lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

NameSizeMode
..
sections/simple-weight.tex 81392B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
\chapter{Simple Weight Modules}\label{ch:mathieu}

In this chapter we will expand our results on finite-dimensional simple modules
of semisimple Lie algebras by considering \emph{infinite-dimensional}
\(\mathfrak{g}\)-modules, which introduces numerous complications to our
analysis.

For instance, in the infinite-dimensional setting we can no longer take
complete-reducibility for granted. Indeed, we have seen that even if
\(\mathfrak{g}\) is a semisimple Lie algebra, there are infinite-dimensional
\(\mathfrak{g}\)-modules which are not semisimple. For a counterexample look no
further than Example~\ref{ex:regular-mod-is-not-semisimple}: the regular
\(\mathfrak{g}\)-module \(\mathcal{U}(\mathfrak{g})\) is never semisimple.
Nevertheless, for simplicity -- or shall we say \emph{semisimplicity} -- we
will focus exclusively on \emph{semisimple} \(\mathfrak{g}\)-modules. Our
strategy is, once again, that of classifying simple modules. The regular
\(\mathfrak{g}\)-module hides further unpleasant surprises, however: recall
from Example~\ref{ex:regular-mod-is-not-weight-mod} that
\[
  \bigoplus_\lambda \mathcal{U}(\mathfrak{g})_\lambda
  = 0
  \subsetneq \mathcal{U}(\mathfrak{g})
\]
and the weight space decomposition fails for \(\mathcal{U}(\mathfrak{g})\).

Indeed, our proof of the weight space decomposition in the finite-dimensional
case relied heavily in the simultaneous diagonalization of commuting operators
in a finite-dimensional space. Even if we restrict ourselves to simple modules,
there is still a diverse spectrum of counterexamples to
Corollary~\ref{thm:finite-dim-is-weight-mod} in the infinite-dimensional
setting. For instance, any \(\mathfrak{g}\)-module \(M\) whose restriction to
\(\mathfrak{h}\) is a free module satisfies \(M_\lambda = 0\) for all
\(\lambda\) as in Example~\ref{ex:regular-mod-is-not-weight-mod}. These are
called \emph{\(\mathfrak{h}\)-free \(\mathfrak{g}\)-modules}, and rank \(1\)
simple \(\mathfrak{h}\)-free \(\mathfrak{sp}_{2 n}(K)\)-modules where first
classified by Nilsson in \cite{nilsson}. Dimitar's construction of the so
called \emph{exponential tensor \(\mathfrak{sl}_n(K)\)-modules} in
\cite{dimitar-exp} is also an interesting source of counterexamples.

Since the weight space decomposition was perhaps the single most instrumental
ingredient of our previous analysis, it is only natural to restrict ourselves
to the case it holds. This brings us to the following definition.

\begin{definition}\label{def:weight-mod}\index{\(\mathfrak{g}\)-module!weight modules}\index{weights!weight modules}\index{\(\mathfrak{g}\)-module!(essential) support}
  A \(\mathfrak{g}\)-module \(M\) is called a \emph{weight
  \(\mathfrak{g}\)-module} if \(M = \bigoplus_{\lambda \in \mathfrak{h}^*}
  M_\lambda\) and \(\dim M_\lambda < \infty\) for all \(\lambda \in
  \mathfrak{h}^*\). The \emph{support of \(M\)} is the set
  \(\operatorname{supp} M = \{\lambda \in \mathfrak{h}^* : M_\lambda \ne 0\}\).
\end{definition}

\begin{example}
  Corollary~\ref{thm:finite-dim-is-weight-mod} is equivalent to the fact that
  every finite-dimensional module of a semisimple Lie algebra is a weight
  module. More generally, every finite-dimensional simple module of a reductive
  Lie algebra is a weight module.
\end{example}

\begin{example}\label{ex:reductive-alg-equivalence}
  We have seen that every finite-dimensional \(\mathfrak{g}\)-module is a
  weight module for semisimple \(\mathfrak{g}\). In particular, if
  \(\mathfrak{g}\) is finite-dimensional then the adjoint
  \(\mathfrak{g}\)-module \(\mathfrak{g}\) is a weight module. More generally,
  a finite-dimensional Lie algebra \(\mathfrak{g}\) is reductive if, and only
  if the adjoint \(\mathfrak{g}\)-module \(\mathfrak{g}\) is a weight module,
  in which case its weight spaces are given by the root spaces of
  \(\mathfrak{g}\)
\end{example}

\begin{example}
  Proposition~\ref{thm:high-weight-mod-is-weight-mod} is equivalent to the fact
  that any highest weight \(\mathfrak{g}\)-module \(M\) of highest weight
  \(\lambda\) is a weight module whose support is contained in \(\lambda +
  \mathbb{N} \Delta^- = \{\lambda - k_n \alpha_1 - \cdots - k_n \alpha_n :
  \alpha_i \in \Delta^+, k_i \in \mathbb{Z}, k_i \ge 0\}\). In particular,
  Verma modules are weight modules.
\end{example}

\begin{example}\label{ex:submod-is-weight-mod}
  Proposition~\ref{thm:max-verma-submod-is-weight} implies that the unique
  maximal submodule \(N(\lambda)\) of \(M(\lambda)\) is a weight module. In
  fact, the proof of Proposition~\ref{thm:max-verma-submod-is-weight} can be
  generalized to show that every submodule \(N \subset M\) of a weight module
  \(M\) is a weight module, and \(N_\lambda = M_\lambda \cap N\) for all
  \(\lambda \in \mathfrak{h}^*\).
\end{example}

\begin{example}\label{ex:quotient-is-weight-mod}
  Given a weight module \(M\), a submodule \(N \subset M\) and \(\lambda \in
  \mathfrak{h}^*\), it is clear that \(\mfrac{M_\lambda}{N} \subset
  \left(\mfrac{M}{N}\right)_\lambda\). In addition, \(\mfrac{M}{N} =
  \bigoplus_{\lambda \in \mathfrak{h}^*} \mfrac{M_\lambda}{N}\). Hence
  \(\mfrac{M}{N}\) is weight \(\mathfrak{g}\)-module with
  \(\left(\mfrac{M}{N}\right)_\lambda = \mfrac{M_\lambda}{N} \cong
  \mfrac{M_\lambda}{N_\lambda}\).
\end{example}

\begin{example}\label{ex:tensor-prod-of-weight-is-weight}
  Let \(\mathfrak{g}_1\) and \(\mathfrak{g}_2\) be Lie algebras, \(M_1\) be a
  weight \(\mathfrak{g}_1\)-module and \(M_2\) a weight
  \(\mathfrak{g}_2\)-module. Recall from Example~\ref{ex:cartan-direct-sum}
  that if \(\mathfrak{h}_i \subset \mathfrak{g}_i\) are Cartan subalgebras then
  \(\mathfrak{h} = \mathfrak{h}_1 \oplus \mathfrak{h}_2\) is a Cartan
  subalgebra of \(\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2\) with
  \(\mathfrak{h}^* = \mathfrak{h}_1^* \oplus \mathfrak{h}_2^*\). In this
  setting, one can readily check that \(M_1 \otimes M_2\) is a weight
  \(\mathfrak{g}\)-module with
  \[
    (M_1 \otimes M_2)_{\lambda_1 + \lambda_2}
    = (M_1)_{\lambda_1} \otimes (M_2)_{\lambda_2}
  \]
  for all \(\lambda_i \in \mathfrak{h}_i^*\) and \(\operatorname{supp} (M_1
  \otimes M_2) = \operatorname{supp} M_1 \oplus \operatorname{supp} M_2 = \{
  \lambda_1 + \lambda_2 : \lambda_i \in \operatorname{supp} M_i \subset
  \mathfrak{h}_i^*\}\).
\end{example}

\begin{example}\label{thm:simple-weight-mod-is-tensor-prod}
  Let \(\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{s}_1 \oplus \cdots \oplus
  \mathfrak{s}_r\) be a reductive Lie algebra, where \(\mathfrak{z}\) is the
  center of \(\mathfrak{g}\) and \(\mathfrak{s}_1, \ldots, \mathfrak{s}_r\) are
  its simple components. As in
  Example~\ref{ex:all-simple-reps-are-tensor-prod}, any simple weight
  \(\mathfrak{g}\)-module \(M\) can be decomposed as
  \[
    M \cong Z \otimes M_1 \otimes \cdots \otimes M_r
  \]
  where \(Z\) is a \(1\)-dimensional representation of \(\mathfrak{z}\) and
  \(M_i\) is a simple weight \(\mathfrak{s}_i\)-module. The modules \(Z\) and
  \(M_i\) are uniquely determined up to isomorphism.
\end{example}

\begin{example}\label{ex:adjoint-action-in-universal-enveloping-is-weight}
  We would like to show that the requirement of finite-dimensionality in
  Definition~\ref{def:weight-mod} is not redundant. Let \(\mathfrak{g}\) be a
  finite-dimensional reductive Lie algebra and consider the adjoint
  \(\mathfrak{g}\)-module \(\mathcal{U}(\mathfrak{g})\) -- where \(X \in
  \mathfrak{g}\) acts by taking commutators. Given \(\alpha \in Q\), a simple
  computation shows \(K \langle X_1 \cdots X_n H_1 \cdots H_m : X_i \in
  \mathfrak{g}_{\alpha_i}, H_i \in \mathfrak{h}, \alpha_i \in \Delta, \alpha =
  \alpha_1 + \cdots + \alpha_n \rangle \subset
  \mathcal{U}(\mathfrak{g})_\alpha\). The PBW Theorem and
  Example~\ref{ex:reductive-alg-equivalence} thus imply that
  \(\mathcal{U}(\mathfrak{g}) = \bigoplus_{\alpha \in Q}
  \mathcal{U}(\mathfrak{g})_\alpha\) where \(\mathcal{U}(\mathfrak{g})_\alpha =
  K \langle X_1 \cdots X_n H_1 \cdots H_m : X_i \in \mathfrak{g}_{\alpha_i},
  H_i \in \mathfrak{h}, \alpha_i \in \Delta, \alpha = \alpha_1 + \cdots +
  \alpha_n \rangle\). However, \(\dim \mathcal{U}(\mathfrak{g})_\alpha =
  \infty\). For instance, \(\mathcal{U}(\mathfrak{g})_0\) is \emph{precisely}
  the commutator of \(\mathfrak{h}\) in \(\mathcal{U}(\mathfrak{g})\), which
  contains \(\mathcal{U}(\mathfrak{h})\) and is therefore infinite-dimensional.
\end{example}

\begin{note}
  We should stress that the weight spaces \(M_\lambda \subset M\) of a given
  weight \(\mathfrak{g}\)-module \(M\) are \emph{not}
  \(\mathfrak{g}\)-submodules. Nevertheless, \(M_\lambda\) is a
  \(\mathfrak{h}\)-submodule. More generally, \(M_\lambda\) is a
  \(\mathcal{U}(\mathfrak{g})_0\)-submodule, where
  \(\mathcal{U}(\mathfrak{g})_0\) is the centralizer of \(\mathfrak{h}\) in
  \(\mathcal{U}(\mathfrak{g})\) -- which coincides with the weight space of \(0
  \in \mathfrak{h}^*\) in the adjoint \(\mathfrak{g}\)-module
  \(\mathcal{U}(\mathfrak{g})\), as seen in
  Example~\ref{ex:adjoint-action-in-universal-enveloping-is-weight}.
\end{note}

