lie-algebras-and-their-representations
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Name | Size | Mode | |
.. | |||
sections/simple-weight.tex | 81392B | -rw-r--r-- |
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
\chapter{Simple Weight Modules}\label{ch:mathieu} In this chapter we will expand our results on finite-dimensional simple modules of semisimple Lie algebras by considering \emph{infinite-dimensional} \(\mathfrak{g}\)-modules, which introduces numerous complications to our analysis. For instance, in the infinite-dimensional setting we can no longer take complete-reducibility for granted. Indeed, we have seen that even if \(\mathfrak{g}\) is a semisimple Lie algebra, there are infinite-dimensional \(\mathfrak{g}\)-modules which are not semisimple. For a counterexample look no further than Example~\ref{ex:regular-mod-is-not-semisimple}: the regular \(\mathfrak{g}\)-module \(\mathcal{U}(\mathfrak{g})\) is never semisimple. Nevertheless, for simplicity -- or shall we say \emph{semisimplicity} -- we will focus exclusively on \emph{semisimple} \(\mathfrak{g}\)-modules. Our strategy is, once again, that of classifying simple modules. The regular \(\mathfrak{g}\)-module hides further unpleasant surprises, however: recall from Example~\ref{ex:regular-mod-is-not-weight-mod} that \[ \bigoplus_\lambda \mathcal{U}(\mathfrak{g})_\lambda = 0 \subsetneq \mathcal{U}(\mathfrak{g}) \] and the weight space decomposition fails for \(\mathcal{U}(\mathfrak{g})\). Indeed, our proof of the weight space decomposition in the finite-dimensional case relied heavily in the simultaneous diagonalization of commuting operators in a finite-dimensional space. Even if we restrict ourselves to simple modules, there is still a diverse spectrum of counterexamples to Corollary~\ref{thm:finite-dim-is-weight-mod} in the infinite-dimensional setting. For instance, any \(\mathfrak{g}\)-module \(M\) whose restriction to \(\mathfrak{h}\) is a free module satisfies \(M_\lambda = 0\) for all \(\lambda\) as in Example~\ref{ex:regular-mod-is-not-weight-mod}. These are called \emph{\(\mathfrak{h}\)-free \(\mathfrak{g}\)-modules}, and rank \(1\) simple \(\mathfrak{h}\)-free \(\mathfrak{sp}_{2 n}(K)\)-modules where first classified by Nilsson in \cite{nilsson}. Dimitar's construction of the so called \emph{exponential tensor \(\mathfrak{sl}_n(K)\)-modules} in \cite{dimitar-exp} is also an interesting source of counterexamples. Since the weight space decomposition was perhaps the single most instrumental ingredient of our previous analysis, it is only natural to restrict ourselves to the case it holds. This brings us to the following definition. \begin{definition}\label{def:weight-mod}\index{\(\mathfrak{g}\)-module!weight modules}\index{weights!weight modules}\index{\(\mathfrak{g}\)-module!(essential) support} A \(\mathfrak{g}\)-module \(M\) is called a \emph{weight \(\mathfrak{g}\)-module} if \(M = \bigoplus_{\lambda \in \mathfrak{h}^*} M_\lambda\) and \(\dim M_\lambda < \infty\) for all \(\lambda \in \mathfrak{h}^*\). The \emph{support of \(M\)} is the set \(\operatorname{supp} M = \{\lambda \in \mathfrak{h}^* : M_\lambda \ne 0\}\). \end{definition} \begin{example} Corollary~\ref{thm:finite-dim-is-weight-mod} is equivalent to the fact that every finite-dimensional module of a semisimple Lie algebra is a weight module. More generally, every finite-dimensional simple module of a reductive Lie algebra is a weight module. \end{example} \begin{example}\label{ex:reductive-alg-equivalence} We have seen that every finite-dimensional \(\mathfrak{g}\)-module is a weight module for semisimple \(\mathfrak{g}\). In particular, if \(\mathfrak{g}\) is finite-dimensional then the adjoint \(\mathfrak{g}\)-module \(\mathfrak{g}\) is a weight module. More generally, a finite-dimensional Lie algebra \(\mathfrak{g}\) is reductive if, and only if the adjoint \(\mathfrak{g}\)-module \(\mathfrak{g}\) is a weight module, in which case its weight spaces are given by the root spaces of \(\mathfrak{g}\) \end{example} \begin{example} Proposition~\ref{thm:high-weight-mod-is-weight-mod} is equivalent to the fact that any highest weight \(\mathfrak{g}\)-module \(M\) of highest weight \(\lambda\) is a weight module whose support is contained in \(\lambda + \mathbb{N} \Delta^- = \{\lambda - k_n \alpha_1 - \cdots - k_n \alpha_n : \alpha_i \in \Delta^+, k_i \in \mathbb{Z}, k_i \ge 0\}\). In particular, Verma modules are weight modules. \end{example} \begin{example}\label{ex:submod-is-weight-mod} Proposition~\ref{thm:max-verma-submod-is-weight} implies that the unique maximal submodule \(N(\lambda)\) of \(M(\lambda)\) is a weight module. In fact, the proof of Proposition~\ref{thm:max-verma-submod-is-weight} can be generalized to show that every submodule \(N \subset M\) of a weight module \(M\) is a weight module, and \(N_\lambda = M_\lambda \cap N\) for all \(\lambda \in \mathfrak{h}^*\). \end{example} \begin{example}\label{ex:quotient-is-weight-mod} Given a weight module \(M\), a submodule \(N \subset M\) and \(\lambda \in \mathfrak{h}^*\), it is clear that \(\mfrac{M_\lambda}{N} \subset \left(\mfrac{M}{N}\right)_\lambda\). In addition, \(\mfrac{M}{N} = \bigoplus_{\lambda \in \mathfrak{h}^*} \mfrac{M_\lambda}{N}\). Hence \(\mfrac{M}{N}\) is weight \(\mathfrak{g}\)-module with \(\left(\mfrac{M}{N}\right)_\lambda = \mfrac{M_\lambda}{N} \cong \mfrac{M_\lambda}{N_\lambda}\). \end{example} \begin{example}\label{ex:tensor-prod-of-weight-is-weight} Let \(\mathfrak{g}_1\) and \(\mathfrak{g}_2\) be Lie algebras, \(M_1\) be a weight \(\mathfrak{g}_1\)-module and \(M_2\) a weight \(\mathfrak{g}_2\)-module. Recall from Example~\ref{ex:cartan-direct-sum} that if \(\mathfrak{h}_i \subset \mathfrak{g}_i\) are Cartan subalgebras then \(\mathfrak{h} = \mathfrak{h}_1 \oplus \mathfrak{h}_2\) is a Cartan subalgebra of \(\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2\) with \(\mathfrak{h}^* = \mathfrak{h}_1^* \oplus \mathfrak{h}_2^*\). In this setting, one can readily check that \(M_1 \otimes M_2\) is a weight \(\mathfrak{g}\)-module with \[ (M_1 \otimes M_2)_{\lambda_1 + \lambda_2} = (M_1)_{\lambda_1} \otimes (M_2)_{\lambda_2} \] for all \(\lambda_i \in \mathfrak{h}_i^*\) and \(\operatorname{supp} (M_1 \otimes M_2) = \operatorname{supp} M_1 \oplus \operatorname{supp} M_2 = \{ \lambda_1 + \lambda_2 : \lambda_i \in \operatorname{supp} M_i \subset \mathfrak{h}_i^*\}\). \end{example} \begin{example}\label{thm:simple-weight-mod-is-tensor-prod} Let \(\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{s}_1 \oplus \cdots \oplus \mathfrak{s}_r\) be a reductive Lie algebra, where \(\mathfrak{z}\) is the center of \(\mathfrak{g}\) and \(\mathfrak{s}_1, \ldots, \mathfrak{s}_r\) are its simple components. As in Example~\ref{ex:all-simple-reps-are-tensor-prod}, any simple weight \(\mathfrak{g}\)-module \(M\) can be decomposed as \[ M \cong Z \otimes M_1 \otimes \cdots \otimes M_r \] where \(Z\) is a \(1\)-dimensional representation of \(\mathfrak{z}\) and \(M_i\) is a simple weight \(\mathfrak{s}_i\)-module. The modules \(Z\) and \(M_i\) are uniquely determined up to isomorphism. \end{example} \begin{example}\label{ex:adjoint-action-in-universal-enveloping-is-weight} We would like to show that the requirement of finite-dimensionality in Definition~\ref{def:weight-mod} is not redundant. Let \(\mathfrak{g}\) be a finite-dimensional reductive Lie algebra and consider the adjoint \(\mathfrak{g}\)-module \(\mathcal{U}(\mathfrak{g})\) -- where \(X \in \mathfrak{g}\) acts by taking commutators. Given \(\alpha \in Q\), a simple computation shows \(K \langle X_1 \cdots X_n H_1 \cdots H_m : X_i \in \mathfrak{g}_{\alpha_i}, H_i \in \mathfrak{h}, \alpha_i \in \Delta, \alpha = \alpha_1 + \cdots + \alpha_n \rangle \subset \mathcal{U}(\mathfrak{g})_\alpha\). The PBW Theorem and Example~\ref{ex:reductive-alg-equivalence} thus imply that \(\mathcal{U}(\mathfrak{g}) = \bigoplus_{\alpha \in Q} \mathcal{U}(\mathfrak{g})_\alpha\) where \(\mathcal{U}(\mathfrak{g})_\alpha = K \langle X_1 \cdots X_n H_1 \cdots H_m : X_i \in \mathfrak{g}_{\alpha_i}, H_i \in \mathfrak{h}, \alpha_i \in \Delta, \alpha = \alpha_1 + \cdots + \alpha_n \rangle\). However, \(\dim \mathcal{U}(\mathfrak{g})_\alpha = \infty\). For instance, \(\mathcal{U}(\mathfrak{g})_0\) is \emph{precisely} the commutator of \(\mathfrak{h}\) in \(\mathcal{U}(\mathfrak{g})\), which contains \(\mathcal{U}(\mathfrak{h})\) and is therefore infinite-dimensional. \end{example} \begin{note} We should stress that the weight spaces \(M_\lambda \subset M\) of a given weight \(\mathfrak{g}\)-module \(M\) are \emph{not} \(\mathfrak{g}\)-submodules. Nevertheless, \(M_\lambda\) is a \(\mathfrak{h}\)-submodule. More generally, \(M_\lambda\) is a \(\mathcal{U}(\mathfrak{g})_0\)-submodule, where \(\mathcal{U}(\mathfrak{g})_0\) is the centralizer of \(\mathfrak{h}\) in \(\mathcal{U}(\mathfrak{g})\) -- which coincides with the weight space of \(0 \in \mathfrak{h}^*\) in the adjoint \(\mathfrak{g}\)-module \(\mathcal{U}(\mathfrak{g})\), as seen in Example~\ref{ex:adjoint-action-in-universal-enveloping-is-weight}. \end{note} A particularly well behaved class of examples are the so called \emph{bounded} modules. \begin{definition}\index{\(\mathfrak{g}\)-module!bounded modules}\index{\(\mathfrak{g}\)-module!