer little in the way of a motivation for studying non-associative algebras in general. Why should we drop the assumption of associativity if every example of an algebraic structure we have ever seen is an associative one? Instead, the most natural examples of Lie algebras often come from an entirely different field: geometry. Here the meaning of \emph{geometry} is somewhat vague. Topics such as differential and algebraic geometry are prominently featured, but examples from fields such as the theory of differential operators and \(D\)-modules also show up a lot in the theory of representations -- which we will soon discuss. Perhaps one of the most fundamental themes of the study of Lie algebras is their relationship with groups, specially in geometric contexts. We will now provide a brief description of this relationship through a series of examples. \begin{example}\index{Lie algebra!Lie algebra of derivations} Let \(A\) be an associative \(K\)-algebra and \(\operatorname{Der}(A)\) be the space of all derivations on \(A\) -- i.e. all linear maps \(D : A \to A\) satisfying the Leibniz rule \(D(a \cdot b) = a \cdot D b + (D a) \cdot b\). The commutator \([D, D']\) of two derivations \(D, D' \in \operatorname{Der}(A)\) in the ring \(\operatorname{End}(A)\) of \(K\)-linear endomorphisms of \(A\) is a derivation. Hence \(\operatorname{Der}(A)\) is a Lie algebra. \end{example} One specific instance of this last example is\dots \begin{example}\index{Lie algebra!Lie algebra of vector fields} Given a smooth manifold \(M\), the space \(\mathfrak{X}(M)\) of all smooth vector fields is canonically identified with \(\operatorname{Der}(M) = \operatorname{Der}(C^\infty(M))\) -- where a field \(X \in \mathfrak{X}(M)\) is identified with the map \(C^\infty(M) \to C^\infty(M)\) which takes a function \(f \in C^\infty(M)\) to its derivative in the direction of \(X\). This gives \(\mathfrak{X}(M)\) the structure of a Lie algebra over \(\mathbb{R}\). \end{example} \begin{example}\label{ex:lie-alg-of-lie-grp}\index{Lie algebra!Lie algebra of a Lie group} Given a Lie group \(G\) -- i.e. a smooth manifold endowed with smooth group operations -- we call \(X \in \mathfrak{X}(G)\) left invariant if \((d \ell_g)_1 X_1 = X_g\) for all \(g \in G\), where \(\ell_g : G \to G\) denotes the left translation by \(g\). The commutator of invariant fields is invariant, so the space \(\mathfrak{g} = \operatorname{Lie}(G)\) of all invariant vector fields has the structure of a Lie algebra over \(\mathbb{R}\) with bracket given by the usual commutator of fields. Notice that an invariant field \(X\) is completely determined by \(X_1 \in T_1 G\). Hence there is a linear isomorphism \(\mathfrak{g} \isoto T_1 G\). In particular, \(\mathfrak{g}\) is finite-dimensional. \end{example} We should point out that the Lie algebra \(\mathfrak{g}\) of a complex Lie group \(G\) -- i.e. a complex manifold endowed with holomorphic group operations -- has the natural structure of a complex Lie algebra. Indeed, every left invariant field \(X \in \mathfrak{X}(G)\) is holomorphic, so \(\mathfrak{g}\) is a (complex) subspace of the complex vector space of holomorphic vector fields over \(G\). There is also an algebraic analogue of this last construction. \begin{example}\index{Lie algebra!Lie algebra of an algebraic group} Let \(G\) be an affine algebraic \(K\)-group -- i.e. an affine variety over \(K\) with rational group operations -- and \(K[G]\) denote the ring of regular functions \(G \to K\). We call a derivation \(D : K[G] \to K[G]\) left invariant if \(D(g \cdot f) = g \cdot D f\) for all \(g \in G\) and \(f \in K[G]\) -- where the action of \(G\) on \(K[G]\) is given by \((g \cdot f)(h) = f(g^{-1} h)\). The commutator of left invariant derivations is invariant too, so the space \(\operatorname{Lie}(G) = \operatorname{Der}(G)^G\) of invariant derivations in \(K[G]\) has the structure of a Lie algebra over \(K\) with bracket given by the commutator of derivations. Again, \(\operatorname{Lie}(G)\) is isomorphic to the Zariski tangent space \(T_1 G\), which is finite-dimensional. \end{example} \begin{example} The Lie algebra \(\operatorname{Lie}(\operatorname{GL}_n(K))\) is canonically isomorphic to the Lie algebra \(\mathfrak{gl}_n(K)\). Likewise, the Lie algebra \(\operatorname{Lie}(\operatorname{SL}_n(K))\) is canonically isomorphic to the Lie algebra \(\mathfrak{sl}_n(K)\) of traceless \(n \times n\) matrices. \[ \mathfrak{sl}_n(K) = \{ X \in \mathfrak{gl}_n(K) : \operatorname{Tr} X = 0 \} \] \end{example} \begin{example}\label{ex:sl2-basis} The elements \begin{align*} e & = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} & f & = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} & h & = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{align*} form a basis for \(\mathfrak{sl}_2(K)\) and are subject to the following relations. \begin{align*} [e, f] & = h & [h, f] & = -2 f & [h, e] = 2 e \end{align*} \end{example} \begin{example}\label{ex:sp2n} The Lie algebra of the affine algebraic group \[ \operatorname{Sp}_{2 n}(K) = \{ g \in \operatorname{GL}_{2 n}(K) : \omega(g \cdot v, g \cdot w) = \omega(v, w) \, \forall v, w \in K^{2n} \} \] is canonically isomorphic to the Lie algebra \[ \mathfrak{sp}_{2 n}(K) = \left\{ \begin{pmatrix} X & Y \\ Z & -X^\top \end{pmatrix} : X, Y, Z \in \mathfrak{gl}_n(K), Y = Y^\top, Z = Z^\top \right\}, \] with bracket given by the usual commutator of matrices -- where \[ \omega( (v_1, \ldots, v_n, \dot v_1, \ldots, \dot v_n), (w_1, \ldots, w_n, \dot w_1, \ldots, \dot w_n) ) = v_1 \dot w_1 + \cdots + v_n \dot w_n - \dot v_1 w_1 - \cdots - \dot v_n w_n \] is, of course, the standard symplectic form of \(K^{2n}\). \end{example} It is important to point out that the construction of the Lie algebra \(\mathfrak{g}\) of a Lie group \(G\) in Example~\ref{ex:lie-alg-of-lie-grp} is functorial. Specifically, one can show the derivative \(d f_1 : \mathfrak{g} \cong T_1 G \to T_1 H \cong \mathfrak{h}\) of a smooth group homomorphism \(f : G \to H\) is a homomorphism of Lie algebras, and the chain rule implies \(d (f \circ g)_1 = d f_1 \circ d g_1\). This