A particularly well behaved class of examples are the so called
\emph{bounded} modules.

\begin{definition}\index{\(\mathfrak{g}\)-module!bounded modules}\index{\(\mathfrak{g}\)-module!(essential) support}
  A weight \(\mathfrak{g}\)-module \(M\) is called \emph{bounded} if \(\dim
  M_\lambda\) is bounded. The lowest upper bound \(\deg M\) for \(\dim
  M_\lambda\) is called \emph{the degree of \(M\)}. The \emph{essential
  support} of \(M\) is the set \(\operatorname{supp}_{\operatorname{ess}} M =
  \{ \lambda \in \mathfrak{h}^* : \dim M_\lambda = \deg M \}\).
\end{definition}

\begin{example}\label{ex:supp-ess-of-tensor-is-product}
  Let \(\mathfrak{g}_1\) and \(\mathfrak{g}_2\) be Lie algebras with Cartan
  subalgebras \(\mathfrak{h}_i \subset \mathfrak{g}_i\) and take \(\mathfrak{g}
  = \mathfrak{g}_1 \oplus \mathfrak{g}_2\). Given bounded
  \(\mathfrak{g}_i\)-modules \(M_i\), it follows from
  Example~\ref{ex:tensor-prod-of-weight-is-weight} that \(M_1 \otimes M_2\) is
  a bounded \(\mathfrak{g}\)-module with \(\deg M_1 \otimes M_2 = \deg M_1
  \cdot \deg M_2\) and
  \[
    \operatorname{supp}_{\operatorname{ess}} (M_1 \otimes M_2)
    = \operatorname{supp}_{\operatorname{ess}} M_1 \oplus
      \operatorname{supp}_{\operatorname{ess}} M_2
    = \{
        \lambda_1 + \lambda_2 : \lambda_i \in
        \operatorname{supp}_{\operatorname{ess}} M_i \subset \mathfrak{h}_i^*
      \}
  \]
\end{example}

\begin{example}\label{ex:laurent-polynomial-mod}
  There is a natural action of \(\mathfrak{sl}_2(K)\) on the space \(K[x,
  x^{-1}]\) of Laurent polynomials, given by the formulas in
  (\ref{eq:laurent-polynomials-cusp-mod}). One can quickly verify \(K[x,
  x^{-1}]_{2 k} = K x^k\) and \(K[x, x^{-1}]_\lambda = 0\) for any \(\lambda
  \notin 2 \mathbb{Z}\), so that \(K[x, x^{-1}] = \bigoplus_{k \in \mathbb{Z}}
  K x^k\) is a degree \(1\) bounded weight \(\mathfrak{sl}_2(K)\)-module. It
  follows from the remark at the end of Example~\ref{ex:submod-is-weight-mod}
  that any nonzero submodule \(N \subset K[x, x^{-1}]\) must contain a
  monomial \(x^k\). But since the operators \(-\frac{\mathrm{d}}{\mathrm{d}x} +
  \frac{x^{-1}}{2}, x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x}{2} : K[x,
  x^{-1}] \to K[x, x^{-1}]\) are both injective, this implies all other
  monomials can be found in \(N\) by successively applying \(f\) and \(e\).
  Hence \(N = K[x, x^{-1}]\) and \(K[x, x^{-1}]\) is a simple module.
  \begin{align}\label{eq:laurent-polynomials-cusp-mod}
    e \cdot p
    & = \left( x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x}{2} \right) p &
    f \cdot p
    & = \left(- \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x^{-1}}{2} \right) p &
    h \cdot p
    & = 2 x \frac{\mathrm{d}}{\mathrm{d}x} p
  \end{align}
\end{example}

Notice that the support of \(K[x, x^{-1}]\) is the trivial \(2
\mathbb{Z}\)-coset \(0 + 2 \mathbb{Z}\). This is representative of the general
behavior in the following sense: if \(M\) is a simple weight
\(\mathfrak{g}\)-module, since \(M[\lambda] = \bigoplus_{\alpha \in Q}
M_{\lambda + \alpha}\) is stable under the action of \(\mathfrak{g}\) for all
\(\lambda \in \mathfrak{h}^*\), \(\bigoplus_{\alpha \in Q} M_{\lambda +
\alpha}\) is either \(0\) or all of \(M\). In other words, the support of a
simple weight module is always contained in a single \(Q\)-coset.

However, the behavior of \(K[x, x^{-1}]\) deviates from that of an arbitrary
bounded \(\mathfrak{g}\)-module in the sense its essential support is
precisely the entire \(Q\)-coset it inhabits -- i.e.
\(\operatorname{supp}_{\operatorname{ess}} K[x, x^{-1}] = 2 \mathbb{Z}\). This
isn't always the case. Nevertheless, in general we find\dots

\begin{proposition}\label{thm:ess-supp-is-zariski-dense}
  Let \(\mathfrak{g}\) be a finite-dimensional semisimple Lie algebra and \(M\)
  be a simple infinite-dimensional bounded \(\mathfrak{g}\)-module. The
  essential support \(\operatorname{supp}_{\operatorname{ess}} M\) is
  Zariski-dense\footnote{Any choice of basis for $\mathfrak{h}^*$ induces a
  $K$-linear isomorphism $\mathfrak{h}^* \isoto K^n$. In particular, a choice
  of basis induces a unique topology in $\mathfrak{h}^*$ such that the map
  $\mathfrak{h}^* \to K^n$ is a homeomorphism onto $K^n$ with the Zariski
  topology. Any two basis induce the same topology in $\mathfrak{h}^*$, which
  we call \emph{the Zariski topology of $\mathfrak{h}^*$}.} in
  \(\mathfrak{h}^*\).
\end{proposition}

This proof was deemed too technical to be included in here, but see Proposition
3.5 of \cite{mathieu} for the case where \(\mathfrak{g} = \mathfrak{s}\) is a
simple Lie algebra. The general case then follows from
Example~\ref{thm:simple-weight-mod-is-tensor-prod},
Example~\ref{ex:supp-ess-of-tensor-is-product} and the asserting that the
product of Zariski-dense subsets in \(K^n\) and \(K^m\) is Zariski-dense in
\(K^{n + m} = K^n \times K^m\).

We now begin a systematic investigation of the problem of classifying the
infinite-dimensional simple weight modules of a given Lie algebra
\(\mathfrak{g}\). As in the previous chapter, let \(\mathfrak{g}\) be a
finite-dimensional semisimple Lie algebra. As a first approximation of a
solution to our problem, we consider the Verma modules \(M(\lambda)\) for
\(\lambda \in \mathfrak{h}^*\) which is not dominant integral. After all, the
simple quotients of Verma modules form a remarkably large class of
infinite-dimensional simple weight modules -- at least as large as
\(\mathfrak{h}^* \setminus P^+\)! More generally, the induction functor
\(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} :
\mathfrak{b}\text{-}\mathbf{Mod} \to \mathfrak{g}\text{-}\mathbf{Mod}\) has
proven itself a powerful tool for constructing modules.

We claim this is not an unmotivated guess. Specifically, there are very good
reasons behind the choice to consider induction over the Borel subalgebra
\(\mathfrak{b} \subset \mathfrak{g}\). First, the fact that \(\mathfrak{h}
\subset \mathfrak{g}\) affords us great control over the weight spaces of
\(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M\): by assigning a
prescribed action of \(\mathfrak{h}\) to \(M\) we can ensure that
\(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M = \bigoplus_\lambda
(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M)_\lambda\). In addition, we
have seen in the proof of Proposition~\ref{thm:high-weight-mod-is-weight-mod}
that by requiring that the positive part of \(\mathfrak{b}\) acts on \(M\) by
zero we can ensure that \(\dim
(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M)_\lambda < \infty\). All in
all, the nature of \(\mathfrak{b}\) affords us just enough control to guarantee
that \(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M\) is a weight module
for sufficiently well behaved \(M\).

Unfortunately for us, this is still too little control: there are simple weight
modules which are not of the form \(L(\lambda)\). More generally, we may
consider induction over some parabolic subalgebra \(\mathfrak{p} \subset
\mathfrak{g}\) -- i.e. some subalgebra such that \(\mathfrak{p} \supset
\mathfrak{b}\). This leads us to the following definition.

\begin{definition}\index{\(\mathfrak{g}\)-module!(generalized) Verma modules}
  Let \(\mathfrak{p} \subset \mathfrak{g}\) be a parabolic subalgebra and \(M\)
  be a simple \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module. We
  can view \(M\) as a \(\mathfrak{p}\)-module where
  \(\mathfrak{nil}(\mathfrak{p})\) acts by zero by setting \(X \cdot m = (X +
  \mathfrak{nil}(\mathfrak{p})) \cdot m\) for all \(m \in M\) and \(X \in
  \mathfrak{p}\) -- which is the same as the \(\mathfrak{p}\)-module given by
  composing the action map \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}
  \to \mathfrak{gl}(M)\) with the projection \(\mathfrak{p} \to
  \mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\). The module
  \(M_{\mathfrak{p}}(M) = \operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}} M\)
  is called \emph{generalized Verma module associated with \(M\)}.
\end{definition}

\begin{example}
  It is not hard to see that
  \(\mfrac{\mathfrak{b}}{\mathfrak{nil}(\mathfrak{b})} = \mathfrak{h}\). If we
  take \(\lambda \in \mathfrak{h}^*\) and let \(K m^+\) be the
  \(1\)-dimensional \(\mathfrak{h}\)-module where \(\mathfrak{h}\) acts by
  \(\lambda\) then \(M(\lambda) = M_{\mathfrak{b}}(K m^+)\).
\end{example}

As promised, \(M_{\mathfrak{p}}(M)\) is generally well behaved for well behaved
\(M\). In particular, if \(M\) is highest weight
\(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module then
\(M_{\mathfrak{p}}(M)\) is also a highest weight \(\mathfrak{g}\)-module, and
if \(M\) is a weight
\(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module then
\(M_{\mathfrak{p}}(M)\) is a weight module with \(M_{\mathfrak{p}}(M)_\lambda =
\sum_{\alpha + \mu = \lambda} \mathcal{U}(\mathfrak{g})_\alpha
\otimes_{\mathcal{U}(\mathfrak{p})} M_\mu\), -- see Lemma 1.1 of \cite{mathieu}
for a full proof. However, \(M_{\mathfrak{p}}(M)\) is not simple in general.
Indeed, regular Verma modules not necessarily simple. This issue may be dealt
with by passing to the simple quotients of \(M_{\mathfrak{p}}(M)\).