(essential) support} A weight \(\mathfrak{g}\)-module \(M\) is called \emph{bounded} if \(\dim M_\lambda\) is bounded. The lowest upper bound \(\deg M\) for \(\dim M_\lambda\) is called \emph{the degree of \(M\)}. The \emph{essential support} of \(M\) is the set \(\operatorname{supp}_{\operatorname{ess}} M = \{ \lambda \in \mathfrak{h}^* : \dim M_\lambda = \deg M \}\). \end{definition} \begin{example}\label{ex:supp-ess-of-tensor-is-product} Let \(\mathfrak{g}_1\) and \(\mathfrak{g}_2\) be Lie algebras with Cartan subalgebras \(\mathfrak{h}_i \subset \mathfrak{g}_i\) and take \(\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2\). Given bounded \(\mathfrak{g}_i\)-modules \(M_i\), it follows from Example~\ref{ex:tensor-prod-of-weight-is-weight} that \(M_1 \otimes M_2\) is a bounded \(\mathfrak{g}\)-module with \(\deg M_1 \otimes M_2 = \deg M_1 \cdot \deg M_2\) and \[ \operatorname{supp}_{\operatorname{ess}} (M_1 \otimes M_2) = \operatorname{supp}_{\operatorname{ess}} M_1 \oplus \operatorname{supp}_{\operatorname{ess}} M_2 = \{ \lambda_1 + \lambda_2 : \lambda_i \in \operatorname{supp}_{\operatorname{ess}} M_i \subset \mathfrak{h}_i^* \} \] \end{example} \begin{example}\label{ex:laurent-polynomial-mod} There is a natural action of \(\mathfrak{sl}_2(K)\) on the space \(K[x, x^{-1}]\) of Laurent polynomials, given by the formulas in (\ref{eq:laurent-polynomials-cusp-mod}). One can quickly verify \(K[x, x^{-1}]_{2 k} = K x^k\) and \(K[x, x^{-1}]_\lambda = 0\) for any \(\lambda \notin 2 \mathbb{Z}\), so that \(K[x, x^{-1}] = \bigoplus_{k \in \mathbb{Z}} K x^k\) is a degree \(1\) bounded weight \(\mathfrak{sl}_2(K)\)-module. It follows from the remark at the end of Example~\ref{ex:submod-is-weight-mod} that any nonzero submodule \(N \subset K[x, x^{-1}]\) must contain a monomial \(x^k\). But since the operators \(-\frac{\mathrm{d}}{\mathrm{d}x} + \frac{x^{-1}}{2}, x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x}{2} : K[x, x^{-1}] \to K[x, x^{-1}]\) are both injective, this implies all other monomials can be found in \(N\) by successively applying \(f\) and \(e\). Hence \(N = K[x, x^{-1}]\) and \(K[x, x^{-1}]\) is a simple module. \begin{align}\label{eq:laurent-polynomials-cusp-mod} e \cdot p & = \left( x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x}{2} \right) p & f \cdot p & = \left(- \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x^{-1}}{2} \right) p & h \cdot p & = 2 x \frac{\mathrm{d}}{\mathrm{d}x} p \end{align} \end{example} Notice that the support of \(K[x, x^{-1}]\) is the trivial \(2 \mathbb{Z}\)-coset \(0 + 2 \mathbb{Z}\). This is representative of the general behavior in the following sense: if \(M\) is a simple weight \(\mathfrak{g}\)-module, since \(M[\lambda] = \bigoplus_{\alpha \in Q} M_{\lambda + \alpha}\) is stable under the action of \(\mathfrak{g}\) for all \(\lambda \in \mathfrak{h}^*\), \(\bigoplus_{\alpha \in Q} M_{\lambda + \alpha}\) is either \(0\) or all of \(M\). In other words, the support of a simple weight module is always contained in a single \(Q\)-coset. However, the behavior of \(K[x, x^{-1}]\) deviates from that of an arbitrary bounded \(\mathfrak{g}\)-module in the sense its essential support is precisely the entire \(Q\)-coset it inhabits -- i.e. \(\operatorname{supp}_{\operatorname{ess}} K[x, x^{-1}] = 2 \mathbb{Z}\). This isn't always the case. Nevertheless, in general we find\dots \begin{proposition}\label{thm:ess-supp-is-zariski-dense} Let \(\mathfrak{g}\) be a finite-dimensional semisimple Lie algebra and \(M\) be a simple infinite-dimensional bounded \(\mathfrak{g}\)-module. The essential support \(\operatorname{supp}_{\operatorname{ess}} M\) is Zariski-dense\footnote{Any choice of basis for $\mathfrak{h}^*$ induces a $K$-linear isomorphism $\mathfrak{h}^* \isoto K^n$. In particular, a choice of basis induces a unique topology in $\mathfrak{h}^*$ such that the map $\mathfrak{h}^* \to K^n$ is a homeomorphism onto $K^n$ with the Zariski topology. Any two basis induce the same topology in $\mathfrak{h}^*$, which we call \emph{the Zariski topology of $\mathfrak{h}^*$}.} in \(\mathfrak{h}^*\). \end{proposition} This proof was deemed too technical to be included in here, but see Proposition 3.5 of \cite{mathieu} for the case where \(\mathfrak{g} = \mathfrak{s}\) is a simple Lie algebra. The general case then follows from Example~\ref{thm:simple-weight-mod-is-tensor-prod}, Example~\ref{ex:supp-ess-of-tensor-is-product} and the asserting that the product of Zariski-dense subsets in \(K^n\) and \(K^m\) is Zariski-dense in \(K^{n + m} = K^n \times K^m\). We now begin a systematic investigation of the problem of classifying the infinite-dimensional simple weight modules of a given Lie algebra \(\mathfrak{g}\). As in the previous chapter, let \(\mathfrak{g}\) be a finite-dimensional semisimple Lie algebra. As a first approximation of a solution to our problem, we consider the Verma modules \(M(\lambda)\) for \(\lambda \in \mathfrak{h}^*\) which is not dominant integral. After all, the simple quotients of Verma modules form a remarkably large class of infinite-dimensional simple weight modules -- at least as large as \(\mathfrak{h}^* \setminus P^+\)! More generally, the induction functor \(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} : \mathfrak{b}\text{-}\mathbf{Mod} \to \mathfrak{g}\text{-}\mathbf{Mod}\) has proven itself a powerful tool for constructing modules. We claim this is not an unmotivated guess. Specifically, there are very good reasons behind the choice to consider induction over the Borel subalgebra \(\mathfrak{b} \subset \mathfrak{g}\). First, the fact that \(\mathfrak{h} \subset \mathfrak{g}\) affords us great control over the weight spaces of \(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M\): by assigning a prescribed action of \(\mathfrak{h}\) to \(M\) we can ensure that \(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M = \bigoplus_\lambda (\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M)_\lambda\). In addition, we have seen in the proof of Proposition~\ref{thm:high-weight-mod-is-weight-mod} that by requiring that the positive part of \(\mathfrak{b}\) acts on \(M\) by zero we can ensure that \(\dim (\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M)_\lambda < \infty\). All in all, the nature of \(\mathfrak{b}\) affords us just enough control to guarantee that \(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M\) is a weight module for sufficiently well behaved \(M\). Unfortunately for us, this is still too little control: there are simple weight modules which are not of the form \(L(\lambda)\). More generally, we may consider induction over some parabolic subalgebra \(\mathfrak{p} \subset \mathfrak{g}\) -- i.e. some subalgebra such that \(\mathfrak{p} \supset \mathfrak{b}\). This leads us to the following definition. \begin{definition}\index{\(\mathfrak{g}\)-module!(generalized) Verma modules} Let \(\mathfrak{p} \subset \mathfrak{g}\) be a parabolic subalgebra and \(M\) be a simple \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module. We can view \(M\) as a \(\mathfrak{p}\)-module where \(\mathfrak{nil}(\mathfrak{p})\) acts by zero by setting \(X \cdot m = (X + \mathfrak{nil}(\mathfrak{p})) \cdot m\) for all \(m \in M\) and \(X \in \mathfrak{p}\) -- which is the same as the \(\mathfrak{p}\)-module given by composing the action map \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})} \to \mathfrak{gl}(M)\) with the projection \(\mathfrak{p} \to \mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\). The module \(M_{\mathfrak{p}}(M) = \operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}} M\) is called \emph{generalized Verma module associated with \(M\)}. \end{definition} \begin{example} It is not hard to see that \(\mfrac{\mathfrak{b}}{\mathfrak{nil}(\mathfrak{b})} = \mathfrak{h}\). If we take \(\lambda \in \mathfrak{h}^*\) and let \(K m^+\) be the \(1\)-dimensional \(\mathfrak{h}\)-module where \(\mathfrak{h}\) acts by \(\lambda\) then \(M(\lambda) = M_{\mathfrak{b}}(K m^+)\). \end{example} As promised, \(M_{\mathfrak{p}}(M)\) is generally well behaved for well behaved \(M\). In particular, if \(M\) is highest weight \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module then \(M_{\mathfrak{p}}(M)\) is also a highest weight \(\mathfrak{g}\)-module, and if \(M\) is a weight \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module then \(M_{\mathfrak{p}}(M)\) is a weight module with \(M_{\mathfrak{p}}(M)_\lambda = \sum_{\alpha + \mu = \lambda} \mathcal{U}(\mathfrak{g})_\alpha \otimes_{\mathcal{U}(\mathfrak{p})} M_\mu\), -- see Lemma 1.1 of \cite{mathieu} for a full proof. However, \(M_{\mathfrak{p}}(M)\) is not simple in general. Indeed, regular Verma modules not necessarily simple. This issue may be dealt with by passing to the simple quotients of \(M_{\mathfrak{p}}(M)\). Let \(M\) be a simple weight \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module. As it turns out, the situation encountered in Proposition~\ref{thm:max-verma-submod-is-weight} is also verified in the general setting. Namely, since \(M_{\mathfrak{p}}(M)\) is generated by \(K \otimes_{\mathcal{U}(\mathfrak{p})} M = \bigoplus_{\lambda \in Q + \operatorname{supp} M} M_{\mathfrak{p}}(M)_\lambda\), it follows that any proper submodule of \(M_{\mathfrak{p}}(M)\) is contained in \(\bigoplus_{\lambda \notin Q + \operatorname{supp} M} M_{\mathfrak{p}}(M)_\lambda\). The sum \(N_{\mathfrak{p}}(M)\) of all such submodules is thus the unique maximal submodule of \(M_{\mathfrak{p}}(M)\) and \(L_{\mathfrak{p}}(M) = \mfrac{M_{\mathfrak{p}}(M)}{N_{\mathfrak{p}}(M)}\) is its unique simple quotient -- again, we refer the reader to \cite{mathieu} for a complete proof. This leads us to the following definition. \begin{definition}\index{\(\mathfrak{g}\)-module!parabolic induced modules}\index{\(\mathfrak{g}\)-module!cuspidal modules} A simple weight \(\mathfrak{g}\)-module is called \emph{parabolic induced} if it is isomorphic to \(L_{\mathfrak{p}}(M)\) for some proper parabolic subalgebra \(\mathfrak{p} \subsetneq \mathfrak{g}\) and some simple weight \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module \(M\). A \emph{cuspidal \(\mathfrak{g}\)-module} is a simple weight \(\mathfrak{g}\)-module which is \emph{not} parabolic induced. \end{definition} The first breakthrough regarding our classification problem was given by Fernando in his now infamous paper \citetitle{fernando} \cite{fernando}, where