is known as the \emph{the Lie functor} \(\operatorname{Lie} : \mathbf{LieGrp} \to \mathbb{R}\text{-}\mathbf{LieAlg}\) between the category of Lie groups and smooth group homomorphisms and the category of Lie algebras. This goes to show Lie algebras are invariants of Lie groups. What is perhaps more surprising is the fact that, in certain contexts, Lie algebras are perfect invariants. Even more so\dots \begin{theorem}[Lie]\label{thm:lie-theorems} The restriction \(\operatorname{Lie} : \mathbf{LieGrp}_{\operatorname{simpl}} \to \mathbb{R}\text{-}\mathbf{LieAlg}\) of the Lie functor to the full subcategory of simply connected Lie groups is an equivalence of categories onto the full subcategory of finite-dimensional real Lie algebras. \end{theorem} This last theorem is a direct corollary of the so called \emph{first and third fundamental Lie Theorems}. Lie's first Theorem establishes that if \(G\) is a simply connected Lie group and \(H\) is a connected Lie group then the induced map \(\operatorname{Hom}(G, H) \to \operatorname{Hom}(\mathfrak{g}, \mathfrak{h})\) is bijective, which implies the Lie functor is fully faithful. On the other hand, Lie's third Theorem states that every finite-dimensional real Lie algebra is the Lie algebra of a simply connected Lie group -- i.e. the Lie functor is essentially surjective. This goes to show that the relationship between Lie groups and Lie algebras is deeper than the fact they share a name: in a very strong sense, studying simply connected Lie groups is \emph{precisely} the same as studying finite-dimensional Lie algebras. Such a vital connection between apparently distant subjects is bound to produce interesting results. Indeed, the passage from the geometric setting to its algebraic counterpart and vice-versa has proven itself a fruitful one. This correspondence can be extended to the complex case too. In other words, the Lie functor \(\mathbf{CLieGrp}_{\operatorname{simpl}} \to \mathbb{C}\text{-}\mathbf{LieAlg}\) is also an equivalence of categories between the category of simply connected complex Lie groups and the full subcategory of finite-dimensional complex Lie algebras. The situation is more delicate in the algebraic case. For instance, consider the complex Lie algebra homomorphism \begin{align*} f : \mathbb{C} & \to \mathfrak{sl}_2(\mathbb{C}) \\ \lambda & \mapsto \lambda h = \begin{pmatrix} \lambda & 0 \\ 0 & - \lambda \end{pmatrix} \end{align*} Since \(\mathfrak{sl}_2(\mathbb{C}) = \operatorname{Lie}(\operatorname{SL}_2(\mathbb{C}))\) and \(\operatorname{SL}_2(\mathbb{C})\) is simply connected, we know there exists a unique holomorphic group homomorphism \(g : \mathbb{C} \to \operatorname{SL}_2(\mathbb{C})\) between the affine line \(\mathbb{C}\) and the complex \emph{algebraic} group \(\operatorname{SL}_2(\mathbb{C})\) such that \(f = d g_1\). Indeed, this homomorphism is \begin{align*} g : \mathbb{C} & \to \operatorname{SL}_2(\mathbb{C}) \\ \lambda & \mapsto \operatorname{exp}(\lambda h) = \begin{pmatrix} e^\lambda & 0 \\ 0 & e^{-\lambda} \end{pmatrix}, \end{align*} which is not a rational map. It then follows from the uniqueness of \(g\) that there is no rational group homomorphism \(\mathbb{C} \to \operatorname{SL}_2(\mathbb{C})\) whose derivative at the identity is \(f\). In particular, the Lie functor \(\mathbb{C}\text{-}\mathbf{Grp}_{\operatorname{simpl}} \to \mathbb{C}\text{-}\mathbf{LieAlg}\) -- between the category \(\mathbb{C}\text{-}\mathbf{Grp}_{\operatorname{simpl}}\) of simply connected complex algebraic groups and the category of complex Lie algebras -- fails to be full. Similarly, the functor \(\mathbb{C}\text{-}\mathbf{Grp}_{\operatorname{simpl}} \to \mathbb{C}\text{-}\mathbf{LieAlg}\) is \emph{not} essentially surjective onto the subcategory of finite-dimensional algebras: every finite-dimensional complex Lie algebra is isomorphic to the Lie algebra of a unique simply connected complex Lie group, but there are simply connected complex Lie groups which are not algebraic groups. Nevertheless, Lie algebras are still powerful invariants of algebraic groups. An interesting discussion of some of these delicacies can be found in sixth section of \cite[ch.~II]{demazure-gabriel}. All in all, there is a profound connection between groups and finite-dimensional Lie algebras throughout multiple fields. While perhaps unintuitive at first, the advantages of working with Lie algebras over their group-theoretic counterparts are numerous. First, Lie algebras allow us to avoid much of the delicacies of geometric objects such as real and complex Lie groups. Even when working without additional geometric considerations, groups can be complicated beasts themselves. They are, after all, nonlinear objects. On the other hand, Lie algebras are linear by nature, which makes them much more flexible than groups. Having thus hopefully established that Lie algebras are interesting, we are now ready to dive deeper into them. We begin by analyzing some of their most basic properties. \section{Lie Algebras} However bizarre Lie algebras may seem at a first glance, they actually share a lot a structural features with their associative counterparts. For instance, it is only natural to define\dots \begin{definition}\index{Lie subalgebra}\index{Lie subalgebra!ideals} Given a Lie algebra \(\mathfrak{g}\), a subspace \(\mathfrak{h} \subset \mathfrak{g}\) is called \emph{a subalgebra of \(\mathfrak{g}\)} if \([X, Y] \in \mathfrak{h}\) for all \(X, Y \in \mathfrak{h}\). A subalgebra \(\mathfrak{a} \subset \mathfrak{g}\) is called \emph{an ideal of \(\mathfrak{g}\)} if \([X, Y] \in \mathfrak{a}\) for all \(X \in \mathfrak{g}\) and \(Y \in \mathfrak{a}\), in which case we write \(\mathfrak{a} \normal \mathfrak{g}\). \end{definition} \begin{note} In the context of associative algebras, it is usual practice to distinguish between \emph{left ideals} and \emph{right ideals}. This is not necessary when dealing with Lie algebras, however, since any ``left ideal'' of a Lie algebra is also a ``right ideal'': given \(\mathfrak{a} \normal \mathfrak{g}\), \([Y, X] = - [X, Y] \in \mathfrak{a}\) for all \(X \in \mathfrak{g}\) and \(Y \in \mathfrak{a}\). \end{note} \begin{example} Let \(f : \mathfrak{g} \to \mathfrak{h}\) be a homomorphism between Lie algebras \(\mathfrak{g}\) and \(\mathfrak{h}\). Then \(\ker f \subset \mathfrak{g}\) and \(\operatorname{im} f \subset \mathfrak{h}\) are subalgebras. Furthermore, \(\ker f \normal \mathfrak{g}\). \end{example} \begin{example} Let \(\mathfrak{g}_1\) and \(\mathfrak{g}_2\) be a Lie algebras over \(K\). Then the space \(\mathfrak{g}_1 \oplus \mathfrak{g}_2\) is a Lie algebra with bracket \[ [X_1 + X_2, Y_1 + Y_2] = [X_1, Y_1] + [X_2, Y_2], \] and \(\mathfrak{g}_1, \mathfrak{g}_2 \normal \mathfrak{g}_1 \oplus \mathfrak{g}_2\). \end{example} \begin{example} Let \(G\) be an affine algebraic \(K\)-group and \(H \subset G\) be a connected closed subgroup. Denote by \(\mathfrak{g}\) and \(\mathfrak{h}\) the Lie algebras of \(G\) and \(H\), respectively. The inclusion \(H \to G\) induces an injective homomorphism \(\mathfrak{h} \to \mathfrak{g}\). We may thus regard \(\mathfrak{h}\) as a subalgebra of \(\mathfrak{g}\). In addition, \(\mathfrak{h} \normal \mathfrak{g}\) if, and only if \(H \normal G\). \end{example} There is also a natural analogue of quotients. \begin{definition} Given a Lie algebra \(\mathfrak{g}\) and \(\mathfrak{a} \normal \mathfrak{g}\), the space \(\mfrac{\mathfrak{g}}{\mathfrak{a}}\) has the natural structure of a Lie algebra over \(K\), where \[ [X + \mathfrak{a}, Y + \mathfrak{a}] = [X, Y] + \mathfrak{a} \] \end{definition} \begin{proposition} Given a Lie algebra \(\mathfrak{g}\) and \(\mathfrak{a} \normal \mathfrak{g}\), every homomorphism of Lie algebras \(f : \mathfrak{g} \to \mathfrak{h}\) such that \(\mathfrak{a} \subset \ker f\) uniquely factors through the projection \(\mathfrak{g} \to \mfrac{\mathfrak{g}}{\mathfrak{a}}\). \begin{center} \begin{tikzcd} \mathfrak{g} \rar{f} \dar & \mathfrak{h} \\ \mfrac{\mathfrak{g}}{\mathfrak{a}} \arrow[dotted]{ur} & \end{tikzcd} \end{center} \end{proposition} \begin{definition}\index{Lie algebra!Abelian Lie algebra} A Lie algebra \(\mathfrak{g}\) is called \emph{Abelian} if \([X, Y] = 0\) for all \(X, Y \in \mathfrak{g}\). \end{definition} \begin{example} Let \(G\) be a connected algebraic \(K\)-group and \(\mathfrak{g}\) be its Lie algebra. Then \(G\) is Abelian if, and only if \(\mathfrak{g}\) is Abelian. \end{example} \begin{note} Notice that an Abelian Lie algebra is determined by its dimension. Indeed, any linear map \(\mathfrak{g} \to \mathfrak{h}\) between Abelian Lie algebras \(\mathfrak{g}\) and \(\mathfrak{h}\) is a homomorphism of Lie algebras. In particular, any linear isomorphism \(\mathfrak{g} \isoto K^n\) -- where \(K^n\) is endowed with the trivial bracket \([v, w] = 0\), \(v, w \in K^n\) -- is an isomorphism of Lie algebras for Abelian \(\mathfrak{g}\). \end{note} \begin{example}\index{Lie algebra!center} Let \(\mathfrak{g}\) be a Lie algebra and \(\mathfrak{z} = \{ X \in \mathfrak{g} : [X, Y] = 0, Y \in \mathfrak{g}\}\). Then \(\mathfrak{z}\) is an Abelian ideal of \(\mathfrak{g}\), known as \emph{the center of \(\mathfrak{z}\)}. \end{example} Due to their relationship with Lie groups and algebraic groups, Lie algebras also share structural features with groups. For example\dots \begin{definition}\index{Lie algebra!solvable Lie algebra} A Lie algebra \(\mathfrak{g}\) is called \emph{solvable} if its derived series \[ \mathfrak{g} \supseteq [\mathfrak{g}, \mathfrak{g}] \supseteq [[\mathfrak{g}, \mathfrak{g}], [\mathfrak{g}, \mathfrak{g}]] \supseteq [ [[\mathfrak{g}, \mathfrak{g}], [\mathfrak{g}, \mathfrak{g}]], [[\mathfrak{g}, \mathfrak{g}], [\mathfrak{g}, \mathfrak{g}]] ] \supseteq \cdots \] converges to \(0\) in finite time. \end{definition} \begin{example} Let \(G\) be a connected affine algebraic \(K\)-group and \(\mathfrak{g}\) be its Lie algebra. Then \(G\) is solvable if, and only if \(\mathfrak{g}\) is. \end{example} \begin{definition}\index{Lie algebra!nilpotent Lie algebra} A Lie algebra \(\mathfrak{g}\) is called \emph{nilpotent} if its lower central series \[ \mathfrak{g} \supseteq [\mathfrak{g}, \mathfrak{g}] \supseteq [\mathfrak{g}, [\mathfrak{g}, \mathfrak{g}]] \supseteq [\mathfrak{g}, [\mathfrak{g}, [\mathfrak{g}, \mathfrak{g}]]] \supseteq \cdots \] converges to \(0\) in finite time. \end{definition} \begin{example} Let \(G\) be a connected affine algebraic \(K\)-group and \(\mathfrak{g}\) be its Lie algebra. Then \(G\) is nilpotent if, and only if \(\mathfrak{g}\) is. \end{example} Other interesting classes of Lie algebras are the so called \emph{simple} and \emph{semisimple} Lie algebras. \begin{definition}\index{simple!Lie algebra}\index{Lie algebra!simple Lie algebra} A non-Abelian Lie algebra \(\mathfrak{s}\) over \(K\) is called \emph{simple} if its only ideals are \(0\) and \(\mathfrak{s}\). \end{definition} \begin{example} The Lie algebra \(\mathfrak{sl}_2(K)\) is simple. To see this, notice that any ideal \(\mathfrak{a} \normal \mathfrak{sl}_2(K)\) must be stable under the operator \(\operatorname{ad}(h) : \mathfrak{sl}_2(K) \to \mathfrak{sl}_2(K)\) given by \(\operatorname{ad}(h) X = [h, X]\). But Example~\ref{ex:sl2-basis} implies \(\operatorname{ad}(h)\) is diagonalizable, with eigenvalues \(0\) and \(\pm 2\). Hence \(\mathfrak{a}\) must be spanned by some of the eigenvectors \(e, f, h\) of \(\operatorname{ad}(h)\). If \(h \in \mathfrak{a}\), then \([e, h] = - 2 e \in \mathfrak{a}\) and \([f, h] = 2 f \in \mathfrak{a}\), so \(\mathfrak{a} = \mathfrak{sl}_2(K)\). If \(e \in \mathfrak{a}\) then \([f, e] = - h \in \mathfrak{a}\), so again \(\mathfrak{a} = \mathfrak{sl}_2(K)\). Similarly, if \(f \in \mathfrak{a}\) then \([e, f] = h \in \mathfrak{a}\) and \(\mathfrak{a} = \mathfrak{sl}_2(K)\). More generally, the Lie algebra \(\mathfrak{sl}_n(K)\) is simple for each \(n > 1\) -- see the section of \cite[ch. 6]{kirillov} on invariant bilinear forms and the semisimplicity of classical Lie algebras. \end{example} \begin{example} The Lie algebras \(\mathfrak{sp}_{2n}(K)\) are simple for all \(n \ge 1\) -- agina, see \cite[ch. 6]{kirillov}. \end{example} \begin{definition}\label{thm:sesimple-algebra}\index{semisimple!Lie