Let \(M\) be a simple weight
\(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module. As it turns out,
the situation encountered in Proposition~\ref{thm:max-verma-submod-is-weight}
is also verified in the general setting. Namely, since \(M_{\mathfrak{p}}(M)\)
is generated by \(K \otimes_{\mathcal{U}(\mathfrak{p})} M = \bigoplus_{\lambda
\in Q + \operatorname{supp} M} M_{\mathfrak{p}}(M)_\lambda\), it follows that
any proper submodule of \(M_{\mathfrak{p}}(M)\) is contained in
\(\bigoplus_{\lambda \notin Q + \operatorname{supp} M}
M_{\mathfrak{p}}(M)_\lambda\). The sum \(N_{\mathfrak{p}}(M)\) of all such
submodules is thus the unique maximal submodule of \(M_{\mathfrak{p}}(M)\) and
\(L_{\mathfrak{p}}(M) = \mfrac{M_{\mathfrak{p}}(M)}{N_{\mathfrak{p}}(M)}\) is
its unique simple quotient -- again, we refer the reader to \cite{mathieu} for
a complete proof. This leads us to the following definition.

\begin{definition}\index{\(\mathfrak{g}\)-module!parabolic induced modules}\index{\(\mathfrak{g}\)-module!cuspidal modules}
  A simple weight \(\mathfrak{g}\)-module is called \emph{parabolic induced} if
  it is isomorphic to \(L_{\mathfrak{p}}(M)\) for some proper parabolic
  subalgebra \(\mathfrak{p} \subsetneq \mathfrak{g}\) and some simple weight
  \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module \(M\). A
  \emph{cuspidal \(\mathfrak{g}\)-module} is a simple weight
  \(\mathfrak{g}\)-module which is \emph{not} parabolic induced.
\end{definition}

The first breakthrough regarding our classification problem was given by
Fernando in his now infamous paper \citetitle{fernando} \cite{fernando}, where
he proved that every simple weight \(\mathfrak{g}\)-module is parabolic
induced by a cuspidal module.

\begin{theorem}[Fernando]
  Any simple weight \(\mathfrak{g}\)-module is isomorphic to
  \(L_{\mathfrak{p}}(M)\) for some parabolic subalgebra \(\mathfrak{p} \subset
  \mathfrak{g}\) and some cuspidal
  \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module \(M\).
\end{theorem}

We should point out that the relationship between simple weight
\(\mathfrak{g}\)-modules and pairs \((\mathfrak{p}, M)\) is not one-to-one.
Nevertheless, this relationship is well understood. Namely, Fernando himself
established\dots

\begin{proposition}[Fernando]
  Given a parabolic subalgebra \(\mathfrak{p} \subset \mathfrak{g}\), there
  exists a basis \(\Sigma\) for \(\Delta\) such that \(\Sigma \subset
  \Delta_{\mathfrak{p}} \subset \Delta\), where \(\Delta_{\mathfrak{p}}\)
  denotes the set of roots of \(\mathfrak{p}\). Furthermore, if \(\mathfrak{p}'
  \subset \mathfrak{g}\) is another parabolic subalgebra, \(M\) is a cuspidal
  \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module and \(N\) is a
  cuspidal \(\mfrac{\mathfrak{p}'}{\mathfrak{nil}(\mathfrak{p}')}\)-module then
  \(L_{\mathfrak{p}}(M) \cong L_{\mathfrak{p}'}(N)\) if, and only if
  \(\mathfrak{p}' = \twisted{\mathfrak{p}}{\sigma}\) and \(M \cong
  \twisted{N}{\sigma}\) as \(\mathfrak{p}\)-modules for some\footnote{Here
  $\twisted{\mathfrak{p}}{\sigma}$ denotes the image of $\mathfrak{p}$ under
  the automorphism of $\sigma : \mathfrak{g} \to \mathfrak{g}$ given by the
  canonical action of $W$ on $\mathfrak{g}$ and $\twisted{N}{\sigma}$ is the
  $\mathfrak{p}$-module given by composing the map $\mathfrak{p}' \to
  \mathfrak{gl}(N)$ with the restriction $\sigma\!\restriction_{\mathfrak{p}} :
  \mathfrak{p} \to \mathfrak{p}'$.} \(\sigma \in W_M\), where
  \[
    W_M
    = \langle
      \sigma_\beta : \beta \in \Sigma, H_\beta + \mathfrak{nil}(\mathfrak{p})
      \ \text{is central in}\ \mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}
      \ \text{and}\ H_\beta\ \text{acts on \(M\) as a positive integer}
      \rangle
    \subset W
  \]
\end{proposition}

\begin{note}
  The definition of the subgroup \(W_M \subset W\) is independent of the choice
  of basis \(\Sigma\).
\end{note}

As a first consequence of Fernando's Theorem, we provide two alternative
characterizations of cuspidal modules.

\begin{corollary}[Fernando]\label{thm:cuspidal-mod-equivs}
  Let \(M\) be a simple weight \(\mathfrak{g}\)-module. The following
  conditions are equivalent.
  \begin{enumerate}
    \item \(M\) is cuspidal.
    \item \(F_\alpha\) acts injectively on \(M\) for all
      \(\alpha \in \Delta\).
    \item The support of \(M\) is precisely one \(Q\)-coset.
  \end{enumerate}
\end{corollary}

\begin{example}
  As noted in Example~\ref{ex:laurent-polynomial-mod}, the element \(f \in
  \mathfrak{sl}_2(K)\) acts injectively on the space of Laurent polynomials.
  Hence \(K[x, x^{-1}]\) is a cuspidal \(\mathfrak{sl}_2(K)\)-module.
\end{example}

Having reduced our classification problem to that of classifying cuspidal
modules, we are now faced the daunting task of actually classifying them.
Historically, this was first achieved by Olivier Mathieu in the early 2000's in
his paper \citetitle{mathieu} \cite{mathieu}. To do so, Mathieu introduced new
tools which have since proved themselves remarkably useful throughout the
field, known as\dots

\section{Coherent Families}

We begin our analysis with a simple question: how to do we go about
constructing cuspidal modules? Specifically, given a cuspidal
\(\mathfrak{g}\)-module, how can we use it to produce new cuspidal modules? To
answer this question, we look back at the single example of a cuspidal module
we have encountered so far: the \(\mathfrak{sl}_2(K)\)-module \(K[x, x^{-1}]\)
of Laurent polynomials -- i.e. Example~\ref{ex:laurent-polynomial-mod}.

Our first observation is that \(\mathfrak{sl}_2(K)\) acts on \(K[x, x^{-1}]\)
via differential operators. In other words, the action map
\(\mathcal{U}(\mathfrak{sl}_2(K)) \to \operatorname{End}(K[x, x^{-1}])\)
factors through the inclusion of the algebra \(\operatorname{Diff}(K[x,
x^{-1}]) = K\left[x, x^{-1}, \frac{\mathrm{d}}{\mathrm{d}x}\right]\) of
differential operators in \(K[x, x^{-1}]\).
\begin{center}
  \begin{tikzcd}
    \mathcal{U}(\mathfrak{sl}_2(K))   \rar &
    \operatorname{Diff}(K[x, x^{-1}]) \rar &
    \operatorname{End}(K[x, x^{-1}])
  \end{tikzcd}
\end{center}

The space \(K[x, x^{-1}]\) can be regarded as a \(\operatorname{Diff}(K[x,
x^{-1}])\)-module in the natural way, and we can produce new
\(\operatorname{Diff}(K[x, x^{-1}])\)-modules by twisting \(K[x, x^{-1}]\) by
automorphisms of \(\operatorname{Diff}(K[x, x^{-1}])\). For example, given
\(\lambda \in K\) we may take the automorphism
\begin{align*}
  \varphi_\lambda : \operatorname{Diff}(K[x, x^{-1}]) &
  \to \operatorname{Diff}(K[x, x^{-1}]) \\
  x & \mapsto x \\
  x^{-1} & \mapsto x^{-1} \\
  \frac{\mathrm{d}}{\mathrm{d} x} & \mapsto \frac{\mathrm{d}}{\mathrm{d} x} +
  \frac{\lambda}{2} x^{-1}
\end{align*}
and consider the twisted module \(\twisted{K[x, x^{-1}]}{\varphi_\lambda} =
K[x, x^{-1}]\), where some operator \(P \in \operatorname{Diff}(K[x, x^{-1}])\)
acts as \(\varphi_\lambda(P)\).

By composing the action map \(\operatorname{Diff}(K[x, x^{-1}]) \to
\operatorname{End}(\twisted{K[x, x^{-1}]}{\varphi_\lambda})\) with the
homomorphism of algebras \(\mathcal{U}(\mathfrak{sl}_2(K)) \to
\operatorname{Diff}(K[x, x^{-1}])\) we can give \(\twisted{K[x,
x^{-1}]}{\varphi_\lambda}\) the structure of an \(\mathfrak{sl}_2(K)\)-module.
Diagrammatically, we have
\begin{center}
  \begin{tikzcd}
    \mathcal{U}(\mathfrak{sl}_2(K))   \rar                  &
    \operatorname{Diff}(K[x, x^{-1}]) \rar{\varphi_\lambda} &
    \operatorname{Diff}(K[x, x^{-1}]) \rar                  &
    \operatorname{End}(K[x, x^{-1}])
  \end{tikzcd},
\end{center}
where the maps \(\mathcal{U}(\mathfrak{sl}_2(K)) \to \operatorname{Diff}(K[x,
x^{-1}])\) and \(\operatorname{Diff}(K[x, x^{1}]) \to \operatorname{End}(K[x,
x^{-1}])\) are the ones from the previous diagram.

Explicitly, we find that the action of \(\mathfrak{sl}_2(K)\) on
\(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is given by
\begin{align*}
  p & \overset{e}{\mapsto}
  \left(
  x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{1 + \lambda}{2} x
  \right) p &
  p & \overset{f}{\mapsto}
  \left(
  - \frac{\mathrm{d}}{\mathrm{d}x} + \frac{1 - \lambda}{2} x^{-1}
  \right) p &
  p & \overset{h}{\mapsto}
  \left( 2 x \frac{\mathrm{d}}{\mathrm{d}x} + \lambda \right) p,
\end{align*}
so we can see \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}_{2 k +
\frac{\lambda}{2}} = K x^k\) for all \(k \in \mathbb{Z}\) and \(\twisted{K[x,
x^{-1}]}{\varphi_\lambda}_\mu = 0\) for all other \(\mu \in \mathfrak{h}^*\).