he proved that every simple weight \(\mathfrak{g}\)-module is parabolic induced by a cuspidal module. \begin{theorem}[Fernando] Any simple weight \(\mathfrak{g}\)-module is isomorphic to \(L_{\mathfrak{p}}(M)\) for some parabolic subalgebra \(\mathfrak{p} \subset \mathfrak{g}\) and some cuspidal \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module \(M\). \end{theorem} We should point out that the relationship between simple weight \(\mathfrak{g}\)-modules and pairs \((\mathfrak{p}, M)\) is not one-to-one. Nevertheless, this relationship is well understood. Namely, Fernando himself established\dots \begin{proposition}[Fernando] Given a parabolic subalgebra \(\mathfrak{p} \subset \mathfrak{g}\), there exists a basis \(\Sigma\) for \(\Delta\) such that \(\Sigma \subset \Delta_{\mathfrak{p}} \subset \Delta\), where \(\Delta_{\mathfrak{p}}\) denotes the set of roots of \(\mathfrak{p}\). Furthermore, if \(\mathfrak{p}' \subset \mathfrak{g}\) is another parabolic subalgebra, \(M\) is a cuspidal \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module and \(N\) is a cuspidal \(\mfrac{\mathfrak{p}'}{\mathfrak{nil}(\mathfrak{p}')}\)-module then \(L_{\mathfrak{p}}(M) \cong L_{\mathfrak{p}'}(N)\) if, and only if \(\mathfrak{p}' = \twisted{\mathfrak{p}}{\sigma}\) and \(M \cong \twisted{N}{\sigma}\) as \(\mathfrak{p}\)-modules for some\footnote{Here $\twisted{\mathfrak{p}}{\sigma}$ denotes the image of $\mathfrak{p}$ under the automorphism of $\sigma : \mathfrak{g} \to \mathfrak{g}$ given by the canonical action of $W$ on $\mathfrak{g}$ and $\twisted{N}{\sigma}$ is the $\mathfrak{p}$-module given by composing the map $\mathfrak{p}' \to \mathfrak{gl}(N)$ with the restriction $\sigma\!\restriction_{\mathfrak{p}} : \mathfrak{p} \to \mathfrak{p}'$.} \(\sigma \in W_M\), where \[ W_M = \langle \sigma_\beta : \beta \in \Sigma, H_\beta + \mathfrak{nil}(\mathfrak{p}) \ \text{is central in}\ \mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})} \ \text{and}\ H_\beta\ \text{acts on \(M\) as a positive integer} \rangle \subset W \] \end{proposition} \begin{note} The definition of the subgroup \(W_M \subset W\) is independent of the choice of basis \(\Sigma\). \end{note} As a first consequence of Fernando's Theorem, we provide two alternative characterizations of cuspidal modules. \begin{corollary}[Fernando]\label{thm:cuspidal-mod-equivs} Let \(M\) be a simple weight \(\mathfrak{g}\)-module. The following conditions are equivalent. \begin{enumerate} \item \(M\) is cuspidal. \item \(F_\alpha\) acts injectively on \(M\) for all \(\alpha \in \Delta\). \item The support of \(M\) is precisely one \(Q\)-coset. \end{enumerate} \end{corollary} \begin{example} As noted in Example~\ref{ex:laurent-polynomial-mod}, the element \(f \in \mathfrak{sl}_2(K)\) acts injectively on the space of Laurent polynomials. Hence \(K[x, x^{-1}]\) is a cuspidal \(\mathfrak{sl}_2(K)\)-module. \end{example} Having reduced our classification problem to that of classifying cuspidal modules, we are now faced the daunting task of actually classifying them. Historically, this was first achieved by Olivier Mathieu in the early 2000's in his paper \citetitle{mathieu} \cite{mathieu}. To do so, Mathieu introduced new tools which have since proved themselves remarkably useful throughout the field, known as\dots \section{Coherent Families} We begin our analysis with a simple question: how to do we go about constructing cuspidal modules? Specifically, given a cuspidal \(\mathfrak{g}\)-module, how can we use it to produce new cuspidal modules? To answer this question, we look back at the single example of a cuspidal module we have encountered so far: the \(\mathfrak{sl}_2(K)\)-module \(K[x, x^{-1}]\) of Laurent polynomials -- i.e. Example~\ref{ex:laurent-polynomial-mod}. Our first observation is that \(\mathfrak{sl}_2(K)\) acts on \(K[x, x^{-1}]\) via differential operators. In other words, the action map \(\mathcal{U}(\mathfrak{sl}_2(K)) \to \operatorname{End}(K[x, x^{-1}])\) factors through the inclusion of the algebra \(\operatorname{Diff}(K[x, x^{-1}]) = K\left[x, x^{-1}, \frac{\mathrm{d}}{\mathrm{d}x}\right]\) of differential operators in \(K[x, x^{-1}]\). \begin{center} \begin{tikzcd} \mathcal{U}(\mathfrak{sl}_2(K)) \rar & \operatorname{Diff}(K[x, x^{-1}]) \rar & \operatorname{End}(K[x, x^{-1}]) \end{tikzcd} \end{center} The space \(K[x, x^{-1}]\) can be regarded as a \(\operatorname{Diff}(K[x, x^{-1}])\)-module in the natural way, and we can produce new \(\operatorname{Diff}(K[x, x^{-1}])\)-modules by twisting \(K[x, x^{-1}]\) by automorphisms of \(\operatorname{Diff}(K[x, x^{-1}])\). For example, given \(\lambda \in K\) we may take the automorphism \begin{align*} \varphi_\lambda : \operatorname{Diff}(K[x, x^{-1}]) & \to \operatorname{Diff}(K[x, x^{-1}]) \\ x & \mapsto x \\ x^{-1} & \mapsto x^{-1} \\ \frac{\mathrm{d}}{\mathrm{d} x} & \mapsto \frac{\mathrm{d}}{\mathrm{d} x} + \frac{\lambda}{2} x^{-1} \end{align*} and consider the twisted module \(\twisted{K[x, x^{-1}]}{\varphi_\lambda} = K[x, x^{-1}]\), where some operator \(P \in \operatorname{Diff}(K[x, x^{-1}])\) acts as \(\varphi_\lambda(P)\). By composing the action map \(\operatorname{Diff}(K[x, x^{-1}]) \to \operatorname{End}(\twisted{K[x, x^{-1}]}{\varphi_\lambda})\) with the homomorphism of algebras \(\mathcal{U}(\mathfrak{sl}_2(K)) \to \operatorname{Diff}(K[x, x^{-1}])\) we can give \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) the structure of an \(\mathfrak{sl}_2(K)\)-module. Diagrammatically, we have \begin{center} \begin{tikzcd} \mathcal{U}(\mathfrak{sl}_2(K)) \rar & \operatorname{Diff}(K[x, x^{-1}]) \rar{\varphi_\lambda} & \operatorname{Diff}(K[x, x^{-1}]) \rar & \operatorname{End}(K[x, x^{-1}]) \end{tikzcd}, \end{center} where the maps \(\mathcal{U}(\mathfrak{sl}_2(K)) \to \operatorname{Diff}(K[x, x^{-1}])\) and \(\operatorname{Diff}(K[x, x^{1}]) \to \operatorname{End}(K[x, x^{-1}])\) are the ones from the previous diagram. Explicitly, we find that the action of \(\mathfrak{sl}_2(K)\) on \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is given by \begin{align*} p & \overset{e}{\mapsto} \left( x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{1 + \lambda}{2} x \right) p & p & \overset{f}{\mapsto} \left( - \frac{\mathrm{d}}{\mathrm{d}x} + \frac{1 - \lambda}{2} x^{-1} \right) p & p & \overset{h}{\mapsto} \left( 2 x \frac{\mathrm{d}}{\mathrm{d}x} + \lambda \right) p, \end{align*} so we can see \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}_{2 k + \frac{\lambda}{2}} = K x^k\) for all \(k \in \mathbb{Z}\) and \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}_\mu = 0\) for all other \(\mu \in \mathfrak{h}^*\). Hence \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is a degree \(1\) bounded \(\mathfrak{sl}_2(K)\)-module with \(\operatorname{supp} \twisted{K[x, x^{-1}]}{\varphi_\lambda} = \frac{\lambda}{2} + 2 \mathbb{Z}\). One can also quickly check that if \(\lambda \notin 1 + 2 \mathbb{Z}\) then \(e\) and \(f\) act injectively in \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\), so that \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is simple. In particular, if \(\lambda, \mu \notin 1 + 2 \mathbb{Z}\) with \(\lambda \notin \mu + 2 \mathbb{Z}\) then \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) and \(\twisted{K[x, x^{-1}]}{\varphi_\mu}\) are non-isomorphic cuspidal \(\mathfrak{sl}_2(K)\)-modules, since their supports differ. These cuspidal modules can be ``glued together'' in a \emph{monstrous concoction} by summing over \(\lambda \in K\), as in \[ \mathcal{M} = \bigoplus_{\lambda + 2 \mathbb{Z} \in \mfrac{K}{2 \mathbb{Z}}} \twisted{K[x, x^{-1}]}{\varphi_\lambda}, \] To a distracted spectator, \(\mathcal{M}\) may look like just another, innocent, \(\mathfrak{sl}_2(K)\)-module. However, the attentive reader may have already noticed some of the its bizarre features, most noticeable of which is the fact that \(\mathcal{M}\) is very big. In fact, \(\mathcal{M}\) is as big a degree \(1\) bounded module gets: \(\operatorname{supp} \mathcal{M} = \operatorname{supp}_{\operatorname{ess}} \mathcal{M}\) is the entirety of \(\mathfrak{h}^*\). This may look very alien the reader familiarized with the finite-dimensional setting, where the configuration of weights is very rigid. For this reason, \(\mathcal{M}\) deserves to be called ``a monstrous concoction''. On a perhaps less derogatory note, \(\mathcal{M}\) also deserves to be called \emph{a family}. This is because \(\mathcal{M}\) consists of lots of smaller cuspidal modules which fit together inside of it in a \emph{coherent} fashion. Mathieu's ingenious breakthrough was the realization that \(\mathcal{M}\) is a particular example of a more general pattern, which he named \emph{coherent families}. \begin{definition}\index{coherent family} A \emph{coherent family \(\mathcal{M}\) of degree \(d\)} is a weight \(\mathfrak{g}\)-module \(\mathcal{M}\) such that \begin{enumerate} \item \(\dim \mathcal{M}_\lambda = d\) for \emph{all} \(\lambda \in \mathfrak{h}^*\) -- i.e. \(\operatorname{supp}_{\operatorname{ess}} \mathcal{M} = \mathfrak{h}^*\). \item For any \(u \in \mathcal{U}(\mathfrak{g})\) in the centralizer \(\mathcal{U}(\mathfrak{g})_0\) of \(\mathfrak{h}\) in \(\mathcal{U}(\mathfrak{g})\), the map \begin{align*} \mathfrak{h}^* & \to K \\ \lambda & \mapsto \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\lambda}) \end{align*} is polynomial in \(\lambda\). \end{enumerate} \end{definition} \begin{example}\label{ex:sl-laurent-family} The module \(\mathcal{M} = \bigoplus_{\lambda + 2 \mathbb{Z} \in \mfrac{K}{2 \mathbb{Z}}} \twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is a degree \(1\) coherent \(\mathfrak{sl}_2(K)\)-family. \end{example} \begin{example} Given \(\lambda \in K\), \(\mathcal{M}(\lambda) = \bigoplus_{\mu \in K} K x^\mu\) with \begin{align*} p & \overset{e}{\mapsto} \left(x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \lambda x\right) p & p & \overset{f}{\mapsto} \left(-\frac{\mathrm{d}}{\mathrm{d}x} + \lambda x^{-1}\right) p & p & \overset{h}{\mapsto} 2 x \frac{\mathrm{d}}{\mathrm{d}x} p, \end{align*} is a degree \(1\) coherent \(\mathfrak{sl}_2(K)\)-family -- where \(x^{\pm 1}, \sfrac{\mathrm{d}}{\mathrm{d}x} : \mathcal{M}(\lambda) \to \mathcal{M}(\lambda)\) are given by \(x^{\pm 1} x^\mu = x^{\mu \pm 1}\) and \(\sfrac{\mathrm{d}}{\mathrm{d}x} x^\mu = \mu x^{\mu - 1}\). It is easy to check \(\mathcal{M}\) from Example~\ref{ex:sl-laurent-family} is isomorphic to \(\mathcal{M}(\sfrac{1}{2})\) and \((\mathcal{M}(\sfrac{1}{2}))[0] \cong K[x, x^{-1}]\). \end{example} \begin{note} We would like to stress that coherent families have proven themselves useful for problems other than the classification of cuspidal \(\mathfrak{g}\)-modules. For instance, Nilsson's classification of rank 1 \(\mathfrak{h}\)-free \(\mathfrak{sp}_{2 n}(K)\)-modules is based on the notion of coherent families and the so called \emph{weighting functor}. \end{note} Our hope is that given a cuspidal module \(M\), we can somehow fit \(M\) inside of a coherent \(\mathfrak{g}\)-family, such as in the case of \(K[x, x^{-1}]\) and \(\mathcal{M}\) from Example~\ref{ex:sl-laurent-family}. In addition, we hope that such coherent families are somehow \emph{uniquely determined} by \(M\). This leads us to the following definition. \begin{definition}\index{coherent family!coherent extension} Given a bounded \(\mathfrak{g}\)-module \(M\) of degree \(d\), a \emph{coherent extension \(\mathcal{M}\) of \(M\)} is a coherent family \(\mathcal{M}\) of degree \(d\) that contains \(M\) as a subquotient. \end{definition} Our goal is now showing that every simple bounded module has a coherent extension. The idea then is to classify coherent families, and classify which submodules of a given coherent family are actually cuspidal modules. If every simple bounded \(\mathfrak{g}\)-module fits inside a coherent extension, this would lead to classification of all cuspidal \(\mathfrak{g}\)-modules, which we now know is the key for the solution of our classification problem. However, there are some complications to this scheme. Leaving aside the question of existence for a second, we should point out that coherent families turn out to be rather complicated on their own. In fact they are too complicated to classify in general. Ideally, we would like to find \emph{nice} coherent extensions -- ones we can actually classify. For instance, we may search for \emph{irreducible} coherent extensions, which are defined as follows. \begin{definition}\index{coherent family!irreducible coherent family} A coherent family \(\mathcal{M}\) is called \emph{irreducible} if it contains no proper coherent subfamilies -- i.e. \(\mathcal{M}\) is a simple object in the full subcategory of \(\mathfrak{g}\text{-}\mathbf{Mod}\) consisting of coherent families. Equivalently, we call \(\mathcal{M}\) irreducible if \(\mathcal{M}_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module for some \(\lambda \in \mathfrak{h}^*\). \end{definition} Another natural candidate for the role of ``nice extensions'' are the semisimple coherent families -- i.e. families which are semisimple as \(\mathfrak{g}\)-modules. These turn out to be very easy to produce. Namely, there is a construction, known as \emph{the semisimplification of a coherent family}, which takes a coherent extension of \(M\) to a semisimple coherent extension of \(M\). % Mathieu's proof of this is somewhat profane, I don't think it's worth % including it in here % TODO: Move this somewhere else? This holds in general for weight modules % whose suppert is contained in a single Q-coset \begin{lemma}\label{thm:component-coh-family-has-finite-length} Given a coherent family \(\mathcal{M}\) and \(\lambda \in \mathfrak{h}^*\), \(\mathcal{M}[\lambda]\) has finite length as a \(\mathfrak{g}\)-module. \end{lemma} \begin{proposition}\index{coherent family!semisimplification} Let \(\mathcal{M}\) be a coherent family of degree \(d\). There exists a unique semisimple coherent family \(\mathcal{M}^{\operatorname{ss}}\) of degree \(d\) such that the composition series of \(\mathcal{M}^{\operatorname{ss}}[\lambda]\) is the same as that of \(\mathcal{M}[\lambda]\) for all \(\lambda \in \mathfrak{h}^*\), called \emph{the semisimplification of \(\mathcal{M}\)}. Namely, if \(\lambda \in \mathfrak{h}^*\) and \(0 = \mathcal{M}_{\lambda 0} \subset \mathcal{M}_{\lambda 1} \subset \cdots \subset \mathcal{M}_{\lambda r_\lambda} = \mathcal{M}[\lambda]\) is a composition series\footnote{Notice that $\mathcal{M}[\lambda] = \mathcal{M}[\mu]$ for any $\mu \in \lambda + Q$. Hence the sum $\bigoplus_{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q}} \bigoplus_i \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}}$ is independent of the choice of representative for $\lambda + Q$ -- provided we choose $\mathcal{M}_{\mu i} = \mathcal{M}_{\lambda i}$ for all $\mu \in \lambda + Q$ and $i$.}, \[ \mathcal{M}^{\operatorname{ss}} \cong \bigoplus_{\substack{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q} \\ i}} \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}} \] \end{proposition} \begin{proof} The uniqueness of \(\mathcal{M}^{\operatorname{ss}}\) should be clear: since \(\mathcal{M}^{\operatorname{ss}}\) is semisimple, so is \(\mathcal{M}^{\operatorname{ss}}[\lambda]\). Hence by the Jordan-Hölder Theorem \[ \mathcal{M}^{\operatorname{ss}}[\lambda] \cong \bigoplus_i \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}} \] As for the existence of the semisimplification, it suffices to show \[ \mathcal{M}^{\operatorname{ss}} = \bigoplus_{\substack{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q} \\ i}} \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}} \] is indeed a semisimple coherent family of degree \(d\). We know from Examples~\ref{ex:submod-is-weight-mod} and \ref{ex:quotient-is-weight-mod} that each quotient \(\mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}}\) is a weight module. Hence \(\mathcal{M}^{\operatorname{ss}}\) is a weight module. Furthermore, given \(\mu \in \mathfrak{h}^*\) \[ \mathcal{M}_\mu^{\operatorname{ss}} = \bigoplus_{\substack{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q} \\ i}} \left( \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}} \right)_\mu = \bigoplus_i \left( \mfrac{\mathcal{M}_{\mu i + 1}}{\mathcal{M}_{\mu i}} \right)_\mu \cong \bigoplus_i \mfrac{(\mathcal{M}_{\mu i + 1})_\mu} {(\mathcal{M}_{\mu i})_\mu} \] In particular, \[ \dim \mathcal{M}_\mu^{\operatorname{ss}} = \sum_i \dim (\mathcal{M}_{\mu i + 1})_\mu - \dim (\mathcal{M}_{\mu i})_\mu = \dim \mathcal{M}[\mu]_\mu = \dim \mathcal{M}_\mu = d \] Likewise, given \(u \in \mathcal{U}(\mathfrak{g})_0\) the value \[ \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu^{\operatorname{ss}}}) = \sum_i \operatorname{Tr}(u\!\restriction_{(\mathcal{M}_{\mu i + 1})_\mu}) - \operatorname{Tr}(u\!\restriction_{(\mathcal{M}_{\mu i})_\mu}) = \operatorname{Tr}(u\!\restriction_{\mathcal{M}[\mu]_\mu}) = \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu}) \] is polynomial in \(\mu \in \mathfrak{h}^*\). \end{proof} \begin{note} Although we have provided an explicit construction of \(\mathcal{M}^{\operatorname{ss}}\) in terms of \(\mathcal{M}\), we should point out this construction is not functorial. First, given a \(\mathfrak{g}\)-homomorphism \(f : \mathcal{M} \to \mathcal{N}\) between coherent families, it is unclear what \(f^{\operatorname{ss}} : \mathcal{M}^{\operatorname{ss}} \to \mathcal{N}^{\operatorname{ss}}\) is supposed to be. Secondly, and this is more relevant, our construction depends on the choice of composition series \(0 = \mathcal{M}_{\lambda 0} \subset \cdots \subset \mathcal{M}_{\lambda r_\lambda} = \mathcal{M}[\lambda]\). While different choices of composition series yield isomorphic results, there is no canonical isomorphism. In addition, there is no canonical choice of composition series. \end{note} The proof of Lemma~\ref{thm:component-coh-family-has-finite-length} is extremely technical and will not be included in here. It suffices to note that, as in Proposition~\ref{thm:ess-supp-is-zariski-dense}, the general case follows from the case where \(\mathfrak{g}\) is simple, which may be found in \cite{mathieu} -- see Lemma 3.3. As promised, if \(\mathcal{M}\) is a coherent extension of \(M\) then so is \(\mathcal{M}^{\operatorname{ss}}\). \begin{proposition} Let \(M\) be a simple bounded \(\mathfrak{g}\)-module and \(\mathcal{M}\) be a coherent extension of \(M\). Then \(\mathcal{M}^{\operatorname{ss}}\) is a coherent extension of \(M\), and \(M\) is in fact a submodule of \(\mathcal{M}^{\operatorname{ss}}\). \end{proposition} \begin{proof} Since \(M\) is simple, its support is contained in a single \(Q\)-coset. This implies that \(M\) is a subquotient of \(\mathcal{M}[\lambda]\) for any \(\lambda \in \operatorname{supp} M\). If we fix some composition series \(0 = \mathcal{M}_0 \subset \mathcal{M}_1 \subset \cdots \subset \mathcal{M}_r = \mathcal{M}[\lambda]\) of \(\mathcal{M}[\lambda]\) with \(M \cong \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i}\), there is a natural inclusion \[ M \isoto \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i} \to \bigoplus_j \mfrac{\mathcal{M}_{j + 1}}{\mathcal{M}_j} \cong \mathcal{M}^{\operatorname{ss}}[\lambda] \] \end{proof} Given the uniqueness of the semisimplification, the semisimplification of any semisimple coherent extension \(\mathcal{M}\) is \(\mathcal{M}\) itself and therefore\dots \begin{corollary}\label{thm:bounded-is-submod-of-extension} Let \(M\) be a simple bounded \(\mathfrak{g}\)-module and \(\mathcal{M}\) be a semisimple coherent extension of \(M\). Then \(M\) is contained in \(\mathcal{M}\). \end{corollary} These last results provide a partial answer to the question of existence of well behaved coherent extensions. As for the uniqueness \(\mathcal{M}\) in Corollary~\ref{thm:bounded-is-submod-of-extension}, it suffices to show that the multiplicities of the simple weight \(\mathfrak{g}\)-modules in \(\mathcal{M}\) are uniquely determined by \(M\). These multiplicities may be computed via the following lemma. \begin{lemma}\label{thm:centralizer-multiplicity} Let \(M\) be a semisimple weight \(\mathfrak{g}\)-module. Then \(M_\lambda\) is a semisimple \(\mathcal{U}(\mathfrak{g})_0\)-module for any \(\lambda \in \operatorname{supp} M\). Moreover, if \(L\) is a simple weight \(\mathfrak{g}\)-module such that \(\lambda \in \operatorname{supp} L\) then \(L_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module and the multiplicity \(L\) in \(M\) coincides with the multiplicity of \(L_\lambda\) in \(M_\lambda\) as a \(\mathcal{U}(\mathfrak{g})_0\)-module. \end{lemma} \begin{proof} We begin by showing that \(L_\lambda\) is simple. Let \(N \subset L_\lambda\) be a nontrivial \(\mathcal{U}(\mathfrak{g})_0\)-submodule. We want to establish that \(N = L_\lambda\). If \(\mathcal{U}(\mathfrak{g})_\alpha\) denotes the root space of \(\alpha\) in \(\mathcal{U}(\mathfrak{g})\) under the adjoint action of \(\mathfrak{g}\) as in Example~\ref{ex:adjoint-action-in-universal-enveloping-is-weight}, \(\alpha \in Q\), a simple calculation shows \(\mathcal{U}(\mathfrak{g})_\alpha \cdot N \subset L_{\lambda + \alpha}\). Since \(L\) is simple and \(N\) is nonzero, it follows from Example~\ref{ex:adjoint-action-in-universal-enveloping-is-weight} that \[ L = \mathcal{U}(\mathfrak{g}) \cdot N = \bigoplus_{\alpha \in Q} \mathcal{U}(\mathfrak{g})_\alpha \cdot N \] and thus \(L_{\lambda + \alpha} = \mathcal{U}(\mathfrak{g})_\alpha \cdot N\). In particular, \(L_\lambda = \mathcal{U}(\mathfrak{g})_0 \cdot N \subset N\) and \(N = L_\lambda\). Now given a semisimple weight \(\mathfrak{g}\)-module \(M = \bigoplus_i M_i\) with \(M_i\) simple, it is clear \(M_\lambda = \bigoplus_i (M_i)_\lambda\). Each \((M_i)_\lambda\) is either \(0\) or a simple \(\mathcal{U}(\mathfrak{g})_0\)-module, so that \(M_\lambda\) is a semisimple \(\mathcal{U}(\mathfrak{g})_0\)-module. In addition, to see that the multiplicity of \(L\) in \(M\) coincides with the multiplicity of \(L_\lambda\) in \(M_\lambda\) it suffices to show that if \((M_i)_\lambda \cong (M_j)_\lambda\) are both nonzero then \(M_i \cong M_j\). If \(I(M_i) = \mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{g})_0} (M_i)_\lambda\), the inclusion of \(\mathcal{U}(\mathfrak{g})_0\)-modules \((M_i)_\lambda \to M_i\) induces a \(\mathfrak{g}\)-homomorphism \begin{align*} I(M_i) & \to M_i \\ u \otimes m & \mapsto u \cdot m \end{align*} Since \(M_i\) is simple and \(\lambda \in \operatorname{supp} M_i\), \(M_i = \mathcal{U}(\mathfrak{g}) \cdot (M_i)_\lambda\). The homomorphism \(I(M_i) \to M_i\) is thus surjective. Similarly, if \(I(M_j) = \mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{g})_0} (M_j)_\lambda\) then there is a natural surjective \(\mathfrak{g}\)-homomorphism \(I(M_j) \to M_j\). Now suppose there is an isomorphism of \(\mathcal{U}(\mathfrak{g})_0\)-modules \(f: (M_i)_\lambda \isoto (M_j)_\lambda\). Such an isomorphism induces an isomorphism of \(\mathfrak{g}\)-modules \begin{align*} \tilde f : I(M_i) & \isoto I(M_j) \\ u \otimes m & \mapsto u \otimes f(m) \end{align*} By composing \(\tilde f\) with the projection \(I(M_j) \to M_j\) we get a surjective homomorphism \(I(M_i) \to M_j\). We claim \(\ker (I(M_i) \to M_i) = \ker (I(M_i) \to M_j)\). To see this, notice that \(\ker(I(M_i) \to M_i)\) coincides with the largest submodule \(Z(M_i) \subset I(M_i)\) contained in \(\bigoplus_{\alpha \ne 0} \mathcal{U}(\mathfrak{g})_\alpha \otimes_{\mathcal{U}(\mathfrak{g})_0} (M_i)_\lambda\). Indeed, a simple computation shows \(\ker (I(M_i) \to M_i) \cap (\mathcal{U}(\mathfrak{g})_0 \otimes_{\mathcal{U}(\mathfrak{g})_0} (M_i)_\lambda) = 0\), which implies \(\ker(I(M_i) \to M_i) \subset Z(M_i)\). Since \(M_i\) is simple, \(\ker (I(M_i) \to M_i)\) is maximal and thus \(\ker(I(M_i) \to M_i) = Z(M_i)\). By the same token, \(\ker (I(M_j) \to M_j)\) is the largest submodule of \(I(M_j)\) contained in \(\bigoplus_{\alpha \ne 0} \mathcal{U}(\mathfrak{g})_\alpha \otimes_{\mathcal{U}(\mathfrak{g})_0} (M_j)_\lambda\) and therefore \(\ker(I(M_i) \to M_i) = \tilde{f}^{-1}(\ker(I(M_j) \to M_j)) = \ker(I(M_i) \to M_j)\). Hence there is an isomorphism \(\mfrac{I(M_i)}{\ker(I(M_i) \to M_i)} \isoto M_j\) satisfying \begin{center} \begin{tikzcd} I(M_i) \rar{\tilde f} \dar & I(M_j) \dar \\ \mfrac{I(M_i)}{\ker(I(M_i) \to M_i)} \rar{\sim} & M_j \end{tikzcd} \end{center} and finally \(M_i \cong \mfrac{I(M_i)}{\ker(I(M_i) \to M_i)} \cong M_j\). \end{proof} A complementary question now is: which submodules of a \emph{nice} coherent family are cuspidal? \begin{proposition}[Mathieu] Let \(\mathcal{M}\) be an irreducible coherent family of degree \(d\) and \(\lambda \in \mathfrak{h}^*\). The following conditions are equivalent. \begin{enumerate} \item \(\mathcal{M}[\lambda]\) is simple. \item \(F_\alpha\!\restriction_{\mathcal{M}[\lambda]}\) is injective for all \(\alpha \in \Delta\). \item \(\mathcal{M}[\lambda]\) is cuspidal. \end{enumerate} \end{proposition} \begin{proof} The fact that \strong{(i)} and \strong{(iii)} are equivalent follows directly from Corollary~\ref{thm:cuspidal-mod-equivs}. Likewise, it is clear from the corollary that \strong{(iii)} implies \strong{(ii)}. All it is left is to show \strong{(ii)} implies \strong{(iii)}. This isn't already clear from Corollary~\ref{thm:cuspidal-mod-equivs} because, at first glance, $\mathcal{M}[\lambda]$ may not be simple for some $\lambda$ satisfying \strong{(ii)}. We will show this is never the case. Suppose \(F_\alpha\) acts injectively on the submodule \(\mathcal{M}[\lambda]\), for all \(\alpha \in \Delta\). Since \(\mathcal{M}[\lambda]\) has finite length, \(\mathcal{M}[\lambda]\) contains an infinite-dimensional simple \(\mathfrak{g}\)-submodule \(M\). Moreover, again by Corollary~\ref{thm:cuspidal-mod-equivs} we conclude \(M\) is a cuspidal module, and its degree is bounded by \(d\). We want to show \(\mathcal{M}[\lambda] = M\). We claim the set \(U = \{\mu \in \mathfrak{h}^* : \mathcal{M}_\mu \ \text{is a simple $\mathcal{U}(\mathfrak{g})_0$-module}\}\) is Zariski-open. If we suppose this is the case for a moment or two, it follows from the fact that \(M\) is simple and \(\operatorname{supp}_{\operatorname{ess}} M\) is Zariski-dense that \(U \cap \operatorname{supp}_{\operatorname{ess}} M\) is non-empty. In other words, there is some \(\mu \in \mathfrak{h}^*\) such that \(\mathcal{M}_\mu\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module and \(\dim M_\mu = \deg M\). In particular, \(M_\mu \ne 0\), so \(M_\mu = \mathcal{M}_\mu\). Now given any simple \(\mathfrak{g}\)-module \(L\), it follows from Lemma~\ref{thm:centralizer-multiplicity} that the multiplicity of \(L\) in \(\mathcal{M}[\lambda]\) is the same as the multiplicity \(L_\mu\) in \(\mathcal{M}_\mu\) as a \(\mathcal{U}(\mathfrak{g})_0\)-module -- which is, of course, \(1\) if \(L \cong M\) and \(0\) otherwise. Hence \(\mathcal{M}[\lambda] = M\) and \(\mathcal{M}[\lambda]\) is cuspidal. \end{proof} To finish the proof, we now show\dots \begin{lemma}\label{thm:set-of-simple-u0-mods-is-open} Let \(\mathcal{M}\) be a coherent family. The set \(U = \{\lambda \in \mathfrak{h}^* : \mathcal{M}_\lambda \ \text{is a simple $\mathcal{U}(\mathfrak{g})_0$-module}\}\) is Zariski-open. \end{lemma} \begin{proof} For each \(\lambda \in \mathfrak{h}^*\) we introduce the bilinear form \begin{align*} B_\lambda : \mathcal{U}(\mathfrak{g})_0 \times \mathcal{U}(\mathfrak{g})_0 & \to K \\ (u, v) & \mapsto \operatorname{Tr}(u v \!\restriction_{\mathcal{M}_\lambda}) \end{align*} and consider its rank -- i.e. the dimension of the image of the induced operator \begin{align*} \mathcal{U}(\mathfrak{g})_0 & \to \mathcal{U}(\mathfrak{g})_0^* \\ u & \mapsto B_\lambda(u, \cdot) \end{align*} Our first observation is that \(\operatorname{rank} B_\lambda \le d^2\). This follows from the commutativity of \begin{center} \begin{tikzcd} \mathcal{U}(\mathfrak{g})_0 \rar \dar & \mathcal{U}(\mathfrak{g})_0^* \\ \operatorname{End}(\mathcal{M}_\lambda) \rar{\sim} & \operatorname{End}(\mathcal{M}_\lambda)^* \uar \end{tikzcd}, \end{center} where the map \(\mathcal{U}(\mathfrak{g})_0 \to \operatorname{End}(\mathcal{M}_\lambda)\) is given by the action of \(\mathcal{U}(\mathfrak{g})_0\), the map \(\operatorname{End}(\mathcal{M}_\lambda)^* \to \mathcal{U}(\mathfrak{g})_0^*\) is its dual, and the isomorphism \(\operatorname{End}(\mathcal{M}_\lambda) \isoto \operatorname{End}(\mathcal{M}_\lambda)^*\) is induced by the trace form \begin{align*} \operatorname{End}(\mathcal{M}_\lambda) \times \operatorname{End}(\mathcal{M}_\lambda) & \to K \\ (T, S) & \mapsto \operatorname{Tr}(T S) \end{align*} Indeed, \(\operatorname{rank} B_\lambda \le \operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to \operatorname{End}(\mathcal{M}_\lambda)) \le \dim \operatorname{End}(\mathcal{M}_\lambda) = d^2\). Furthermore, if \(\operatorname{rank} B_\lambda = d^2\) then we must have \(\operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to \operatorname{End}(\mathcal{M}_\lambda)) = d^2\) -- i.e. the map \(\mathcal{U}(\mathfrak{g})_0 \to \operatorname{End}(\mathcal{M}_\lambda)\) is surjective. In particular, if \(\operatorname{rank} B_\lambda = d^2\) then \(\mathcal{M}_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module, for if \(M \subset \mathcal{M}_\lambda\) is invariant under the action of \(\mathcal{U}(\mathfrak{g})_0\) then \(M\) is invariant under any \(K\)-linear operator \(\mathcal{M}_\lambda \to \mathcal{M}_\lambda\), so that \(M = 0\) or \(M = \mathcal{M}_\lambda\). On the other hand, if \(\mathcal{M}_\lambda\) is simple then by Burnside's Theorem on matrix algebras the map \(\mathcal{U}(\mathfrak{g})_0 \to \operatorname{End}(\mathcal{M}_\lambda)\) is surjective. Hence the commutativity of the previously drawn diagram, as well as the fact that \(\operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to \operatorname{End}(\mathcal{M}_\lambda)) = \operatorname{rank}(\operatorname{End}(\mathcal{M}_\lambda)^* \to \mathcal{U}(\mathfrak{g})_0^*)\), imply that \(\operatorname{rank} B_\lambda = d^2\). This goes to show that \(U\) is precisely the set of all \(\lambda\) such that \(B_\lambda\) has maximal rank \(d^2\). We now show that \(U\) is Zariski-open. First, notice that \[ U = \bigcup_{\substack{V \subset \mathcal{U}(\mathfrak{g})_0 \\ \dim V = d}} U_V, \] where \(U_V = \{\lambda \in \mathfrak{h}^* : \operatorname{rank} B_\lambda\!