algebra}\index{Lie algebra!semisimple Lie algebra} A Lie algebra \(\mathfrak{g}\) is called \emph{semisimple} if it is the direct sum of simple Lie algebras. Equivalently, a Lie algebra \(\mathfrak{g}\) is called \emph{semisimple} if it has no nonzero solvable ideals. \end{definition} \begin{example} Let \(G\) be a connected affine algebraic \(K\)-group. Then \(G\) is semisimple if, and only if \(\mathfrak{g}\) semisimple. \end{example} A slight generalization is\dots \begin{definition}\index{Lie algebra!reductive Lie algebra} A Lie algebra \(\mathfrak{g}\) is called \emph{reductive} if \(\mathfrak{g}\) is the direct sum of a semisimple Lie algebra and an Abelian Lie algebra. \end{definition} \begin{example} The Lie algebra \(\mathfrak{gl}_n(K)\) is reductive. Indeed, \[ X = \begin{pmatrix} a_{1 1} - \frac{\operatorname{Tr}(X)}{n} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n} - \frac{\operatorname{Tr}(X)}{n} \end{pmatrix} + \begin{pmatrix} \frac{\operatorname{Tr}(X)}{n} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{\operatorname{Tr}(X)}{n} \end{pmatrix} \] for each matrix \(X = (a_{i j})_{i j}\). In other words, \(\mathfrak{gl}_n(K) = \mathfrak{sl}_n(K) \oplus K \operatorname{Id} \cong \mathfrak{sl}_n(K) \oplus K\). \end{example} As suggested by their names, simple and semisimple algebras are quite well behaved when compared with the general case. To a lesser degree, reductive algebras are also unusually well behaved. In the next chapter we will explore the question of why this is the case, but for now we note that we can get semisimple and reductive algebras by modding out by certain ideals, known as \emph{radicals}. \begin{definition}\index{Lie algebra!radical} Let \(\mathfrak{g}\) be a finite-dimensional Lie algebra. The sum \(\mathfrak{a} + \mathfrak{b}\) of solvable ideals \(\mathfrak{a}, \mathfrak{b} \normal \mathfrak{g}\) is again a solvable ideal. Hence the sum of all solvable ideals of \(\mathfrak{g}\) is a maximal solvable ideal, known as \emph{the radical \(\mathfrak{rad}(\mathfrak{g})\) of \(\mathfrak{g}\)}. \[ \mathfrak{rad}(\mathfrak{g}) = \sum_{\substack{\mathfrak{a} \normal \mathfrak{g}\\\text{solvable}}} \mathfrak{a} \] \end{definition} \begin{definition}\index{Lie algebra!nilradical} Let \(\mathfrak{g}\) be a finite-dimensional Lie algebra. The sum of nilpotent ideals is a nilpotent ideal. Hence the sum of all nilpotent ideals of \(\mathfrak{g}\) is a maximal nilpotent ideal, known as \emph{the nilradical \(\mathfrak{nil}(\mathfrak{g})\) of \(\mathfrak{g}\)}. \[ \mathfrak{nil}(\mathfrak{g}) = \sum_{\substack{\mathfrak{a} \normal \mathfrak{g}\\\text{nilpotent}}} \mathfrak{a} \] \end{definition} \begin{proposition}\label{thm:quotients-by-rads} Let \(\mathfrak{g}\) be a Lie algebra. Then \(\mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})}\) is semisimple and \(\mfrac{\mathfrak{g}}{\mathfrak{nil}(\mathfrak{g})}\) is reductive. \end{proposition} We have seen in Example~\ref{ex:inclusion-alg-in-lie-alg} that we can pass from an associative algebra \(A\) to a Lie algebra by taking its bracket as the commutator \([a, b] = ab - ba\). We should also not that any homomorphism of \(K\)-algebras \(f : A \to B\) preserves commutators, so that \(f\) is also a homomorphism of Lie algebras. Hence we have a functor \(\operatorname{Lie} : K\text{-}\mathbf{Alg} \to K\text{-}\mathbf{LieAlg}\). We can also go the other direction by embedding a Lie algebra \(\mathfrak{g}\) in an associative algebra, known as \emph{the universal enveloping algebra of \(\mathfrak{g}\)}. \begin{definition}\index{universal enveloping algebra} Let \(\mathfrak{g}\) be a Lie algebra and \(T \mathfrak{g} = \bigoplus_n \mathfrak{g}^{\otimes n}\) be its tensor algebra -- i.e. the free \(K\)-algebra generated by the elements of \(\mathfrak{g}\). We call the \(K\)-algebra \(\mathcal{U}(\mathfrak{g}) = \mfrac{T \mathfrak{g}}{I}\) \emph{the universal enveloping algebra of \(\mathfrak{g}\)}, where \(I\) is the left ideal of \(T \mathfrak{g}\) generated by the elements \([X, Y] - (X \otimes Y - Y \otimes X)\). \end{definition} Notice there is a canonical homomorphism \(\mathfrak{g} \to \mathcal{U}(\mathfrak{g})\) given by the composition \begin{center} \begin{tikzcd} \mathfrak{g} \rar & T \mathfrak{g} \rar & \mfrac{T \mathfrak{g}}{I} = \mathcal{U}(\mathfrak{g}) \end{tikzcd} \end{center} Given \(X_1, \ldots, X_n \in \mathfrak{g}\), we identify \(X_i\) with its image under the inclusion \(\mathfrak{g} \to T \mathfrak{g}\) and we write \(X_1 \cdots X_n\) for \((X_1 \otimes \cdots \otimes X_n) + I\). This notation suggests the map \(\mathfrak{g} \to \mathcal{U}(\mathfrak{g})\) is injective, but at this point this is not at all clear -- given that the projection \(T \mathfrak{g} \to \mathcal{U}(\mathfrak{g})\) is not injective. However, we will soon see this is the case. Intuitively, \(\mathcal{U}(\mathfrak{g})\) is the smallest associative \(K\)-algebra containing \(\mathfrak{g}\) as a Lie subalgebra. In practice this means\dots \begin{proposition}\label{thm:universal-env-uni-prop} Let \(\mathfrak{g}\) be a Lie algebra and \(A\) be an associative \(K\)-algebra. Then every homomorphism of Lie algebras \(f : \mathfrak{g} \to A\) -- where \(A\) is endowed with the structure of a Lie algebra as in Example~\ref{ex:inclusion-alg-in-lie-alg} -- can be uniquely extended to a homomorphism of algebras \(\mathcal{U}(\mathfrak{g}) \to A\). \begin{center} \begin{tikzcd} \mathfrak{g} \rar{f} \dar & A \\ \mathcal{U}(\mathfrak{g}) \urar[dotted] & \end{tikzcd} \end{center} \end{proposition} \begin{proof} Let \(f : \mathfrak{g} \to A\) be a homomorphism of Lie algebras. By the universal property of free algebras, there is a homomorphism of algebras \(\tilde f : T \mathfrak{g} \to A\) such that \begin{center} \begin{tikzcd} \mathfrak{g} \dar \rar{f} & A \\ T \mathfrak{g} \urar[swap, dotted]{\tilde f} & \end{tikzcd} \end{center} Since \(f\) is a homomorphism of Lie algebras, \[ \tilde f([X, Y]) = f([X, Y]) = [f(X), f(Y)] = [\tilde f(X), \tilde f(Y)] = \tilde f(X \otimes Y - Y \otimes X) \] for all \(X, Y \in \mathfrak{g}\). Hence \(I = ([X, Y] - (X \otimes Y - Y \otimes X) : X, Y \in \mathfrak{g}) \subset \ker \tilde f\) and therefore \(\tilde f\) factors through the quotient \(\mathcal{U}(\mathfrak{g}) = \mfrac{T \mathfrak{g}}{I}\). \begin{center} \begin{tikzcd} T \mathfrak{g} \rar{\tilde f} \dar & A \\ \mathcal{U}(\mathfrak{g}) \arrow[swap, dotted]{ur}{\bar{\tilde f}} & \end{tikzcd} \end{center} Combining the two previous diagrams, we can see that \(\bar{\tilde f}\) is indeed an extension of \(f\). The uniqueness of the extension then follows from the uniqueness of \(\tilde f\) and \(\bar{\tilde f}\). \end{proof} We should point out this construction is functorial. Indeed, if \(f : \mathfrak{g} \to \mathfrak{h}\) is a homomorphism of Lie algebras then Proposition~\ref{thm:universal-env-uni-prop} implies there is a homomorphism of algebras \(\mathcal{U}(f) : \mathcal{U}(\mathfrak{g}) \to \mathcal{U}(\mathfrak{h})\) satisfying \begin{center} \begin{tikzcd} \mathfrak{g} \rar{f} \dar & \mathfrak{h} \rar & \mathcal{U}(\mathfrak{h}) \\ \mathcal{U}(\mathfrak{g}) \arrow[swap, dotted]{urr}{\mathcal{U}(f)} & & \end{tikzcd} \end{center} It is important to note, however, that \(\mathcal{U} : K\text{-}\mathbf{LieAlg} \to K\text{-}\mathbf{Alg}\) is not the ``inverse'' of our functor \(K\text{-}\mathbf{Alg} \to K\text{-}\mathbf{LieAlg}\). For instance, if \(\mathfrak{g} = K\) is the \(1\)-dimensional Abelian Lie algebra then \(\mathcal{U}(\mathfrak{g}) \cong K[x]\), which is infinite-dimensional. Nevertheless, Proposition~\ref{thm:universal-env-uni-prop} may be restated using the language of adjoint functors -- as described in \cite{maclane} for instance. \begin{corollary} If \(\operatorname{Lie} : K\text{-}\mathbf{Alg} \to K\text{-}\mathbf{LieAlg}\) is the functor described in Example~\ref{ex:inclusion-alg-in-lie-alg}, there is an adjunction \(\operatorname{Lie} \vdash \mathcal{U}\). \end{corollary} The structure of \(\mathcal{U}(\mathfrak{g})\) can often be described in terms of the structure of \(\mathfrak{g}\). For instance, \(\mathfrak{g}\) is Abelian if, and only if \(\mathcal{U}(\mathfrak{g})\) is commutative, in which case any basis \(\{X_i\}_i\) for \(\mathfrak{g}\) induces an isomorphism \(\mathcal{U}(\mathfrak{g}) \cong K[x_1, x_2, \ldots, x_i, \ldots]\). More generally, we find\dots \begin{theorem}[Poincaré-Birkoff-Witt]\index{PBW Theorem} Let \(\mathfrak{g}\) be a Lie algebra over \(K\) and \(\{X_i\}_i \subset \mathfrak{g}\) be an ordered basis for \(\mathfrak{g}\) -- i.e. a basis indexed by an ordered set. Then \(\{X_{i_1} \cdot X_{i_2} \cdots X_{i_n} : n \ge 0, i_1 \le i_2 \le \cdots \le i_n\}\) is a basis for \(\mathcal{U}(\mathfrak{g})\). \end{theorem} This last result is known as \emph{the PBW Theorem}. It is hugely important and will come up again and again throughout these notes. Among other things, it implies\dots \begin{corollary} Let \(\mathfrak{g}\) be a Lie algebra over \(K\). Then \(\mathcal{U}(\mathfrak{g})\) is a domain and the inclusion \(\mathfrak{g} \to \mathcal{U}(\mathfrak{g})\) is injective. \end{corollary} The PBW Theorem can also be used to compute a series of examples. \begin{example} Consider the Lie algebra \(\mathfrak{gl}_n(K)\) and its canonical basis \(\{E_{i j}\}_{i j}\). Even though \(E_{i j} E_{j k} = E_{i k}\) in the associative algebra \(\operatorname{End}(K^n)\), the PBW Theorem implies \(E_{i j} E_{j k} \ne E_{i k}\) in \(\mathcal{U}(\mathfrak{gl}_n(K))\). In general, if \(A\) is an associative \(K\)-algebra then the elements in the image of the inclusion \(A \to \mathcal{U}(A)\) do not satisfy the same relations as the elements of \(A\). \end{example} \begin{example} Let \(\mathfrak{g}\) be an Abelian Lie algebra. As previously stated, any choice of basis \(\{X_i\}_i \subset \mathfrak{g}\) induces an isomorphism of algebras \(\mathcal{U}(\mathfrak{g}) \isoto K[x_1, x_2, \ldots, x_i, \ldots]\) which takes \(X_i \in \mathfrak{g}\) to the variable \(x_i \in K[x_1, x_2, \ldots, x_i, \ldots]\). \end{example} \begin{example}\label{ex:univ-enveloping-of-sum-is-tensor} Let \(\mathfrak{g}_1\) and \(\mathfrak{g}_2\) be Lie algebras over \(K\). We claim that the natural map \begin{align*} f: \mathcal{U}(\mathfrak{g}_1) \otimes_K \mathcal{U}(\mathfrak{g}_2) & \to \mathcal{U}(\mathfrak{g}_1 \oplus \mathfrak{g}_2) \\ u \otimes v & \mapsto u \cdot v \end{align*} is an isomorphism of algebras. Since the elements of \(\mathfrak{g}_1\) commute with the elements of \(\mathfrak{g}_2\) in \(\mathfrak{g}_1 \oplus \mathfrak{g}_2\), a simple calculation shows that \(f\) is indeed a homomorphism of algebras. In addition, the PBW Theorem implies that \(f\) is a linear isomorphism. \end{example} The construction of \(\mathcal{U}(\mathfrak{g})\) may seem like a purely algebraic affair, but the universal enveloping algebra of the Lie algebra of a Lie group \(G\) is in fact intimately related with the algebra \(\operatorname{Diff}(G)\) of differential operators \(C^\infty(G) \to C^\infty(G)\) -- i.e. \(\mathbb{R}\)-linear endomorphisms \(C^\infty(G) \to C^\infty(G)\) of finite order, as defined in \cite[ch.~3]{coutinho} for example. Algebras of differential operators and their modules are the subject of the theory of \(D\)-modules, which has seen remarkable progress in the past century. Specifically, we find\dots \begin{proposition}\label{thm:geometric-realization-of-uni-env} Let \(G\) be a Lie group and \(\mathfrak{g}\) be its Lie algebra. Denote by \(\operatorname{Diff}(G)^G\) the algebra of \(G\)-invariant differential operators in \(G\) -- i.e. the algebra of all differential operators \(P : C^\infty(G) \to C^\infty(G)\) such that \(g \cdot P f = P (g \cdot f)\) for all \(f \in C^\infty(G)\) and \(g \in G\). There is a canonical isomorphism of algebras \(\mathcal{U}(\mathfrak{g}) \isoto \operatorname{Diff}(G)^G\). \end{proposition} \begin{proof} An order \(0\) \(G\)-invariant differential operator in \(G\) is simply multiplication by a constant in \(\mathbb{R}\). A homogeneous order \(1\) \(G\)-invariant differential operator in \(G\) is simply a left invariant derivation \(C^\infty(G) \to C^\infty(G)\). All other \(G\)-invariant differential