Hence \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is a degree \(1\) bounded
\(\mathfrak{sl}_2(K)\)-module with \(\operatorname{supp} \twisted{K[x,
x^{-1}]}{\varphi_\lambda} = \frac{\lambda}{2} + 2 \mathbb{Z}\). One can also
quickly check that if \(\lambda \notin 1 + 2 \mathbb{Z}\) then \(e\) and \(f\)
act injectively in \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\), so that
\(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is simple. In particular, if
\(\lambda, \mu \notin 1 + 2 \mathbb{Z}\) with \(\lambda \notin \mu + 2
\mathbb{Z}\) then \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) and
\(\twisted{K[x, x^{-1}]}{\varphi_\mu}\) are non-isomorphic cuspidal
\(\mathfrak{sl}_2(K)\)-modules, since their supports differ. These cuspidal
modules can be ``glued together'' in a \emph{monstrous concoction} by summing
over \(\lambda \in K\), as in
\[
  \mathcal{M}
  = \bigoplus_{\lambda + 2 \mathbb{Z} \in \mfrac{K}{2 \mathbb{Z}}}
    \twisted{K[x, x^{-1}]}{\varphi_\lambda},
\]

To a distracted spectator, \(\mathcal{M}\) may look like just another,
innocent, \(\mathfrak{sl}_2(K)\)-module. However, the attentive reader may have
already noticed some of the its bizarre features, most noticeable of which is
the fact that \(\mathcal{M}\) is very big. In fact, \(\mathcal{M}\) is as big a
degree \(1\) bounded module gets: \(\operatorname{supp} \mathcal{M}
= \operatorname{supp}_{\operatorname{ess}} \mathcal{M}\) is the entirety of
\(\mathfrak{h}^*\). This may look very alien the reader familiarized with the
finite-dimensional setting, where the configuration of weights is very rigid.
For this reason, \(\mathcal{M}\) deserves to be called ``a monstrous
concoction''.

On a perhaps less derogatory note, \(\mathcal{M}\) also deserves to be called
\emph{a family}. This is because \(\mathcal{M}\) consists of lots of smaller
cuspidal modules which fit together inside of it in a \emph{coherent} fashion.
Mathieu's ingenious breakthrough was the realization that \(\mathcal{M}\) is a
particular example of a more general pattern, which he named \emph{coherent
families}.

\begin{definition}\index{coherent family}
  A \emph{coherent family \(\mathcal{M}\) of degree \(d\)} is a weight
  \(\mathfrak{g}\)-module \(\mathcal{M}\) such that
  \begin{enumerate}
    \item \(\dim \mathcal{M}_\lambda = d\) for \emph{all} \(\lambda \in
      \mathfrak{h}^*\) -- i.e. \(\operatorname{supp}_{\operatorname{ess}}
      \mathcal{M} = \mathfrak{h}^*\).
    \item For any \(u \in \mathcal{U}(\mathfrak{g})\) in the centralizer
      \(\mathcal{U}(\mathfrak{g})_0\) of \(\mathfrak{h}\) in
      \(\mathcal{U}(\mathfrak{g})\), the map
      \begin{align*}
        \mathfrak{h}^* & \to K \\
               \lambda & \mapsto
               \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\lambda})
      \end{align*}
      is polynomial in \(\lambda\).
  \end{enumerate}
\end{definition}

\begin{example}\label{ex:sl-laurent-family}
  The module \(\mathcal{M} = \bigoplus_{\lambda + 2 \mathbb{Z} \in
  \mfrac{K}{2 \mathbb{Z}}} \twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is a
  degree \(1\) coherent \(\mathfrak{sl}_2(K)\)-family.
\end{example}

\begin{example}
  Given \(\lambda \in K\), \(\mathcal{M}(\lambda) = \bigoplus_{\mu \in K} K
  x^\mu\) with
  \begin{align*}
    p & \overset{e}{\mapsto}
        \left(x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \lambda x\right) p &
    p & \overset{f}{\mapsto}
        \left(-\frac{\mathrm{d}}{\mathrm{d}x} + \lambda x^{-1}\right) p &
    p & \overset{h}{\mapsto} 2 x \frac{\mathrm{d}}{\mathrm{d}x} p,
  \end{align*}
  is a degree \(1\) coherent \(\mathfrak{sl}_2(K)\)-family -- where \(x^{\pm
  1}, \sfrac{\mathrm{d}}{\mathrm{d}x} : \mathcal{M}(\lambda) \to
  \mathcal{M}(\lambda)\) are given by \(x^{\pm 1} x^\mu = x^{\mu \pm 1}\) and
  \(\sfrac{\mathrm{d}}{\mathrm{d}x} x^\mu = \mu x^{\mu - 1}\). It is easy to
  check \(\mathcal{M}\) from Example~\ref{ex:sl-laurent-family} is isomorphic
  to \(\mathcal{M}(\sfrac{1}{2})\) and \((\mathcal{M}(\sfrac{1}{2}))[0] \cong
  K[x, x^{-1}]\).
\end{example}

\begin{note}
  We would like to stress that coherent families have proven themselves useful
  for problems other than the classification of cuspidal
  \(\mathfrak{g}\)-modules. For instance, Nilsson's classification of rank 1
  \(\mathfrak{h}\)-free \(\mathfrak{sp}_{2 n}(K)\)-modules is based on the
  notion of coherent families and the so called \emph{weighting functor}.
\end{note}

Our hope is that given a cuspidal module \(M\), we can somehow fit \(M\) inside
of a coherent \(\mathfrak{g}\)-family, such as in the case of \(K[x, x^{-1}]\)
and \(\mathcal{M}\) from Example~\ref{ex:sl-laurent-family}. In addition, we
hope that such coherent families are somehow \emph{uniquely determined} by
\(M\). This leads us to the following definition.

\begin{definition}\index{coherent family!coherent extension}
  Given a bounded \(\mathfrak{g}\)-module \(M\) of degree \(d\), a
  \emph{coherent extension \(\mathcal{M}\) of \(M\)} is a coherent family
  \(\mathcal{M}\) of degree \(d\) that contains \(M\) as a subquotient.
\end{definition}

Our goal is now showing that every simple bounded module has a coherent
extension. The idea then is to classify coherent families, and classify which
submodules of a given coherent family are actually cuspidal modules. If every
simple bounded \(\mathfrak{g}\)-module fits inside a coherent extension, this
would lead to classification of all cuspidal \(\mathfrak{g}\)-modules, which we
now know is the key for the solution of our classification problem. However,
there are some complications to this scheme.

Leaving aside the question of existence for a second, we should point out that
coherent families turn out to be rather complicated on their own. In fact they
are too complicated to classify in general. Ideally, we would like to find
\emph{nice} coherent extensions -- ones we can actually classify. For instance,
we may search for \emph{irreducible} coherent extensions, which are defined as
follows.

\begin{definition}\index{coherent family!irreducible coherent family}
  A coherent family \(\mathcal{M}\) is called \emph{irreducible} if it contains
  no proper coherent subfamilies -- i.e. \(\mathcal{M}\) is a simple object in
  the full subcategory of \(\mathfrak{g}\text{-}\mathbf{Mod}\) consisting of
  coherent families. Equivalently, we call \(\mathcal{M}\) irreducible if
  \(\mathcal{M}_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module
  for some \(\lambda \in \mathfrak{h}^*\).
\end{definition}

Another natural candidate for the role of ``nice extensions'' are the
semisimple coherent families -- i.e. families which are semisimple as
\(\mathfrak{g}\)-modules. These turn out to be very easy to produce. Namely,
there is a construction, known as \emph{the semisimplification of a coherent
family}, which takes a coherent extension of \(M\) to a semisimple coherent
extension of \(M\).

% Mathieu's proof of this is somewhat profane, I don't think it's worth
% including it in here
% TODO: Move this somewhere else? This holds in general for weight modules
% whose suppert is contained in a single Q-coset
\begin{lemma}\label{thm:component-coh-family-has-finite-length}
  Given a coherent family \(\mathcal{M}\) and \(\lambda \in \mathfrak{h}^*\),
  \(\mathcal{M}[\lambda]\) has finite length as a \(\mathfrak{g}\)-module.
\end{lemma}

\begin{proposition}\index{coherent family!semisimplification}
  Let \(\mathcal{M}\) be a coherent family of degree \(d\). There exists a
  unique semisimple coherent family \(\mathcal{M}^{\operatorname{ss}}\) of
  degree \(d\) such that the composition series of
  \(\mathcal{M}^{\operatorname{ss}}[\lambda]\) is the same as that of
  \(\mathcal{M}[\lambda]\) for all \(\lambda \in \mathfrak{h}^*\), called
  \emph{the semisimplification of \(\mathcal{M}\)}.

  Namely, if \(\lambda \in \mathfrak{h}^*\) and \(0 = \mathcal{M}_{\lambda 0}
  \subset \mathcal{M}_{\lambda 1} \subset \cdots \subset \mathcal{M}_{\lambda
  r_\lambda} = \mathcal{M}[\lambda]\) is a composition series\footnote{Notice
  that $\mathcal{M}[\lambda] = \mathcal{M}[\mu]$ for any $\mu \in \lambda + Q$.
  Hence the sum $\bigoplus_{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q}}
  \bigoplus_i \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}}$ is
  independent of the choice of representative for $\lambda + Q$ -- provided we
  choose $\mathcal{M}_{\mu i} = \mathcal{M}_{\lambda i}$ for all $\mu \in
  \lambda + Q$ and $i$.},
  \[
    \mathcal{M}^{\operatorname{ss}}
    \cong \bigoplus_{\substack{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q} \\ i}}
          \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}}
  \]
\end{proposition}

\begin{proof}
  The uniqueness of \(\mathcal{M}^{\operatorname{ss}}\) should be clear:
  since \(\mathcal{M}^{\operatorname{ss}}\) is semisimple, so is
  \(\mathcal{M}^{\operatorname{ss}}[\lambda]\). Hence by the Jordan-Hölder
  Theorem
  \[
    \mathcal{M}^{\operatorname{ss}}[\lambda]
    \cong
    \bigoplus_i \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}}
  \]

  As for the existence of the semisimplification, it suffices to show
  \[
    \mathcal{M}^{\operatorname{ss}}
    = \bigoplus_{\substack{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q} \\ i}}
    \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}}
  \]
  is indeed a semisimple coherent family of degree \(d\).