\restriction_V = d^2 \}\). Here \(V\) ranges over all \(d\)-dimensional subspaces of \(\mathcal{U}(\mathfrak{g})_0\) -- \(V\) is not necessarily a \(\mathcal{U}(\mathfrak{g})_0\)-submodule. Indeed, if \(\operatorname{rank} B_\lambda = d^2\) it follows from the subjectivity of the map \(\mathcal{U}(\mathfrak{g})_0 \to \operatorname{End}(\mathcal{M}_\lambda)\) that there is some \(V \subset \mathcal{U}(\mathfrak{g})_0\) with \(\dim V = d\) such that the restriction \(V \to \operatorname{End}(\mathcal{M}_\lambda)\) is surjective. The commutativity of \begin{center} \begin{tikzcd} V \rar \dar & V^* \\ \operatorname{End}(\mathcal{M}_\lambda) \rar{\sim} & \operatorname{End}(\mathcal{M}_\lambda)^* \uar \end{tikzcd} \end{center} then implies \(\operatorname{rank} B_\lambda\!\restriction_V = d^2\). In other words, \(U \subset \bigcup_V U_V\). Likewise, if \(\operatorname{rank} B_\lambda\!\restriction_V = d^2\) for some \(V\), then the commutativity of \begin{center} \begin{tikzcd} V \rar \dar & V^* \\ \mathcal{U}(\mathfrak{g})_0 \rar & \mathcal{U}(\mathfrak{g})_0^* \uar \end{tikzcd} \end{center} implies \(\operatorname{rank} B_\lambda \ge d^2\), which goes to show \(\bigcup_V U_V \subset U\). Given \(\lambda \in U_V\), the surjectivity of \(V \to \operatorname{End}(\mathcal{M}_\lambda)\) and the fact that \(\dim V < \infty\) imply \(V \to V^*\) is invertible. Since \(\mathcal{M}\) is a coherent family, \(B_\lambda\) depends polynomially in \(\lambda\). Hence so does the induced maps \(V \to V^*\). In particular, there is some Zariski neighborhood \(U'\) of \(\lambda\) such that the map \(V \to V^*\) induced by \(B_\mu\!\restriction_V\) is invertible for all \(\mu \in U'\). But the surjectivity of the map induced by \(B_\mu\!\restriction_V\) implies \(\operatorname{rank} B_\mu = d^2\), so \(\mu \in U_V\) and therefore \(U' \subset U_V\). This implies \(U_V\) is open for all \(V\). Finally, \(U\) is the union of Zariski-open subsets and is therefore open. We are done. \end{proof} The major remaining question for us to tackle is that of the existence of coherent extensions, which will be the focus of our next section. \section{Localizations \& the Existence of Coherent Extensions} Let \(M\) be a simple bounded \(\mathfrak{g}\)-module of degree \(d\). Our goal is to prove that \(M\) has a (unique) irreducible semisimple coherent extension \(\mathcal{M}\). Since \(M\) is simple, we know \(M \subset \mathcal{M}[\lambda]\) for any \(\lambda \in \operatorname{supp} M\). Our first task is constructing \(\mathcal{M}[\lambda]\). The issue here is that \(\operatorname{supp}_{\operatorname{ess}} M\) may not be all of \(\lambda + Q = \operatorname{supp}_{\operatorname{ess}} \mathcal{M}[\lambda]\), so we may find \(M \subsetneq \mathcal{M}[\lambda]\). In fact, we may find \(\operatorname{supp} M \subsetneq \lambda + Q\). This wasn't an issue an Example~\ref{ex:laurent-polynomial-mod} because we verified that the action of \(f \in \mathfrak{sl}_2(K)\) on \(K[x, x^{-1}]\) is injective. Since all weight spaces of \(K[x, x^{-1}]\) are \(1\)-dimensional, this implies the action of \(f\) is actually bijective, so we can obtain a nonzero vector in \(K[x, x^{-1}]_{2 k} = K x^k\) for any \(k \in \mathbb{Z}\) by translating between weight spaced using \(f\) and \(f^{-1}\) -- here \(f^{-1}\) denotes the \(K\)-linear operator \((- \sfrac{\mathrm{d}}{\mathrm{d}x} + \sfrac{x^{-1}}{2})^{-1}\), which is the inverse of the action of \(f\) on \(K[x, x^{-1}]\). \begin{center} \begin{tikzcd} \cdots \rar[bend left=60]{f^{-1}} & K x^{-2} \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} & K x^{-1} \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} & K \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} & K x \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} & K x^2 \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} & \cdots \lar[bend left=60]{f} \end{tikzcd} \end{center} In the general case, the action of some \(F_\alpha \in \mathfrak{g}\) with \(\alpha \in \Delta\) in \(M\) may not be injective. In fact, we have seen that the action of \(F_\alpha\) is injective for all \(\alpha \in \Delta^+\) if, and only if \(M\) is cuspidal. Nevertheless, we could intuitively \emph{make it injective} by formally inverting the elements \(F_\alpha \in \mathcal{U}(\mathfrak{g})\). This would allow us to obtain nonzero vectors in \(M_\mu\) for all \(\mu \in \lambda + Q\) by successively applying elements of \(\{F_\alpha^{\pm 1}\}_{\alpha \in \Delta}\) to a nonzero weight vector \(m \in M_\lambda\). Moreover, if the actions of the \(F_\alpha\) were to be invertible, we would find that all \(M_\mu\) are \(d\)-dimensional for \(\mu \in \lambda + Q\). In a commutative domain, this can be achieved by tensoring our module by the field of fractions. However, \(\mathcal{U}(\mathfrak{g})\) is hardly ever commutative -- \(\mathcal{U}(\mathfrak{g})\) is commutative if, and only if \(\mathfrak{g}\) is Abelian -- and the situation is more delicate in the non-commutative case. For starters, a non-commutative \(K\)-algebra \(A\) may not even have a ``field of fractions'' -- i.e. an over-ring where all elements of \(A\) have inverses. Nevertheless, it is possible to formally invert elements of certain subsets of \(A\) via a process known as \emph{localization}, which we now describe. \begin{definition}\index{localization!multiplicative subsets}\index{localization!Ore's condition} Let \(A\) be a \(K\)-algebra. A subset \(S \subset A\) is called \emph{multiplicative} if \(s \cdot t \in S\) for all \(s, t \in S\) and \(0 \notin S\). A multiplicative subset \(S\) is said to satisfy \emph{Ore's localization condition} if for each \(a \in A\) and \(s \in S\) there exists \(b, c \in A\) and \(t, t' \in S\) such that \(s a = b t\) and \(a s = t' c\). \end{definition} \begin{theorem}[Ore-Asano]\index{localization!Ore-Asano Theorem} Let \(S \subset A\) be a multiplicative subset satisfying Ore's localization condition. Then there exists a (unique) \(K\)-algebra \(S^{-1} A\), with a canonical algebra homomorphism \(A \to S^{-1} A\), enjoying the universal property that each algebra homomorphism \(f : A \to B\) such that \(f(s)\) is invertible for all \(s \in S\) can be uniquely extended to an algebra homomorphism \(S^{-1} A \to B\). \(S^{-1} A\) is called \emph{the localization of \(A\) by \(S\)}, and the map \(A \to S^{-1} A\) is called \emph{the localization map}. \begin{center} \begin{tikzcd} A \dar \rar{f} & B \\ S^{-1} A \urar[swap, dotted] & \end{tikzcd} \end{center} \end{theorem} If we identify an element with its image under the localization map, it follows directly from Ore's construction that every element of \(S^{-1} A\) has the form \(s^{-1} a\) for some \(s \in S\) and \(a \in A\). Likewise, any element of \(S^{-1} A\) can also be written as \(b t^{-1}\) for some \(t \in S\), \(b \in A\). Ore's localization condition may seem a bit arbitrary at first, but a more thorough investigation reveals the intuition behind it. The issue in question here is that in the non-commutative case we can no longer take the existence of common denominators for granted. However, the existence of common denominators is fundamental to the proof of the fact the field of fractions is a ring -- it is used, for example, to define the sum of two elements in the field of fractions. We thus need to impose their existence for us to have any hope of defining consistent arithmetics in the localization of an algebra, and Ore's condition is actually equivalent to the existence of common denominators -- see the discussion in the introduction of \cite[ch.