operators are generated by invariant operators of order \(0\) and \(1\). Hence \(\operatorname{Diff}(G)^G\) is generated by \(\operatorname{Der}(G)^G + \mathbb{R}\) -- here \(\operatorname{Der}(G)^G \subset \operatorname{Der}(G)\) denotes the Lie subalgebra of invariant derivations. Now recall that there is a canonical isomorphism of Lie algebras \(\mathfrak{X}(G) \isoto \operatorname{Der}(G)\). This isomorphism takes left invariant fields to left invariant derivations, so it restricts to an isomorphism \(f : \mathfrak{g} \isoto \operatorname{Der}(G)^G \subset \operatorname{Diff}(G)^G\). Since \(f\) is a homomorphism of Lie algebras, it can be extended to an algebra homomorphism \(\tilde f : \mathcal{U}(\mathfrak{g}) \to \operatorname{Diff}(G)^G\). We claim \(\tilde f\) is an isomorphism. To see that \(\tilde f\) is injective, it suffices to notice \[ \tilde f(X_1 \cdots X_n) = \tilde f(X_1) \cdots \tilde f(X_n) = f(X_1) \cdots f(X_n) \ne 0 \] for all nonzero \(X_1, \ldots, X_n \in \mathfrak{g}\) -- the product of operators of positive order has positive order and is therefore nonzero. Since \(\mathcal{U}(\mathfrak{g})\) is generated by the image of the inclusion \(\mathfrak{g} \to \mathcal{U}(\mathfrak{g})\), this implies \(\ker \tilde f = 0\). Given that \(\operatorname{Diff}(G)^G\) is generated by \(\operatorname{Der}(G)^G + \mathbb{R}\), this also goes to show \(\tilde f\) is surjective. \end{proof} As one would expect, the same holds for complex Lie groups and algebraic groups too -- if we replace \(C^\infty(G)\) by \(\mathcal{O}(G)\) and \(K[G]\), respectively. This last proposition has profound implications. For example, it affords us an analytic proof of certain particular cases of the PBW Theorem. Most surprising of all, Proposition~\ref{thm:geometric-realization-of-uni-env} implies \(\mathcal{U}(\mathfrak{g})\)-modules are \emph{precisely} the same as modules over the ring of \(G\)-invariant differential operators -- i.e. \(\operatorname{Diff}(G)^G\)-modules. We can thus use \(\mathcal{U}(\mathfrak{g})\) and its modules to understand the geometry of \(G\). Proposition~\ref{thm:geometric-realization-of-uni-env} is in fact only the beginning of a profound connection between the theory of \(D\)-modules and \emph{representation theory}, the latter of which we now explore in the following section. \section{Representation Theory} First introduced in 1896 by Georg Frobenius in his paper \citetitle{frobenius} \cite{frobenius} in the context of group theory, representation theory is now one of the cornerstones of modern mathematics. In this section we provide a brief overview of basic concepts of the representation theory of Lie algebras. We should stress, however, that the representation theory of Lie algebras is only a small fragment of what is today known as ``representation theory'', which is in general concerned with a diverse spectrum of algebraic and combinatorial structures -- such as groups, quivers and associative algebras. An introductory exploration of some of these structures can be found in \cite{etingof}. We begin by noting that any \(\mathcal{U}(\mathfrak{g})\)-module \(M\) may be regarded as a \(K\)-vector space endowed with a ``linear action'' of \(\mathfrak{g}\). Indeed, by restricting the action map \(\mathcal{U}(\mathfrak{g}) \to \operatorname{End}(M)\) to \(\mathfrak{g} \subset \mathcal{U}(\mathfrak{g})\) yields a homomorphism of Lie algebras \(\mathfrak{g} \to \mathfrak{gl}(M) = \operatorname{End}(M)\). In fact Proposition~\ref{thm:universal-env-uni-prop} implies that given a vector space \(M\) there is a one-to-one correspondence between \(\mathcal{U}(\mathfrak{g})\)-module structures for \(M\) and homomorphisms \(\mathfrak{g} \to \mathfrak{gl}(M)\). This leads us to the following definition. \begin{definition} Given a Lie algebra \(\mathfrak{g}\) over \(K\), \emph{a representation \(V\) of \(\mathfrak{g}\)} is a \(K\)-vector space endowed with a homomorphism of Lie algebras \(\rho : \mathfrak{g} \to \mathfrak{gl}(V)\). \end{definition} Hence there is a one-to-one correspondence between representations of \(\mathfrak{g}\) and \(\mathcal{U}(\mathfrak{g})\)-modules. \begin{example}\index{\(\mathfrak{g}\)-module!trivial module} Given a Lie algebra \(\mathfrak{g}\), the zero map \(0 : \mathfrak{g} \to K\) gives \(K\) the structure of a representation of \(\mathfrak{g}\), known as \emph{the trivial representation}. \end{example} \begin{example}\index{\(\mathfrak{g}\)-module!adjoint module} Given a Lie algebra \(\mathfrak{g}\), consider the homomorphism \(\operatorname{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})\) given by \(\operatorname{ad}(X) Y = [X, Y]\). This gives \(\mathfrak{g}\) the structure of a representation of \(\mathfrak{g}\), known as \emph{the adjoint representation}. \end{example} \begin{example}\index{\(\mathfrak{g}\)-module!regular module} Given a Lie algebra \(\mathfrak{g}\), the map \(\rho : \mathfrak{g} \to \mathfrak{gl}(\mathcal{U}(\mathfrak{g}))\) given by left multiplication endows \(\mathcal{U}(\mathfrak{g})\) with the structure of a representation of \(\mathfrak{g}\), known as \emph{the regular representation of \(\mathfrak{g}\)}. \[ \arraycolsep=1.4pt \begin{array}[t]{rl} \rho : \mathfrak{g} & \to \mathfrak{gl}(\mathcal{U}(\mathfrak{g})) \\ X & \mapsto \begin{array}[t]{rl} \rho(X) : \mathcal{U}(\mathfrak{g}) & \to \mathcal{U}(\mathfrak{g}) \\ u & \mapsto X \cdot u \end{array} \end{array} \] \end{example} \begin{example}\index{\(\mathfrak{g}\)-module!natural module} Given a subalgebra \(\mathfrak{g} \subset \mathfrak{gl}_n(K)\), the inclusion \(\mathfrak{g} \to \mathfrak{gl}_n(K)\) endows \(K^n\) with the structure of a representation of \(\mathfrak{g}\), known as \emph{the natural representation of \(\mathfrak{g}\)}. \end{example} When the map \(\rho : \mathfrak{g} \to \mathfrak{gl}(V)\) is clear from context it is usual practice to denote the \(K\)-endomorphism \(\rho(X) : V \to V\), \(X \in \mathfrak{g}\), simply by \(X\!