  We know from Examples~\ref{ex:submod-is-weight-mod} and
  \ref{ex:quotient-is-weight-mod} that each quotient
  \(\mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}}\) is a weight
  module. Hence \(\mathcal{M}^{\operatorname{ss}}\) is a weight module.
  Furthermore, given \(\mu \in \mathfrak{h}^*\)
  \[
    \mathcal{M}_\mu^{\operatorname{ss}}
    = \bigoplus_{\substack{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q} \\ i}}
      \left(
      \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}}
      \right)_\mu
    = \bigoplus_i
      \left(
      \mfrac{\mathcal{M}_{\mu i + 1}}{\mathcal{M}_{\mu i}}
      \right)_\mu
    \cong \bigoplus_i
      \mfrac{(\mathcal{M}_{\mu i + 1})_\mu}
            {(\mathcal{M}_{\mu i})_\mu}
  \]

  In particular,
  \[
    \dim \mathcal{M}_\mu^{\operatorname{ss}}
    = \sum_i
      \dim (\mathcal{M}_{\mu i + 1})_\mu - \dim (\mathcal{M}_{\mu i})_\mu
    = \dim \mathcal{M}[\mu]_\mu
    = \dim \mathcal{M}_\mu
    = d
  \]

  Likewise, given \(u \in \mathcal{U}(\mathfrak{g})_0\) the value
  \[
    \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu^{\operatorname{ss}}})
    = \sum_i
      \operatorname{Tr}(u\!\restriction_{(\mathcal{M}_{\mu i + 1})_\mu})
    - \operatorname{Tr}(u\!\restriction_{(\mathcal{M}_{\mu i})_\mu})
    = \operatorname{Tr}(u\!\restriction_{\mathcal{M}[\mu]_\mu})
    = \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu})
  \]
  is polynomial in \(\mu \in \mathfrak{h}^*\).
\end{proof}

\begin{note}
  Although we have provided an explicit construction of
  \(\mathcal{M}^{\operatorname{ss}}\) in terms of \(\mathcal{M}\), we should
  point out this construction is not functorial. First, given a
  \(\mathfrak{g}\)-homomorphism \(f : \mathcal{M} \to \mathcal{N}\) between
  coherent families, it is unclear what \(f^{\operatorname{ss}} :
  \mathcal{M}^{\operatorname{ss}} \to \mathcal{N}^{\operatorname{ss}}\) is
  supposed to be. Secondly, and this is more relevant, our construction depends
  on the choice of composition series \(0 = \mathcal{M}_{\lambda 0} \subset
  \cdots \subset \mathcal{M}_{\lambda r_\lambda} = \mathcal{M}[\lambda]\).
  While different choices of composition series yield isomorphic results, there
  is no canonical isomorphism. In addition, there is no canonical choice of
  composition series.
\end{note}

The proof of Lemma~\ref{thm:component-coh-family-has-finite-length} is
extremely technical and will not be included in here. It suffices to note that,
as in Proposition~\ref{thm:ess-supp-is-zariski-dense}, the general case follows
from the case where \(\mathfrak{g}\) is simple, which may be found in
\cite{mathieu} -- see Lemma 3.3. As promised, if \(\mathcal{M}\) is a coherent
extension of \(M\) then so is \(\mathcal{M}^{\operatorname{ss}}\).

\begin{proposition}
  Let \(M\) be a simple bounded \(\mathfrak{g}\)-module and \(\mathcal{M}\)
  be a coherent extension of \(M\). Then \(\mathcal{M}^{\operatorname{ss}}\) is
  a coherent extension of \(M\), and \(M\) is in fact a submodule of
  \(\mathcal{M}^{\operatorname{ss}}\).
\end{proposition}

\begin{proof}
  Since \(M\) is simple, its support is contained in a single \(Q\)-coset.
  This implies that \(M\) is a subquotient of \(\mathcal{M}[\lambda]\) for any
  \(\lambda \in \operatorname{supp} M\). If we fix some composition series \(0
  = \mathcal{M}_0 \subset \mathcal{M}_1 \subset \cdots \subset \mathcal{M}_r =
  \mathcal{M}[\lambda]\) of \(\mathcal{M}[\lambda]\) with \(M \cong
  \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i}\), there is a natural inclusion
  \[
    M
    \isoto \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i}
    \to \bigoplus_j \mfrac{\mathcal{M}_{j + 1}}{\mathcal{M}_j}
    \cong \mathcal{M}^{\operatorname{ss}}[\lambda]
  \]
\end{proof}

Given the uniqueness of the semisimplification, the semisimplification of any
semisimple coherent extension \(\mathcal{M}\) is \(\mathcal{M}\)
itself and therefore\dots

\begin{corollary}\label{thm:bounded-is-submod-of-extension}
  Let \(M\) be a simple bounded \(\mathfrak{g}\)-module and \(\mathcal{M}\)
  be a semisimple coherent extension of \(M\). Then \(M\) is
  contained in \(\mathcal{M}\).
\end{corollary}

These last results provide a partial answer to the question of existence of
well behaved coherent extensions. As for the uniqueness \(\mathcal{M}\) in
Corollary~\ref{thm:bounded-is-submod-of-extension}, it suffices to show that
the multiplicities of the simple weight \(\mathfrak{g}\)-modules in
\(\mathcal{M}\) are uniquely determined by \(M\). These multiplicities may be
computed via the following lemma.

\begin{lemma}\label{thm:centralizer-multiplicity}
  Let \(M\) be a semisimple weight \(\mathfrak{g}\)-module. Then \(M_\lambda\)
  is a semisimple \(\mathcal{U}(\mathfrak{g})_0\)-module for any \(\lambda \in
  \operatorname{supp} M\). Moreover, if \(L\) is a simple weight
  \(\mathfrak{g}\)-module such that \(\lambda \in \operatorname{supp} L\) then
  \(L_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module and the
  multiplicity \(L\) in \(M\) coincides with the multiplicity of \(L_\lambda\)
  in \(M_\lambda\) as a \(\mathcal{U}(\mathfrak{g})_0\)-module.
\end{lemma}

\begin{proof}
  We begin by showing that \(L_\lambda\) is simple. Let \(N \subset L_\lambda\)
  be a nontrivial \(\mathcal{U}(\mathfrak{g})_0\)-submodule. We want to
  establish that \(N = L_\lambda\).

  If \(\mathcal{U}(\mathfrak{g})_\alpha\) denotes the root space of \(\alpha\)
  in \(\mathcal{U}(\mathfrak{g})\) under the adjoint action of \(\mathfrak{g}\)
  as in Example~\ref{ex:adjoint-action-in-universal-enveloping-is-weight},
  \(\alpha \in Q\), a simple calculation shows
  \(\mathcal{U}(\mathfrak{g})_\alpha \cdot N \subset L_{\lambda + \alpha}\).
  Since \(L\) is simple and \(N\) is nonzero, it follows from
  Example~\ref{ex:adjoint-action-in-universal-enveloping-is-weight} that
  \[
    L
    = \mathcal{U}(\mathfrak{g}) \cdot N
    = \bigoplus_{\alpha \in Q} \mathcal{U}(\mathfrak{g})_\alpha \cdot N
  \]
  and thus \(L_{\lambda + \alpha} = \mathcal{U}(\mathfrak{g})_\alpha \cdot N\).
  In particular, \(L_\lambda = \mathcal{U}(\mathfrak{g})_0 \cdot N \subset N\)
  and \(N = L_\lambda\).

  Now given a semisimple weight \(\mathfrak{g}\)-module \(M = \bigoplus_i M_i\)
  with \(M_i\) simple, it is clear \(M_\lambda = \bigoplus_i (M_i)_\lambda\).
  Each \((M_i)_\lambda\) is either \(0\) or a simple
  \(\mathcal{U}(\mathfrak{g})_0\)-module, so that \(M_\lambda\) is a semisimple
  \(\mathcal{U}(\mathfrak{g})_0\)-module. In addition, to see that the
  multiplicity of \(L\) in \(M\) coincides with the multiplicity of
  \(L_\lambda\) in \(M_\lambda\) it suffices to show that if \((M_i)_\lambda
  \cong (M_j)_\lambda\) are both nonzero then \(M_i \cong M_j\).

  If \(I(M_i) = \mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{g})_0}
  (M_i)_\lambda\), the inclusion of \(\mathcal{U}(\mathfrak{g})_0\)-modules
  \((M_i)_\lambda \to M_i\) induces a \(\mathfrak{g}\)-homomorphism
  \begin{align*}
            I(M_i) & \to     M_i       \\
    u \otimes m & \mapsto u \cdot m
  \end{align*}

  Since \(M_i\) is simple and \(\lambda \in \operatorname{supp} M_i\), \(M_i =
  \mathcal{U}(\mathfrak{g}) \cdot (M_i)_\lambda\). The homomorphism \(I(M_i)
  \to M_i\) is thus surjective. Similarly, if \(I(M_j) =
  \mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{g})_0}
  (M_j)_\lambda\) then there is a natural surjective
  \(\mathfrak{g}\)-homomorphism \(I(M_j) \to M_j\). Now suppose there is an
  isomorphism of \(\mathcal{U}(\mathfrak{g})_0\)-modules \(f: (M_i)_\lambda
  \isoto (M_j)_\lambda\). Such an isomorphism induces an isomorphism of
  \(\mathfrak{g}\)-modules
  \begin{align*}
    \tilde f : I(M_i) & \isoto  I(M_j)            \\
       u \otimes m & \mapsto u \otimes f(m)
  \end{align*}

  By composing \(\tilde f\) with the projection \(I(M_j) \to M_j\) we get a
  surjective homomorphism \(I(M_i) \to M_j\). We claim \(\ker (I(M_i) \to M_i)
  = \ker (I(M_i) \to M_j)\).  To see this, notice that \(\ker(I(M_i) \to M_i)\)
  coincides with the largest submodule \(Z(M_i) \subset I(M_i)\) contained in
  \(\bigoplus_{\alpha \ne 0} \mathcal{U}(\mathfrak{g})_\alpha
  \otimes_{\mathcal{U}(\mathfrak{g})_0} (M_i)_\lambda\). Indeed, a simple
  computation shows \(\ker (I(M_i) \to M_i) \cap (\mathcal{U}(\mathfrak{g})_0
  \otimes_{\mathcal{U}(\mathfrak{g})_0} (M_i)_\lambda) = 0\), which implies
  \(\ker(I(M_i) \to M_i) \subset Z(M_i)\). Since \(M_i\) is simple, \(\ker
  (I(M_i) \to M_i)\) is maximal and thus \(\ker(I(M_i) \to M_i) = Z(M_i)\). By
  the same token, \(\ker (I(M_j) \to M_j)\) is the largest submodule of
  \(I(M_j)\) contained in \(\bigoplus_{\alpha \ne 0}
  \mathcal{U}(\mathfrak{g})_\alpha \otimes_{\mathcal{U}(\mathfrak{g})_0}
  (M_j)_\lambda\) and therefore \(\ker(I(M_i) \to M_i) =
  \tilde{f}^{-1}(\ker(I(M_j) \to M_j)) = \ker(I(M_i) \to M_j)\).