~6]{goodearl-warfield} for further details. We should also point out that there are numerous other conditions -- which may be easier to check than Ore's -- known to imply Ore's condition. For instance\dots \begin{lemma} Let \(S \subset A\) be a multiplicative subset generated by finitely many locally \(\operatorname{ad}\)-nilpotent elements -- i.e. elements \(s \in S\) such that for each \(a \in A\) there exists \(r > 0\) such that \(\operatorname{ad}(s)^r a = [s, [s, \cdots [s, a]]\cdots] = 0\). Then \(S\) satisfies Ore's localization condition. \end{lemma} In our case, we are more interested in formally inverting the action of \(F_\alpha\) on \(M\) than in inverting \(F_\alpha\) itself. To that end, we introduce one further construction, known as \emph{the localization of a module}. \begin{definition}\index{localization!localization of modules} Let \(S \subset A\) be a multiplicative subset satisfying Ore's localization condition and \(M\) be an \(A\)-module. The \(S^{-1} A\)-module \(S^{-1} M = S^{-1} A \otimes_A M\) is called \emph{the localization of \(M\) by \(S\)}, and the homomorphism of \(A\)-modules \begin{align*} M & \to S^{-1} M \\ m & \mapsto 1 \otimes m \end{align*} is called \emph{the localization map of \(M\)}. \end{definition} Notice that the \(S^{-1} A\)-module \(S^{-1} M\) has the natural structure of an \(A\)-module, where the action of \(A\) is given by the localization map \(A \to S^{-1} A\). It is interesting to observe that, unlike in the case of the field of fractions of a commutative domain, in general the localization map \(A \to S^{-1} A\) -- i.e. the map \(a \mapsto \frac{a}{1}\) -- may not be injective. For instance, if \(S\) contains a divisor of zero \(s\), its image under the localization map is invertible and therefore cannot be a divisor of zero in \(S^{-1} A\). In particular, if \(a \in A\) is nonzero and such that \(s a = 0\) or \(a s = 0\) then its image under the localization map has to be \(0\). However, the existence of divisors of zero in \(S\) turns out to be the only obstruction to the injectivity of the localization map, as shown in\dots \begin{lemma} Let \(S \subset A\) be a multiplicative subset satisfying Ore's localization condition and \(M\) be an \(A\)-module. If \(S\) acts injectively on \(M\) then the localization map \(M \to S^{-1} M\) is injective. In particular, if \(S\) has no zero divisors then \(A\) is a subalgebra of \(S^{-1} A\). \end{lemma} Again, in our case we are interested in inverting the actions of the \(F_\alpha\) on \(M\). However, for us to be able to translate between all weight spaces associated with elements of \(\lambda + Q\), \(\lambda \in \operatorname{supp} M\), we only need to invert the \(F_\alpha\)'s for \(\alpha\) in some subset of \(\Delta\) which spans all of \(Q = \mathbb{Z} \Delta\). In other words, it suffices to invert \(F_\beta\) for all \(\beta\) in some basis \(\Sigma\) for \(\Delta\). We can choose such a basis to be well-behaved. For example, we can show\dots \begin{lemma}\label{thm:nice-basis-for-inversion} Let \(M\) be a simple infinite-dimensional bounded \(\mathfrak{g}\)-module. There is a basis \(\Sigma = \{\beta_1, \ldots, \beta_r\}\) for \(\Delta\) such that the elements \(F_{\beta_i}\) all act injectively on \(M\) and satisfy \([F_{\beta_i}, F_{\beta_j}] = 0\). \end{lemma} \begin{note} The basis \(\Sigma\) in Lemma~\ref{thm:nice-basis-for-inversion} may very well depend on the representation \(M\)! This is another obstruction to the functoriality of our constructions. \end{note} The proof of the previous Lemma is quite technical and was deemed too tedious to be included in here. See Lemma 4.4 of \cite{mathieu} for a full proof. Since \(F_\alpha\) is locally \(\operatorname{ad}\)-nilpotent for all \(\alpha \in \Delta\), we can see\dots \begin{corollary} Let \(\Sigma\) be as in Lemma~\ref{thm:nice-basis-for-inversion} and \((F_\beta)_{\beta \in \Sigma} \subset \mathcal{U}(\mathfrak{g})\) be the multiplicative subset generated by the \(F_\beta\)'s. The \(K\)-algebra \(\Sigma^{-1} \mathcal{U}(\mathfrak{g}) = (F_\beta)_{\beta \in \Sigma}^{-1} \mathcal{U}(\mathfrak{g})\) is well defined. Moreover, if we denote by \(\Sigma^{-1} M\) the localization of \(M\) by \((F_\beta)_{\beta \in \Sigma}\), the localization map \(M \to \Sigma^{-1} M\) is injective. \end{corollary} From now on let \(\Sigma\) be some fixed basis for \(\Delta\) satisfying the hypothesis of Lemma~\ref{thm:nice-basis-for-inversion}. We now show that \(\Sigma^{-1} M\) is a weight \(\mathfrak{g}\)-module whose support is an entire \(Q\)-coset. \begin{proposition}\label{thm:irr-bounded-is-contained-in-nice-mod} The restriction of the localization \(\Sigma^{-1} M\) is a bounded \(\mathfrak{g}\)-module of degree \(d\) with \(\operatorname{supp} \Sigma^{-1} M = Q + \operatorname{supp} M\) and \(\dim \Sigma^{-1} M_\lambda = d\) for all \(\lambda \in \operatorname{supp} \Sigma^{-1} M\). \end{proposition} \begin{proof} Fix some \(\beta \in \Sigma\). We begin by showing that \(F_\beta\) and \(F_\beta^{-1}\) map the weight space \(\Sigma^{-1} M_\lambda\) to \(\Sigma^{-1} M_{\lambda - \beta}\) and \(\Sigma^{-1} M_{\lambda + \beta}\), respectively. Indeed, given \(m \in M_\lambda\) and \(H \in \mathfrak{h}\) we have \[ H \cdot (F_\beta \cdot m) = ([H, F_\beta] + F_\beta H) \cdot m = F_\beta (-\beta(H) + H) \cdot m = (\lambda - \beta)(H) F_\beta \cdot m \] On the other hand, \[ 0 = [H, 1] = [H, F_\beta F_\beta^{-1}] = F_\beta [H, F_\beta^{-1}] + [H, F_\beta] F_\beta^{-1} = F_\beta [H, F_\beta^{-1}] - \beta(H) F_\beta F_\beta^{-1}, \] so that \([H, F_\beta^{-1}] = \beta(H) \cdot F_\beta^{-1}\) and therefore \[ H \cdot (F_\beta^{-1} \cdot m) = ([H, F_\beta^{-1}] + F_\beta^{-1} H) \cdot m = F_\beta^{-1} (\beta(H) + H) \cdot m = (\lambda + \beta)(H) F_\beta^{-1} \cdot m \] From the fact that \(F_\beta^{\pm 1}\) maps \(M_\lambda\) to \(\Sigma^{-1} M_{\lambda \pm \beta}\) follows our first conclusion: since \(M\) is a weight module and every element of \(\Sigma^{-1} M\) has the form \(s^{-1} \cdot m = s^{-1} \otimes m\) for \(s \in (F_\beta)_{\beta \in \Sigma}\) and \(m \in M\), we can see that \(\Sigma^{-1} M = \bigoplus_\lambda \Sigma^{-1} M_\lambda\). Furthermore, since the action of each \(F_\beta\) on \(\Sigma^{-1} M\) is bijective and \(\Sigma\) is a basis for \(Q\) we obtain \(\operatorname{supp} \Sigma^{-1} M = Q + \operatorname{supp} M\). Again, because of the bijectivity of the \(F_\beta\)'s, to see that \(\dim \Sigma^{-1} M_\lambda = d\) for all \(\lambda \in \operatorname{supp} \Sigma^{-1} M\) it suffices to show that \(\dim \Sigma^{-1} M_\lambda = d\) for some \(\lambda \in \operatorname{supp} \Sigma^{-1} M\). We may take \(\lambda \in \operatorname{supp} M\) with \(\dim M_\lambda = d\). For any finite-dimensional subspace \(V \subset \Sigma^{-1} M_\lambda\) we can find \(s \in (F_\beta)_{\beta \in \Sigma}\) such that \(s \cdot V \subset M\). If \(s = F_{\beta_{i_1}} \cdots F_{\beta_{i_r}}\), it is clear \(s \cdot V \subset M_{\lambda - \beta_{i_1} - \cdots - \beta_{i_r}}\), so \(\dim V = \dim s \cdot V \le d\). This holds for all finite-dimensional \(V \subset \Sigma^{-1} M_\lambda\), so \(\dim \Sigma^{-1} M_\lambda \le d\). It then follows from the fact that \(M_\lambda \subset \Sigma^{-1} M_\lambda\) that \(M_\lambda = \Sigma^{-1} M_\lambda\) and therefore \(\dim \Sigma^{-1} M_\lambda = d\). \end{proof} We now have a good candidate for a coherent extension of \(M\), but \(\Sigma^{-1} M\) is still not a coherent extension since its support is contained in a single \(Q\)-coset. In particular, \(\operatorname{supp} \Sigma^{-1} M \ne \mathfrak{h}^*\) and \(\Sigma^{-1} M\) is not a coherent family. To obtain a coherent family we thus need somehow extend \(\Sigma^{-1} M\). To that end, we will attempt to replicate the construction of the coherent extension of the \(\mathfrak{sl}_2(K)\)-module \(K[x, x^{-1}]\). Specifically, the idea is that if twist \(\Sigma^{-1} M\) by an automorphism which shifts its support by some \(\lambda \in \mathfrak{h}^*\), we can construct a coherent family by summing these modules over \(\lambda\) as in Example~\ref{ex:sl-laurent-family}. For \(K[x, x^{-1}]\) this was achieved by twisting the \(\operatorname{Diff}(K[x, x^{-1}])\)-module \(K[x, x^{-1}]\) by the automorphisms \(\varphi_\lambda : \operatorname{Diff}(K[x, x^{-1}]) \to \operatorname{Diff}(K[x, x^{-1}])\) and restricting the results to \(\mathcal{U}(\mathfrak{sl}_2(K))\) via the map \(\mathcal{U}(\mathfrak{sl}_2(K)) \to \operatorname{Diff}(K[x, x^{-1}])\), but this approach is inflexible since not every \(\mathfrak{sl}_2(K)\)-module factors through \(\operatorname{Diff}(K[x, x^{-1}])\). Nevertheless, we could just as well twist \(K[x, x^{-1}]\) by automorphisms of \(\mathcal{U}(\mathfrak{sl}_2(K))_f\) directly -- where \(\mathcal{U}(\mathfrak{sl}_2(K))_f = (f)^{-1} \mathcal{U}(\mathfrak{g})\) is the localization of \(\mathcal{U}(\mathfrak{sl}_2(K))\) by the multiplicative subset generated by \(f\). In general, we may twist the \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module \(\Sigma^{-1} M\) by automorphisms of \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\). For \(\lambda = \beta \in \Sigma\) the map \begin{align*} \theta_\beta : \Sigma^{-1} \mathcal{U}(\mathfrak{g}) & \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ u & \mapsto F_\beta u F_\beta^{-1} \end{align*} is a natural candidate for such a twisting automorphism. Indeed, we will soon see that \(\twisted{(\Sigma^{-1} M)}{\theta_\beta}_\lambda = \Sigma^{-1} M_{\lambda + \beta}\). However, this is hardly useful to us, since \(\beta \in Q\) and therefore \(\beta + \operatorname{supp} \Sigma^{-1} M = \operatorname{supp} \Sigma^{-1} M\). If we want to expand the support of \(\Sigma^{-1} M\) we will have to twist by automorphisms that shift its support by \(\lambda \in \mathfrak{h}^*\) lying \emph{outside} of \(Q\). The situation is much less obvious in this case. Nevertheless, it turns out we can extend the family \(\{\theta_\beta\}_{\beta \in \Sigma}\) to a family of automorphisms \(\{\theta_\lambda\}_{\lambda \in \mathfrak{h}^*}\). Explicitly\dots \begin{proposition}\label{thm:nice-automorphisms-exist} There is a family of automorphisms \(\{\theta_\lambda : \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \to \Sigma^{-1} \mathcal{U}(\mathfrak{g})\}_{\lambda \in \mathfrak{h}^*}\) such that \begin{enumerate} \item \(\theta_{k_1 \beta_1 + \cdots + k_r \beta_r}(u) = F_{\beta_1}^{k_1} \cdots F_{\beta_r}^{k_r} u F_{\beta_r}^{- k_r} \cdots F_{\beta_1}^{- k_1}\) for all \(u \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) and \(k_1, \ldots, k_r \in \mathbb{Z}\). \item For each \(u \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) the map \begin{align*} \mathfrak{h}^* & \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ \lambda & \mapsto \theta_\lambda(u) \end{align*} is polynomial. \item If \(\lambda, \mu \in \mathfrak{h}^*\), \(N\) is a \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module whose restriction to \(\mathcal{U}(\mathfrak{g})\) is a weight \(\mathfrak{g}\)-module and \(\twisted{N}{\theta_\lambda}\) is the \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module \(N\) twisted by the automorphism \(\theta_\lambda\) then \(N_\mu = \twisted{N}{\theta_\lambda}_{\mu + \lambda}\). In particular, \(\operatorname{supp} \twisted{N}{\theta_\lambda} = \lambda + \operatorname{supp} N\). \end{enumerate} \end{proposition} \begin{proof} Since the elements \(F_\beta\), \(\beta \in \Sigma\) commute with one another, the endomorphisms \begin{align*} \theta_{k_1 \beta_1 + \cdots + k_r \beta_r} : \Sigma^{-1} \mathcal{U}(\mathfrak{g}) & \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ u & \mapsto F_{\beta_1}^{k_1} \cdots F_{\beta_r}^{k_r} u F_{\beta_1}^{- k_r} \cdots F_{\beta_r}^{- k_1} \end{align*} are well defined for all \(k_1, \ldots, k_r \in \mathbb{Z}\). Fix some \(u \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\). For any \(s \in (F_\beta)_{\beta \in \Sigma}\) and \(k > 0\) we have \(s^k u = \binom{k}{0} \operatorname{ad}(s)^0 u s^{k - 0} + \cdots + \binom{k}{k} \operatorname{ad}(s)^k u s^{k - k}\). Now if we take \(\ell\) such \(\operatorname{ad}(F_\beta)^{\ell + 1} u = 0\) for all \(\beta \in \Sigma\) we find \[ \theta_{k_1 \beta_1 + \cdots + k_r \beta_r}(u) = \sum_{i_1, \ldots, i_r = 1, \ldots, \ell} \binom{k_1}{i_1} \cdots \binom{k_r}{i_r} \operatorname{ad}(F_{\beta_1})^{i_1} \cdots \operatorname{ad}(F_{\beta_r})^{i_r} u F_{\beta_1}^{- i_1} \cdots F_{\beta_r}^{- i_r} \] for all \(k_1, \ldots, k_r \in \mathbb{N}\). Since the binomial coefficients \(\binom{x}{k} = \frac{x (x-1) \cdots (x - k + 1)}{k!