\restriction_V\). This leads us to the natural notion of \emph{transformations} between representations. \begin{definition} Given a Lie algebra \(\mathfrak{g}\) and two representations \(V\) and \(W\) of \(\mathfrak{g}\), we call a \(K\)-linear map \(f : V \to W\) \emph{an intertwining operator}, or \emph{an intertwiner}, if it commutes with the action of \(\mathfrak{g}\) on \(V\) and \(W\), in the sense that the diagram \begin{center} \begin{tikzcd} V \rar{f} \dar[swap]{X\!\restriction_V} & W \dar{X\!\restriction_W} \\ V \rar[swap]{f} & W \end{tikzcd} \end{center} commutes for all \(X \in \mathfrak{g}\). We denote the space of all intertwiners \(V \to W\) by \(\operatorname{Hom}_{\mathfrak{g}}(V, W)\) -- as opposed the space \(\operatorname{Hom}(V, W)\) of all \(K\)-linear maps \(V \to W\). \end{definition} The collection of representations of a fixed Lie algebra \(\mathfrak{g}\) thus forms a category, which we call \(\mathbf{Rep}(\mathfrak{g})\). This allow us formulate the correspondence between representations of \(\mathfrak{g}\) and \(\mathcal{U}(\mathfrak{g})\)-modules in more precise terms. \begin{proposition} There is a natural isomorphism of categories \(\mathbf{Rep}(\mathfrak{g}) \isoto \mathcal{U}(\mathfrak{g})\text{-}\mathbf{Mod}\). \end{proposition} \begin{proof} We have seen that given a \(K\)-vector space \(M\) there is a one-to-one correspondence between \(\mathfrak{g}\)-representation structures for \(M\) -- i.e. homomorphisms \(\mathfrak{g} \to \mathfrak{gl}(M)\) -- and \(\mathcal{U}(\mathfrak{g})\)-module structures for \(M\) -- i.e. homomorphisms \(\mathcal{U}(\mathfrak{g}) \to \operatorname{End}(M)\). This gives us a surjective map that takes objects in \(\mathbf{Rep}(\mathfrak{g})\) to objects in \(\mathcal{U}(\mathfrak{g})\text{-}\mathbf{Mod}\). As for the corresponding maps \(\operatorname{Hom}_{\mathfrak{g}}(M, N) \to \operatorname{Hom}_{\mathcal{U}(\mathfrak{g})}(M, N)\), it suffices to note that a \(K\)-linear map between representations \(M\) and \(N\) is an intertwiner if, and only if it is a homomorphism of \(\mathcal{U}(\mathfrak{g})\)-modules. Our functor thus takes an intertwiner \(M \to N\) to itself. It should then be clear that our functor \(\mathbf{Rep}(\mathfrak{g}) \to \mathfrak{g}\text{-}\mathbf{Mod}\) is invertible. \end{proof} The language of representation is thus equivalent to that of \(\mathcal{U}(\mathfrak{g})\)-modules, which we call \emph{\(\mathfrak{g}\)-modules}. Correspondingly, we refer to the category \(\mathcal{U}(\mathfrak{g})\text{-}\mathbf{Mod}\) as \(\mathfrak{g}\text{-}\mathbf{Mod}\). The terms \emph{\(\mathfrak{g}\)-submodule} and \emph{\(\mathfrak{g}\)-homomorphism} should also be self-explanatory. To avoid any confusion, we will, for the most part, exclusively use the language of \(\mathfrak{g}\)-modules. It should be noted, however, that both points of view are profitable. For starters, the notation for \(\mathfrak{g}\)-modules is much cleaner than that of representations: it is much easier to write ``\(X \cdot m\)'' than ``\((\rho(X))(m)\)'' or even ``\(X\!\restriction_M(m)\)''. By using the language of \(\mathfrak{g}\)-modules we can also rely on the general theory of modules over associative algebras -- which we assume the reader is already familiarized with. On the other hand, it is usually easier to express geometric considerations in terms of the language representations, particularly in group representation theory. Often times it is easier to define a \(\mathfrak{g}\)-module \(M\) in terms of the corresponding map \(\mathfrak{g} \to \mathfrak{gl}(M)\) -- this is technique we will use throughout the text. In general, the equivalence between both languages makes it clear that to understand the action of \(\mathcal{U}(\mathfrak{g})\) on \(M\) it suffices to understand the action of \(\mathfrak{g} \subset \mathcal{U}(\mathfrak{g})\). For instance, for defining a \(\mathfrak{g}\)-module \(M\) it suffices to define the action of each \(X \in \mathfrak{g}\) and verify this action respects the commutator relations of \(\mathfrak{g}\) -- indeed, \(\mathfrak{g}\) generates \(\mathcal{U}(\mathfrak{g})\) as an algebra, and the only relations between elements of \(\mathfrak{g}\) are the ones derived from the commutator relations. \begin{example}\label{ex:sl2-polynomial-rep} The space \(K[x, y]\) is a \(\mathfrak{sl}_2(K)\)-module with \begin{align*} e \cdot p & = x \frac{\mathrm{d}}{\mathrm{d}y} p & f \cdot p & = y \frac{\mathrm{d}}{\mathrm{d}x} p & h \cdot p & = \left( x \frac{\mathrm{d}}{\mathrm{d}x} - y \frac{\mathrm{d}}{\mathrm{d}y} \right) p \end{align*} \end{example} \begin{example} Given a Lie algebra \(\mathfrak{g}\) and \(\mathfrak{g}\)-modules \(M\) and \(N\), the space \(\operatorname{Hom}(M, N)\) of \(K\)-linear maps \(M \to N\) is a \(\mathfrak{g}\)-module where \((X \cdot f)(m) = X \cdot f(m) - f(X \cdot m)\) for all \(X \in \mathfrak{g}\) and \(f \in \operatorname{Hom}(M, N)\). In particular, if we take \(N = K\) the trivial \(\mathfrak{g}\)-module, we can view \(M^*\) -- the dual of \(M\) in the category of \(K\)-vector spaces -- as a \(\mathfrak{g}\)-module where \((X \cdot f)(m) = - f(X \cdot m)\) for all \(f : M \to K\). \end{example} The fundamental problem of representation theory is a simple one: classifying all representations of a given Lie algebra up to isomorphism. However, understanding the relationship between representations is also of huge importance. In other words, to understand the whole of \(\mathfrak{g}\text{-}\mathbf{Mod}\) we need to study the collective behavior of representations -- as opposed to individual examples. For instance, we may consider \(\mathfrak{g}\)-submodules, quotients and tensor products. \begin{example}\label{ex:sl2-polynomial-subrep} Let \(K[x, y]\) be the \(\mathfrak{sl}_2(K)\)-module as in Example~\ref{ex:sl2-polynomial-rep}. Since \(e\), \(f\) and \(h\) all preserve the degree of monomials, the space \(K[x, y]^{(d)} = \bigoplus_{k + \ell = d} K x^k y^\ell\) of homogeneous polynomials of degree \(d\) is a finite-dimensional \(\mathfrak{sl}_2(K)\)-submodule of \(K[x, y]\). \end{example} \begin{example} Given a Lie algebra \(\mathfrak{g}\), a \(\mathfrak{g}\)-module \(M\) and \(m \in M\), the subspace \(\mathcal{U}(\mathfrak{g}) \cdot m = \{ u \cdot