  Hence there is an isomorphism \(\mfrac{I(M_i)}{\ker(I(M_i) \to M_i)} \isoto
  M_j\) satisfying
  \begin{center}
    \begin{tikzcd}
      I(M_i) \rar{\tilde f} \dar & I(M_j) \dar \\
      \mfrac{I(M_i)}{\ker(I(M_i) \to M_i)} \rar{\sim} & M_j
    \end{tikzcd}
  \end{center}
 and finally \(M_i \cong \mfrac{I(M_i)}{\ker(I(M_i) \to M_i)} \cong M_j\).
\end{proof}

A complementary question now is: which submodules of a \emph{nice} coherent
family are cuspidal?

\begin{proposition}[Mathieu]
  Let \(\mathcal{M}\) be an irreducible coherent family of degree \(d\) and
  \(\lambda \in \mathfrak{h}^*\). The following conditions are equivalent.
  \begin{enumerate}
    \item \(\mathcal{M}[\lambda]\) is simple.
    \item \(F_\alpha\!\restriction_{\mathcal{M}[\lambda]}\) is injective for
      all \(\alpha \in \Delta\).
    \item \(\mathcal{M}[\lambda]\) is cuspidal.
  \end{enumerate}
\end{proposition}

\begin{proof}
  The fact that \strong{(i)} and \strong{(iii)} are equivalent follows directly
  from Corollary~\ref{thm:cuspidal-mod-equivs}. Likewise, it is clear from the
  corollary that \strong{(iii)} implies \strong{(ii)}. All it is left is to
  show \strong{(ii)} implies \strong{(iii)}. This isn't already clear from
  Corollary~\ref{thm:cuspidal-mod-equivs} because, at first glance,
  $\mathcal{M}[\lambda]$ may not be simple for some $\lambda$ satisfying
  \strong{(ii)}. We will show this is never the case.

  Suppose \(F_\alpha\) acts injectively on the submodule
  \(\mathcal{M}[\lambda]\), for all \(\alpha \in \Delta\). Since
  \(\mathcal{M}[\lambda]\) has finite length, \(\mathcal{M}[\lambda]\) contains
  an infinite-dimensional simple \(\mathfrak{g}\)-submodule \(M\). Moreover,
  again by Corollary~\ref{thm:cuspidal-mod-equivs} we conclude \(M\) is a
  cuspidal module, and its degree is bounded by \(d\). We want to show
  \(\mathcal{M}[\lambda] = M\).

  We claim the set \(U = \{\mu \in \mathfrak{h}^* : \mathcal{M}_\mu \ \text{is
  a simple $\mathcal{U}(\mathfrak{g})_0$-module}\}\) is Zariski-open. If we
  suppose this is the case for a moment or two, it follows from the fact that
  \(M\) is simple and \(\operatorname{supp}_{\operatorname{ess}} M\) is
  Zariski-dense that \(U \cap \operatorname{supp}_{\operatorname{ess}} M\) is
  non-empty. In other words, there is some \(\mu \in \mathfrak{h}^*\) such that
  \(\mathcal{M}_\mu\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module and
  \(\dim M_\mu = \deg M\).

  In particular, \(M_\mu \ne 0\), so \(M_\mu = \mathcal{M}_\mu\). Now given any
  simple \(\mathfrak{g}\)-module \(L\), it follows from
  Lemma~\ref{thm:centralizer-multiplicity} that the multiplicity of \(L\)
  in \(\mathcal{M}[\lambda]\) is the same as the multiplicity \(L_\mu\) in
  \(\mathcal{M}_\mu\) as a \(\mathcal{U}(\mathfrak{g})_0\)-module -- which is,
  of course, \(1\) if \(L \cong M\) and \(0\) otherwise. Hence
  \(\mathcal{M}[\lambda] = M\) and \(\mathcal{M}[\lambda]\) is cuspidal.
\end{proof}

To finish the proof, we now show\dots

\begin{lemma}\label{thm:set-of-simple-u0-mods-is-open}
  Let \(\mathcal{M}\) be a coherent family. The set \(U = \{\lambda \in
  \mathfrak{h}^* : \mathcal{M}_\lambda \ \text{is a simple
  $\mathcal{U}(\mathfrak{g})_0$-module}\}\) is Zariski-open.
\end{lemma}

\begin{proof}
  For each \(\lambda \in \mathfrak{h}^*\) we introduce the bilinear form
  \begin{align*}
    B_\lambda : \mathcal{U}(\mathfrak{g})_0 \times \mathcal{U}(\mathfrak{g})_0
    & \to K \\
    (u, v)
    & \mapsto \operatorname{Tr}(u v \!\restriction_{\mathcal{M}_\lambda})
  \end{align*}
  and consider its rank -- i.e. the dimension of the image of the induced
  operator
  \begin{align*}
    \mathcal{U}(\mathfrak{g})_0 & \to     \mathcal{U}(\mathfrak{g})_0^* \\
                              u & \mapsto B_\lambda(u, \cdot)
  \end{align*}

  Our first observation is that \(\operatorname{rank} B_\lambda \le d^2\). This
  follows from the commutativity of
  \begin{center}
    \begin{tikzcd}
      \mathcal{U}(\mathfrak{g})_0               \rar \dar  &
      \mathcal{U}(\mathfrak{g})_0^*                        \\
      \operatorname{End}(\mathcal{M}_\lambda)   \rar{\sim} &
      \operatorname{End}(\mathcal{M}_\lambda)^* \uar
    \end{tikzcd},
  \end{center}
  where the map \(\mathcal{U}(\mathfrak{g})_0 \to
  \operatorname{End}(\mathcal{M}_\lambda)\) is given by the action of
  \(\mathcal{U}(\mathfrak{g})_0\), the map
  \(\operatorname{End}(\mathcal{M}_\lambda)^* \to
  \mathcal{U}(\mathfrak{g})_0^*\) is its dual, and the isomorphism
  \(\operatorname{End}(\mathcal{M}_\lambda) \isoto
  \operatorname{End}(\mathcal{M}_\lambda)^*\) is induced by the trace form
  \begin{align*}
    \operatorname{End}(\mathcal{M}_\lambda) \times
    \operatorname{End}(\mathcal{M}_\lambda) & \to K \\
    (T, S) & \mapsto \operatorname{Tr}(T S)
  \end{align*}

  Indeed, \(\operatorname{rank} B_\lambda \le
  \operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to
  \operatorname{End}(\mathcal{M}_\lambda)) \le \dim
  \operatorname{End}(\mathcal{M}_\lambda) = d^2\). Furthermore, if
  \(\operatorname{rank} B_\lambda = d^2\) then we must have
  \(\operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to
  \operatorname{End}(\mathcal{M}_\lambda)) = d^2\) -- i.e. the map
  \(\mathcal{U}(\mathfrak{g})_0 \to \operatorname{End}(\mathcal{M}_\lambda)\)
  is surjective. In particular, if \(\operatorname{rank} B_\lambda = d^2\) then
  \(\mathcal{M}_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module,
  for if \(M \subset \mathcal{M}_\lambda\) is invariant under the action of
  \(\mathcal{U}(\mathfrak{g})_0\) then \(M\) is invariant under any
  \(K\)-linear operator \(\mathcal{M}_\lambda \to \mathcal{M}_\lambda\), so
  that \(M = 0\) or \(M = \mathcal{M}_\lambda\).

  On the other hand, if \(\mathcal{M}_\lambda\) is simple then by Burnside's
  Theorem on matrix algebras the map \(\mathcal{U}(\mathfrak{g})_0 \to
  \operatorname{End}(\mathcal{M}_\lambda)\) is surjective. Hence the
  commutativity of the previously drawn diagram, as well as the fact that
  \(\operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to
  \operatorname{End}(\mathcal{M}_\lambda)) =
  \operatorname{rank}(\operatorname{End}(\mathcal{M}_\lambda)^* \to
  \mathcal{U}(\mathfrak{g})_0^*)\), imply that \(\operatorname{rank} B_\lambda
  = d^2\). This goes to show that \(U\) is precisely the set of all \(\lambda\)
  such that \(B_\lambda\) has maximal rank \(d^2\). We now show that \(U\) is
  Zariski-open. First, notice that
  \[
    U =
    \bigcup_{\substack{V \subset \mathcal{U}(\mathfrak{g})_0 \\ \dim V = d}}
    U_V,
  \]
  where \(U_V = \{\lambda \in \mathfrak{h}^* : \operatorname{rank}
  B_\lambda\!\restriction_V = d^2 \}\). Here \(V\) ranges over all
  \(d\)-dimensional subspaces of \(\mathcal{U}(\mathfrak{g})_0\) -- \(V\) is
  not necessarily a \(\mathcal{U}(\mathfrak{g})_0\)-submodule.

  Indeed, if \(\operatorname{rank} B_\lambda = d^2\) it follows from the
  subjectivity of the map \(\mathcal{U}(\mathfrak{g})_0 \to
  \operatorname{End}(\mathcal{M}_\lambda)\) that there is some \(V \subset
  \mathcal{U}(\mathfrak{g})_0\) with \(\dim V = d\) such that the restriction
  \(V \to \operatorname{End}(\mathcal{M}_\lambda)\) is surjective. The
  commutativity of
  \begin{center}
    \begin{tikzcd}
      V                                         \rar \dar  & V^* \\
      \operatorname{End}(\mathcal{M}_\lambda)   \rar{\sim} &
      \operatorname{End}(\mathcal{M}_\lambda)^* \uar
    \end{tikzcd}
  \end{center}
  then implies \(\operatorname{rank} B_\lambda\!\restriction_V = d^2\). In
  other words, \(U \subset \bigcup_V U_V\).

  Likewise, if \(\operatorname{rank} B_\lambda\!\restriction_V = d^2\) for some
  \(V\), then the commutativity of
  \begin{center}
    \begin{tikzcd}
      V                             \rar \dar & V^* \\
      \mathcal{U}(\mathfrak{g})_0   \rar      &
      \mathcal{U}(\mathfrak{g})_0^* \uar
    \end{tikzcd}
  \end{center}
  implies \(\operatorname{rank} B_\lambda \ge d^2\), which goes to show
  \(\bigcup_V U_V \subset U\).

  Given \(\lambda \in U_V\), the surjectivity of \(V \to
  \operatorname{End}(\mathcal{M}_\lambda)\) and the fact that \(\dim V <
  \infty\) imply \(V \to V^*\) is invertible. Since \(\mathcal{M}\) is a
  coherent family, \(B_\lambda\) depends polynomially in \(\lambda\). Hence so
  does the induced maps \(V \to V^*\). In particular, there is some Zariski
  neighborhood \(U'\) of \(\lambda\) such that the map \(V \to V^*\) induced by
  \(B_\mu\!\restriction_V\) is invertible for all \(\mu \in U'\).