}\) can be uniquely extended to polynomial functions in \(x \in K\), we may in general define \[ \theta_\lambda(u) = \sum_{i_1, \ldots, i_r \ge 0} \binom{\lambda_1}{i_1} \cdots \binom{\lambda_r}{i_r} \operatorname{ad}(F_{\beta_1})^{i_1} \cdots \operatorname{ad}(F_{\beta_r})^{i_r} r F_{\beta_1}^{- i_1} \cdots F_{\beta_r}^{- i_r} \] for \(\lambda_1, \ldots, \lambda_r \in K\), \(\lambda = \lambda_1 \beta_1 + \cdots + \lambda_r \beta_r \in \mathfrak{h}^*\). It is clear that the \(\theta_\lambda\) are endomorphisms. To see that the \(\theta_\lambda\) are indeed automorphisms, notice \(\theta_{- k_1 \beta_1 - \cdots - k_r \beta_r} = \theta_{k_1 \beta_1 + \cdots + k_r \beta_r}^{-1}\). The uniqueness of the polynomial extensions then implies \(\theta_{- \lambda} = \theta_\lambda^{-1}\) in general: given \(u \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\), the map \begin{align*} \mathfrak{h}^* & \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ \lambda & \mapsto \theta_\lambda(\theta_{-\lambda}(u)) - u \end{align*} is a polynomial extension of the zero map \(\mathbb{Z} \beta_1 \oplus \cdots \oplus \mathbb{Z} \beta_r \to \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) and is therefore identically zero. Finally, let \(N\) be a \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module whose restriction is a weight module. If \(n \in N\) then \[ n \in \twisted{N}{\theta_\lambda}_{\mu + \lambda} \iff \theta_\lambda(H) \cdot n = (\mu + \lambda)(H) n \, \forall H \in \mathfrak{h} \] But \[ \theta_\beta(H) = F_\beta H F_\beta^{-1} = ([F_\beta, H] + H F_\beta) F_\beta^{-1} = (\beta(H) + H) F_\beta F_\beta^{-1} = \beta(H) + H \] for all \(H \in \mathfrak{h}\) and \(\beta \in \Sigma\). In general, \(\theta_\lambda(H) = \lambda(H) + H\) for all \(\lambda \in \mathfrak{h}^*\) and hence \[ \begin{split} n \in \twisted{N}{\theta_\lambda}_{\mu + \lambda} & \iff (\lambda(H) + H) \cdot n = (\mu + \lambda)(H) n \; \forall H \in \mathfrak{h} \\ & \iff H \cdot n = \mu(H) n \; \forall H \in \mathfrak{h} \\ & \iff n \in N_\mu \end{split}, \] so that \(\twisted{N}{\theta_\lambda}_{\mu + \lambda} = N_\mu\). \end{proof} It should now be obvious\dots \begin{proposition}[Mathieu]\label{thm:coh-ext-exists} There exists a coherent extension \(\mathcal{M}\) of \(M\). \end{proposition} \begin{proof} Take\footnote{Here we fix some $\lambda_\xi \in \xi$ for each $Q$-coset $\xi \in \mfrac{\mathfrak{h}^*}{Q}$. While there is a natural isomorphism $\twisted{(\Sigma^{-1} M)}{\theta_\lambda} \isoto \twisted{(\Sigma^{-1} M)}{\theta_\mu}$ for each $\mu \in \lambda + Q$, they are not the same \(\mathfrak{g}\)-modules strictly speaking. This is yet another obstruction to the functoriality of our constructions.} \[ \mathcal{M} = \bigoplus_{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q}} \twisted{(\Sigma^{-1} M)}{\theta_\lambda} \] It is clear \(M\) lies in \(\Sigma^{-1} M = \twisted{(\Sigma^{-1} M)}{\theta_0}\) and therefore \(M \subset \mathcal{M}\). On the other hand, \(\dim \mathcal{M}_\mu = \dim \twisted{(\Sigma^{-1} M)}{\theta_\lambda}_\mu = \dim \Sigma^{-1} M_{\mu - \lambda} = d\) for all \(\mu \in \lambda + Q\) -- \(\lambda\) standing for some fixed representative of its \(Q\)-coset. Furthermore, given \(u \in \mathcal{U}(\mathfrak{g})_0\) and \(\mu \in \lambda + Q\), \[ \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu}) = \operatorname{Tr} (\theta_\lambda(u)\!\restriction_{\Sigma^{-1} M_{\mu - \lambda}}) \] is polynomial in \(\mu\) because of the second item of Proposition~\ref{thm:nice-automorphisms-exist}. \end{proof} Lo and behold\dots \begin{theorem}[Mathieu]\label{thm:mathieu-ext-exists-unique}\index{coherent family!Mathieu's \(\mExt\) coherent extension} There exists a unique semisimple coherent extension \(\mExt(M)\) of \(M\). More precisely, if \(\mathcal{M}\) is any coherent extension of \(M\), then \(\mathcal{M}^{\operatorname{ss}} \cong \mExt(M)\). Furthermore, \(\mExt(M)\) is an irreducible coherent family. \end{theorem} \begin{proof} The existence part should be clear from the previous discussion: it suffices to fix some coherent extension \(\mathcal{M}\) of \(M\) and take \(\mExt(M) = \mathcal{M}^{\operatorname{ss}}\). To see that \(\mExt(M)\) is irreducible, recall from Corollary~\ref{thm:bounded-is-submod-of-extension} that \(M\) is a \(\mathfrak{g}\)-submodule of \(\mExt(M)\). Since the degree of \(M\) is the same as the degree of \(\mExt(M)\), some of its weight spaces have maximal dimension inside of \(\mExt(M)\). In particular, it follows from Lemma~\ref{thm:centralizer-multiplicity} that \(\mExt(M)_\lambda = M_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module for some \(\lambda \in \operatorname{supp} M\). As for the uniqueness of \(\mExt(M)\), fix some other semisimple coherent extension \(\mathcal{N}\) of \(M\). We claim that the multiplicity of a given simple \(\mathfrak{g}\)-module \(L\) in \(\mathcal{N}\) is determined by its \emph{trace function} \begin{align*} \mathfrak{h}^* \times \mathcal{U}(\mathfrak{g})_0 & \to K \\ (\lambda, u) & \mapsto \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda}) \end{align*} It is a well known fact of the theory of modules that, given an associative \(K\)-algebra \(A\), a finite-dimensional semisimple \(A\)-module \(L\) is determined, up to isomorphism, by its \emph{character} \begin{align*} \chi_L : A & \to K \\ a & \mapsto \operatorname{Tr}(a\!\restriction_L) \end{align*} In particular, the multiplicity of \(L\) in \(\mathcal{N}\), which is the same as the multiplicity of \(L_\lambda\) in \(\mathcal{N}_\lambda\), is determined by the character \(\chi_{\mathcal{N}_\lambda} : \mathcal{U}(\mathfrak{g})_0 \to K\). Since this holds for all simple weight \(\mathfrak{g}\)-modules, it follows that \(\mathcal{N}\) is determined by its trace function. Of course, the same holds for \(\mExt(M)\). We now claim that the trace function of \(\mathcal{N}\) is the same as that of \(\mExt(M)\). Clearly, \(\operatorname{Tr}(u\!\restriction_{\mExt(M)_\lambda}) = \operatorname{Tr}(u\!\restriction_{M_\lambda}) = \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda})\) for all \(\lambda \in \operatorname{supp}_{\operatorname{ess}} M\), \(u \in \mathcal{U}(\mathfrak{g})_0\). Since the essential support of \(M\) is Zariski-dense and the maps \(\lambda \mapsto \operatorname{Tr}(u\!\restriction_{\mExt(M)_\lambda})\) and \(\lambda \mapsto \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda})\) are polynomial in \(\lambda \in \mathfrak{h}^*\), it follows that these maps coincide for all \(u\). In conclusion, \(\mathcal{N} \cong \mExt(M)\) and \(\mExt(M)\) is unique. \end{proof} A sort of ``reciprocal'' of Theorem~\ref{thm:mathieu-ext-exists-unique} also holds. Namely\dots \begin{proposition}\label{thm:coherent-families-are-all-ext} Let \(\mathcal{M}\) be a semisimple irreducible coherent family and \(M \subset \mathcal{M}\) be an infinite-dimensional simple submodule. Then \(\mathcal{M} \cong \mExt(M)\). In particular, all semisimple coherent families have the form \(\mathcal{M} \cong \mExt(M)\) for some simple bounded \(\mathfrak{g}\)-module \(M\). \end{proposition} \begin{proof} Since \(M \subset \mathcal{M}\), \(M\) is bounded and \(\operatorname{supp}_{\operatorname{ess}} M\) is Zariski-dense. In addition, it follows from Lemma~\ref{thm:set-of-simple-u0-mods-is-open} that \(U = \{\lambda \in \mathfrak{h}^* : \mathcal{M}_\lambda \ \text{is a simple $\mathcal{U}(\mathfrak{g})_0$-module}\}\) is a Zariski-open subset -- which is non-empty since \(\mathcal{M}\) is irreducible. Hence there is some \(\lambda \in \operatorname{supp}_{\operatorname{ess}} M \cap U\). In particular, there is some \(\lambda \in \operatorname{supp}_{\operatorname{ess}} M\) such that \(M_\lambda = \mathcal{M}_\lambda\) and thus \(\deg M = \dim \mathcal{M}_\lambda = \deg \mathcal{M}\). This implies that \(\mathcal{M}\) is a coherent extension of \(M\), so that by the uniqueness of semisimple irreducible coherent extensions we get \(\mathcal{M} \cong \mExt(M)\). \end{proof} Having thus reduced the problem of classifying the cuspidal \(\mathfrak{g}\)-modules to that of understanding semisimple irreducible coherent families, the only remaining question for us to tackle is: what are the coherent \(\mathfrak{g}\)-families? This turns out to be a decently complicated question on its own, and we will require a full chapter to answer it. This will be the focus of our final chapter.