m : u \in \mathcal{U}(\mathfrak{g}) \}\) is a \(\mathfrak{g}\)-submodule of \(M\), which we call \emph{the submodule generated by \(m\)}. \end{example} \begin{example}\index{\(\mathfrak{g}\)-module!tensor product} Given a Lie algebra \(\mathfrak{g}\) and \(\mathfrak{g}\)-modules \(M\) and \(N\), the space \(M \otimes N = M \otimes_K N\) is a \(\mathfrak{g}\)-module where \(X \cdot (m \otimes n) = X \cdot m \otimes n + m \otimes X \cdot n\). The exterior and symmetric products \(M \wedge N\) and \(M \odot N\) are both quotients of \(M \otimes N\) by \(\mathfrak{g}\)-submodules. In particular, the exterior and symmetric powers \(\wedge^r M\) and \(\operatorname{Sym}^r M\) are \(\mathfrak{g}\)-modules. \end{example} \begin{note} We would like to stress that the monoidal structure of \(\mathfrak{g}\text{-}\mathbf{Mod}\) we've just described is \emph{not} given by the usual tensor product of modules. In other words, \(M \otimes N\) is not the same as \(M \otimes_{\mathcal{U}(\mathfrak{g})} N\). \end{note} It is also interesting to consider the relationship between representations of separate algebras. In particular, we may define\dots \begin{example}\index{\(\mathfrak{g}\)-module!restriction} Let \(\mathfrak{g}\) be a Lie algebra and \(\mathfrak{h}\) be a subalgebra. Given a \(\mathfrak{g}\)-module \(M\), denote by \(\operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} M = M\) the \(\mathfrak{h}\)-module where the action of \(\mathfrak{h}\) is given by restricting the map \(\mathfrak{g} \to \mathfrak{gl}(M)\) to \(\mathfrak{h}\). Any homomorphism of \(\mathfrak{g}\)-modules \(M \to N\) is also a homomorphism of \(\mathfrak{h}\)-modules and this construction is clearly functorial. \[ \operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} : \mathfrak{g}\text{-}\mathbf{Mod} \to \mathfrak{h}\text{-}\mathbf{Mod} \] \end{example} \begin{example} Given a Lie algebra \(\mathfrak{g}\), the adjoint \(\mathfrak{g}\)-module is a submodule of the restriction of the adjoint \(\mathcal{U}(\mathfrak{g})\)-module -- where we consider \(\mathcal{U}(\mathfrak{g})\) a Lie algebra as in Example~\ref{ex:inclusion-alg-in-lie-alg}, not as an associative algebra -- to \(\mathfrak{g}\). \end{example} Surprisingly, this functor has a right adjoint. \begin{example}\index{\(\mathfrak{g}\)-module!induction} Let \(\mathfrak{g}\) be a Lie algebra and \(\mathfrak{h}\) be a subalgebra. Given a \(\mathfrak{h}\)-module \(M\), let \(\operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} M = \mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{h})} M\) -- where the right \(\mathfrak{h}\)-module structure of \(\mathcal{U}(\mathfrak{g})\) is given by right multiplication. Any \(\mathfrak{h}\)-homomorphism \(f : M \to N\) induces a \(\mathfrak{g}\)-homomorphism \(\operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} f = \operatorname{id} \otimes f : \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} M \to \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} N\) and this construction is clearly functorial. \[ \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} : \mathfrak{h}\text{-}\mathbf{Mod} \to \mathfrak{g}\text{-}\mathbf{Mod} \] \end{example} \begin{proposition}\label{thm:frobenius-reciprocity} Given a Lie algebra \(\mathfrak{g}\), a subalgebra \(\mathfrak{h} \subset \mathfrak{g}\), a \(\mathfrak{h}\)-module \(M\) and a \(\mathfrak{g}\)-module \(N\), the map \[ \arraycolsep=1.4pt \begin{array}[t]{rl} \alpha : \operatorname{Hom}_{\mathfrak{g}}( \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} M, N ) & \to \operatorname{Hom}_{\mathfrak{h}}( M, \operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} N ) \\ f & \mapsto \begin{array}[t]{rl} \alpha(f) : M & \to \operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} N \\ m & \mapsto f(1 \otimes m) \end{array} \end{array} \] is a \(K\)-linear isomorphism. In other words, there is an adjunction \(\operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} \vdash \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}}\). \end{proposition} \begin{proof} It suffices to note that the map \[ \arraycolsep=1.4pt \begin{array}[t]{rl} \beta : \operatorname{Hom}_{\mathfrak{h}}( M, \operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} N ) & \to \operatorname{Hom}_{\mathfrak{g}}( \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} M, N ) \\ f & \mapsto \begin{array}[t]{rl} \beta(f) : \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} M & \to N \\ u \otimes m & \mapsto u \cdot f(m) \end{array} \end{array} \] is the inverse of \(\alpha\). \end{proof} This last proposition is known as \emph{Frobenius reciprocity}, and was first proved by Frobenius himself in the context of finite groups. Another interesting construction is\dots \begin{example}\label{ex:tensor-prod-separate-algs}\index{\(\mathfrak{g}\)-module!tensor product} Given two \(K\)-algebras \(A\) and \(B\), an \(A\)-module \(M\) and a \(B\)-module \(N\), \(M \otimes N = M \otimes_K N\) has the natural structure of an \(A \otimes_K B\)-module. In light of Example~\ref{ex:univ-enveloping-of-sum-is-tensor}, this implies that given Lie algebras \(\mathfrak{g}_1\) and \(\mathfrak{g}_2\), a \(\mathfrak{g}_1\)-module \(M_1\) and a \(\mathfrak{g}_2\)-module \(M_2\), the space \(M_1 \otimes M_2\) has the natural structure of a \(\mathfrak{g}_1 \oplus \mathfrak{g}_2\)-module, where the action of \(\mathfrak{g}_1 \oplus \mathfrak{g}_2\) is given by \[ (X_1 + X_2) \cdot (m \otimes n) = X_1 \cdot m \otimes n + m \otimes X_2 \cdot n \] \end{example} Example~\ref{ex:tensor-prod-separate-algs} thus provides a way to describe representations of \(\mathfrak{g}_1 \oplus \mathfrak{g}_2\) in terms of the representations of \(\mathfrak{g}_1\) and \(\mathfrak{g}_2\). We will soon see that in many cases \emph{all} (simple) \(\mathfrak{g}_1 \oplus \mathfrak{g}_2\)-modules can be constructed in such a manner. This concludes our initial remarks on \(\mathfrak{g}\)-modules. In the following chapters we will explore the fundamental problem of representation theory: that of classifying all representations of a given algebra up to isomorphism.