  But the surjectivity of the map induced by \(B_\mu\!\restriction_V\) implies
  \(\operatorname{rank} B_\mu = d^2\), so \(\mu \in U_V\) and therefore \(U'
  \subset U_V\). This implies \(U_V\) is open for all \(V\). Finally, \(U\) is
  the union of Zariski-open subsets and is therefore open. We are done.
\end{proof}

The major remaining question for us to tackle is that of the existence of
coherent extensions, which will be the focus of our next section.

\section{Localizations \& the Existence of Coherent Extensions}

Let \(M\) be a simple bounded \(\mathfrak{g}\)-module of degree \(d\). Our
goal is to prove that \(M\) has a (unique) irreducible semisimple coherent
extension \(\mathcal{M}\). Since \(M\) is simple, we know \(M \subset
\mathcal{M}[\lambda]\) for any \(\lambda \in \operatorname{supp} M\). Our first
task is constructing \(\mathcal{M}[\lambda]\). The issue here is that
\(\operatorname{supp}_{\operatorname{ess}} M\) may not be all of \(\lambda + Q
= \operatorname{supp}_{\operatorname{ess}} \mathcal{M}[\lambda]\), so we may
find \(M \subsetneq \mathcal{M}[\lambda]\). In fact, we may find
\(\operatorname{supp} M \subsetneq \lambda + Q\).

This wasn't an issue an Example~\ref{ex:laurent-polynomial-mod} because we
verified that the action of \(f \in \mathfrak{sl}_2(K)\) on \(K[x, x^{-1}]\) is
injective. Since all weight spaces of \(K[x, x^{-1}]\) are \(1\)-dimensional,
this implies the action of \(f\) is actually bijective, so we can obtain a
nonzero vector in \(K[x, x^{-1}]_{2 k} = K x^k\) for any \(k \in \mathbb{Z}\)
by translating between weight spaced using \(f\) and \(f^{-1}\) -- here
\(f^{-1}\) denotes the \(K\)-linear operator \((-
\sfrac{\mathrm{d}}{\mathrm{d}x} + \sfrac{x^{-1}}{2})^{-1}\), which is the
inverse of the action of \(f\) on \(K[x, x^{-1}]\).
\begin{center}
  \begin{tikzcd}
    \cdots     \rar[bend left=60]{f^{-1}}
    & K x^{-2} \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f}
    & K x^{-1} \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f}
    & K        \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f}
    & K x      \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f}
    & K x^2    \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f}
    & \cdots   \lar[bend left=60]{f}
  \end{tikzcd}
\end{center}

In the general case, the action of some \(F_\alpha \in \mathfrak{g}\) with
\(\alpha \in \Delta\) in \(M\) may not be injective. In fact, we have seen that
the action of \(F_\alpha\) is injective for all \(\alpha \in \Delta^+\) if, and
only if \(M\) is cuspidal. Nevertheless, we could intuitively \emph{make it
injective} by formally inverting the elements \(F_\alpha \in
\mathcal{U}(\mathfrak{g})\). This would allow us to obtain nonzero vectors in
\(M_\mu\) for all \(\mu \in \lambda + Q\) by successively applying elements of
\(\{F_\alpha^{\pm 1}\}_{\alpha \in \Delta}\) to a nonzero weight vector \(m \in
M_\lambda\). Moreover, if the actions of the \(F_\alpha\) were to be
invertible, we would find that all \(M_\mu\) are \(d\)-dimensional for \(\mu
\in \lambda + Q\).

In a commutative domain, this can be achieved by tensoring our module by the
field of fractions. However, \(\mathcal{U}(\mathfrak{g})\) is hardly ever
commutative -- \(\mathcal{U}(\mathfrak{g})\) is commutative if, and only if
\(\mathfrak{g}\) is Abelian -- and the situation is more delicate in the
non-commutative case. For starters, a non-commutative \(K\)-algebra \(A\) may
not even have a ``field of fractions'' -- i.e. an over-ring where all elements
of \(A\) have inverses. Nevertheless, it is possible to formally invert
elements of certain subsets of \(A\) via a process known as
\emph{localization}, which we now describe.

\begin{definition}\index{localization!multiplicative subsets}\index{localization!Ore's condition}
  Let \(A\) be a \(K\)-algebra. A subset \(S \subset A\) is called
  \emph{multiplicative} if \(s \cdot t \in S\) for all \(s, t \in S\) and \(0
  \notin S\). A multiplicative subset \(S\) is said to satisfy \emph{Ore's
  localization condition} if for each \(a \in A\) and \(s \in S\) there exists
  \(b, c \in A\) and \(t, t' \in S\) such that \(s a = b t\) and \(a s = t'
  c\).
\end{definition}

\begin{theorem}[Ore-Asano]\index{localization!Ore-Asano Theorem}
  Let \(S \subset A\) be a multiplicative subset satisfying Ore's localization
  condition. Then there exists a (unique) \(K\)-algebra \(S^{-1} A\), with a
  canonical algebra homomorphism \(A \to S^{-1} A\), enjoying the universal
  property that each algebra homomorphism \(f : A \to B\) such that \(f(s)\) is
  invertible for all \(s \in S\) can be uniquely extended to an algebra
  homomorphism \(S^{-1} A \to B\). \(S^{-1} A\) is called \emph{the
  localization of \(A\) by \(S\)}, and the map \(A \to S^{-1} A\) is called
  \emph{the localization map}.
  \begin{center}
    \begin{tikzcd}
      A        \dar \rar{f}        & B \\
      S^{-1} A \urar[swap, dotted] &
    \end{tikzcd}
  \end{center}
\end{theorem}

If we identify an element with its image under the localization map, it follows
directly from Ore's construction that every element of \(S^{-1} A\) has the
form \(s^{-1} a\) for some \(s \in S\) and \(a \in A\). Likewise, any element
of \(S^{-1} A\) can also be written as \(b t^{-1}\) for some \(t \in S\), \(b
\in A\).

Ore's localization condition may seem a bit arbitrary at first, but a more
thorough investigation reveals the intuition behind it. The issue in question
here is that in the non-commutative case we can no longer take the existence of
common denominators for granted. However, the existence of common denominators
is fundamental to the proof of the fact the field of fractions is a ring -- it
is used, for example, to define the sum of two elements in the field of
fractions. We thus need to impose their existence for us to have any hope of
defining consistent arithmetics in the localization of an algebra, and Ore's
condition is actually equivalent to the existence of common denominators --
see the discussion in the introduction of \cite[ch.~6]{goodearl-warfield} for
further details.

We should also point out that there are numerous other conditions -- which may
be easier to check than Ore's -- known to imply Ore's condition. For
instance\dots

\begin{lemma}
  Let \(S \subset A\) be a multiplicative subset generated by finitely many
  locally \(\operatorname{ad}\)-nilpotent elements -- i.e. elements \(s \in S\)
  such that for each \(a \in A\) there exists \(r > 0\) such that
  \(\operatorname{ad}(s)^r a = [s, [s, \cdots [s, a]]\cdots] = 0\). Then \(S\)
  satisfies Ore's localization condition.
\end{lemma}

In our case, we are more interested in formally inverting the action of
\(F_\alpha\) on \(M\) than in inverting \(F_\alpha\) itself. To that end, we
introduce one further construction, known as \emph{the localization of a
module}.

\begin{definition}\index{localization!localization of modules}
  Let \(S \subset A\) be a multiplicative subset satisfying Ore's localization
  condition and \(M\) be an \(A\)-module. The \(S^{-1} A\)-module \(S^{-1} M =
  S^{-1} A \otimes_A M\) is called \emph{the localization of \(M\) by \(S\)},
  and the homomorphism of \(A\)-modules
  \begin{align*}
    M & \to     S^{-1} M    \\
    m & \mapsto 1 \otimes m
  \end{align*}
  is called \emph{the localization map of \(M\)}.
\end{definition}

Notice that the \(S^{-1} A\)-module \(S^{-1} M\) has the natural structure of
an \(A\)-module, where the action of \(A\) is given by the localization map \(A
\to S^{-1} A\).

It is interesting to observe that, unlike in the case of the field of fractions
of a commutative domain, in general the localization map \(A \to S^{-1} A\) --
i.e. the map \(a \mapsto \frac{a}{1}\) -- may not be injective. For instance,
if \(S\) contains a divisor of zero \(s\), its image under the localization map
is invertible and therefore cannot be a divisor of zero in \(S^{-1} A\). In
particular, if \(a \in A\) is nonzero and such that \(s a = 0\) or \(a s = 0\)
then its image under the localization map has to be \(0\). However, the
existence of divisors of zero in \(S\) turns out to be the only obstruction to
the injectivity of the localization map, as shown in\dots

\begin{lemma}
  Let \(S \subset A\) be a multiplicative subset satisfying Ore's localization
  condition and \(M\) be an \(A\)-module. If \(S\) acts injectively on \(M\)
  then the localization map \(M \to S^{-1} M\) is injective. In particular, if
  \(S\) has no zero divisors then \(A\) is a subalgebra of \(S^{-1} A\).
\end{lemma}

Again, in our case we are interested in inverting the actions of the
\(F_\alpha\) on \(M\). However, for us to be able to translate between all
weight spaces associated with elements of \(\lambda + Q\), \(\lambda \in
\operatorname{supp} M\), we only need to invert the \(F_\alpha\)'s for
\(\alpha\) in some subset of \(\Delta\) which spans all of \(Q = \mathbb{Z}
\Delta\). In other words, it suffices to invert \(F_\beta\) for all \(\beta\)
in some basis \(\Sigma\) for \(\Delta\). We can choose such a basis to be
well-behaved. For example, we can show\dots

\begin{lemma}\label{thm:nice-basis-for-inversion}
  Let \(M\) be a simple infinite-dimensional bounded \(\mathfrak{g}\)-module.
  There is a basis \(\Sigma = \{\beta_1, \ldots, \beta_r\}\) for \(\Delta\)
  such that the elements \(F_{\beta_i}\) all act injectively on \(M\) and
  satisfy \([F_{\beta_i}, F_{\beta_j}] = 0\).
\end{lemma}

\begin{note}
  The basis \(\Sigma\) in Lemma~\ref{thm:nice-basis-for-inversion} may very
  well depend on the representation \(M\)! This is another obstruction to the
  functoriality of our constructions.
\end{note}

The proof of the previous Lemma is quite technical and was deemed too tedious
to be included in here. See Lemma 4.4 of \cite{mathieu} for a full proof. Since
\(F_\alpha\) is locally \(\operatorname{ad}\)-nilpotent for all \(\alpha \in
\Delta\), we can see\dots

\begin{corollary}
  Let \(\Sigma\) be as in Lemma~\ref{thm:nice-basis-for-inversion} and
  \((F_\beta)_{\beta \in \Sigma} \subset \mathcal{U}(\mathfrak{g})\) be the
  multiplicative subset generated by the \(F_\beta\)'s. The \(K\)-algebra
  \(\Sigma^{-1} \mathcal{U}(\mathfrak{g}) = (F_\beta)_{\beta \in \Sigma}^{-1}
  \mathcal{U}(\mathfrak{g})\) is well defined. Moreover, if we denote by
  \(\Sigma^{-1} M\) the localization of \(M\) by \((F_\beta)_{\beta \in
  \Sigma}\), the localization map \(M \to \Sigma^{-1} M\) is injective.
\end{corollary}

From now on let \(\Sigma\) be some fixed basis for \(\Delta\) satisfying the
hypothesis of Lemma~\ref{thm:nice-basis-for-inversion}. We now show that
\(\Sigma^{-1} M\) is a weight \(\mathfrak{g}\)-module whose support is an
entire \(Q\)-coset.

\begin{proposition}\label{thm:irr-bounded-is-contained-in-nice-mod}
  The restriction of the localization \(\Sigma^{-1} M\) is a bounded
  \(\mathfrak{g}\)-module of degree \(d\) with \(\operatorname{supp}
  \Sigma^{-1} M = Q + \operatorname{supp} M\) and \(\dim \Sigma^{-1} M_\lambda
  = d\) for all \(\lambda \in \operatorname{supp} \Sigma^{-1} M\).
\end{proposition}

\begin{proof}
  Fix some \(\beta \in \Sigma\). We begin by showing that \(F_\beta\) and
  \(F_\beta^{-1}\) map the weight space \(\Sigma^{-1} M_\lambda\) to
  \(\Sigma^{-1} M_{\lambda - \beta}\) and \(\Sigma^{-1} M_{\lambda + \beta}\),
  respectively. Indeed, given \(m \in M_\lambda\) and \(H \in \mathfrak{h}\) we
  have
  \[
    H \cdot (F_\beta \cdot m)
    = ([H, F_\beta] + F_\beta H) \cdot m
    = F_\beta (-\beta(H) + H) \cdot m
    = (\lambda - \beta)(H) F_\beta \cdot m
  \]

  On the other hand,
  \[
    0
    = [H, 1]
    = [H, F_\beta F_\beta^{-1}]
    = F_\beta [H, F_\beta^{-1}] + [H, F_\beta] F_\beta^{-1}
    = F_\beta [H, F_\beta^{-1}] - \beta(H) F_\beta F_\beta^{-1},
  \]
  so that \([H, F_\beta^{-1}] = \beta(H) \cdot F_\beta^{-1}\) and therefore
  \[
    H \cdot (F_\beta^{-1} \cdot m)
    = ([H, F_\beta^{-1}] + F_\beta^{-1} H) \cdot m
    = F_\beta^{-1} (\beta(H) + H) \cdot m
    = (\lambda + \beta)(H) F_\beta^{-1} \cdot m
  \]

  From the fact that \(F_\beta^{\pm 1}\) maps \(M_\lambda\) to \(\Sigma^{-1}
  M_{\lambda \pm \beta}\) follows our first conclusion: since \(M\) is a weight
  module and every element of \(\Sigma^{-1} M\) has the form \(s^{-1} \cdot m =
  s^{-1} \otimes m\) for \(s \in (F_\beta)_{\beta \in \Sigma}\) and \(m \in
  M\), we can see that \(\Sigma^{-1} M = \bigoplus_\lambda \Sigma^{-1}
  M_\lambda\). Furthermore, since the action of each \(F_\beta\) on
  \(\Sigma^{-1} M\) is bijective and \(\Sigma\) is a basis for \(Q\) we obtain
  \(\operatorname{supp} \Sigma^{-1} M = Q + \operatorname{supp} M\).

  Again, because of the bijectivity of the \(F_\beta\)'s, to see that \(\dim
  \Sigma^{-1} M_\lambda = d\) for all \(\lambda \in \operatorname{supp}
  \Sigma^{-1} M\) it suffices to show that \(\dim \Sigma^{-1} M_\lambda = d\)
  for some \(\lambda \in \operatorname{supp} \Sigma^{-1} M\). We may take
  \(\lambda \in \operatorname{supp} M\) with \(\dim M_\lambda = d\). For any
  finite-dimensional subspace \(V \subset \Sigma^{-1} M_\lambda\) we can find
  \(s \in (F_\beta)_{\beta \in \Sigma}\) such that \(s \cdot V \subset M\). If
  \(s = F_{\beta_{i_1}} \cdots F_{\beta_{i_r}}\), it is clear \(s \cdot V
  \subset M_{\lambda - \beta_{i_1} - \cdots - \beta_{i_r}}\), so \(\dim V =
  \dim s \cdot V \le d\). This holds for all finite-dimensional \(V \subset
  \Sigma^{-1} M_\lambda\), so \(\dim \Sigma^{-1} M_\lambda \le d\). It then
  follows from the fact that \(M_\lambda \subset \Sigma^{-1} M_\lambda\) that
  \(M_\lambda = \Sigma^{-1} M_\lambda\) and therefore \(\dim \Sigma^{-1}
  M_\lambda = d\).
\end{proof}

We now have a good candidate for a coherent extension of \(M\), but
\(\Sigma^{-1} M\) is still not a coherent extension since its support is
contained in a single \(Q\)-coset. In particular, \(\operatorname{supp}
\Sigma^{-1} M \ne \mathfrak{h}^*\) and \(\Sigma^{-1} M\) is not a coherent
family. To obtain a coherent family we thus need somehow extend \(\Sigma^{-1}
M\). To that end, we will attempt to replicate the construction of the coherent
extension of the \(\mathfrak{sl}_2(K)\)-module \(K[x, x^{-1}]\). Specifically,
the idea is that if twist \(\Sigma^{-1} M\) by an automorphism which shifts its
support by some \(\lambda \in \mathfrak{h}^*\), we can construct a coherent
family by summing these modules over \(\lambda\) as in
Example~\ref{ex:sl-laurent-family}.

For \(K[x, x^{-1}]\) this was achieved by twisting the
\(\operatorname{Diff}(K[x, x^{-1}])\)-module \(K[x, x^{-1}]\) by the
automorphisms \(\varphi_\lambda : \operatorname{Diff}(K[x, x^{-1}]) \to
\operatorname{Diff}(K[x, x^{-1}])\) and restricting the results to
\(\mathcal{U}(\mathfrak{sl}_2(K))\) via the map
\(\mathcal{U}(\mathfrak{sl}_2(K)) \to \operatorname{Diff}(K[x, x^{-1}])\), but
this approach is inflexible since not every \(\mathfrak{sl}_2(K)\)-module
factors through \(\operatorname{Diff}(K[x, x^{-1}])\). Nevertheless, we could
just as well twist \(K[x, x^{-1}]\) by automorphisms of
\(\mathcal{U}(\mathfrak{sl}_2(K))_f\) directly -- where
\(\mathcal{U}(\mathfrak{sl}_2(K))_f = (f)^{-1} \mathcal{U}(\mathfrak{g})\) is
the localization of \(\mathcal{U}(\mathfrak{sl}_2(K))\) by the multiplicative
subset generated by \(f\).

In general, we may twist the \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module
\(\Sigma^{-1} M\) by automorphisms of \(\Sigma^{-1}
\mathcal{U}(\mathfrak{g})\). For \(\lambda = \beta \in \Sigma\) the map
\begin{align*}
  \theta_\beta : \Sigma^{-1} \mathcal{U}(\mathfrak{g}) & \to
                 \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\
                 u & \mapsto F_\beta u F_\beta^{-1}
\end{align*}
is a natural candidate for such a twisting automorphism. Indeed, we will soon
see that \(\twisted{(\Sigma^{-1} M)}{\theta_\beta}_\lambda = \Sigma^{-1}
M_{\lambda + \beta}\). However, this is hardly useful to us, since \(\beta \in
Q\) and therefore \(\beta + \operatorname{supp} \Sigma^{-1} M =
\operatorname{supp} \Sigma^{-1} M\). If we want to expand the support of
\(\Sigma^{-1} M\) we will have to twist by automorphisms that shift its support
by \(\lambda \in \mathfrak{h}^*\) lying \emph{outside} of \(Q\).

The situation is much less obvious in this case. Nevertheless, it turns out we
can extend the family \(\{\theta_\beta\}_{\beta \in \Sigma}\) to a family of
automorphisms \(\{\theta_\lambda\}_{\lambda \in \mathfrak{h}^*}\).
Explicitly\dots

\begin{proposition}\label{thm:nice-automorphisms-exist}
  There is a family of automorphisms \(\{\theta_\lambda : \Sigma^{-1}
  \mathcal{U}(\mathfrak{g}) \to \Sigma^{-1}
  \mathcal{U}(\mathfrak{g})\}_{\lambda \in \mathfrak{h}^*}\) such that
  \begin{enumerate}
    \item \(\theta_{k_1 \beta_1 + \cdots + k_r \beta_r}(u) = F_{\beta_1}^{k_1}
      \cdots F_{\beta_r}^{k_r} u F_{\beta_r}^{- k_r} \cdots F_{\beta_1}^{-
      k_1}\) for all \(u \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) and \(k_1,
      \ldots, k_r \in \mathbb{Z}\).

    \item For each \(u \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) the map
      \begin{align*}
        \mathfrak{h}^* & \to     \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\
               \lambda & \mapsto \theta_\lambda(u)
      \end{align*}
      is polynomial.

    \item If \(\lambda, \mu \in \mathfrak{h}^*\), \(N\) is a \(\Sigma^{-1}
      \mathcal{U}(\mathfrak{g})\)-module whose restriction to
      \(\mathcal{U}(\mathfrak{g})\) is a weight \(\mathfrak{g}\)-module and
      \(\twisted{N}{\theta_\lambda}\) is the \(\Sigma^{-1}
      \mathcal{U}(\mathfrak{g})\)-module \(N\) twisted by the automorphism
      \(\theta_\lambda\) then \(N_\mu = \twisted{N}{\theta_\lambda}_{\mu +
      \lambda}\). In particular, \(\operatorname{supp}
      \twisted{N}{\theta_\lambda} = \lambda + \operatorname{supp} N\).
  \end{enumerate}
\end{proposition}

\begin{proof}
  Since the elements \(F_\beta\), \(\beta \in \Sigma\) commute with one
  another, the endomorphisms
  \begin{align*}
    \theta_{k_1 \beta_1 + \cdots + k_r \beta_r}
    : \Sigma^{-1} \mathcal{U}(\mathfrak{g}) &
    \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\
    u & \mapsto
    F_{\beta_1}^{k_1} \cdots F_{\beta_r}^{k_r}
    u
    F_{\beta_1}^{- k_r} \cdots F_{\beta_r}^{- k_1}
  \end{align*}
  are well defined for all \(k_1, \ldots, k_r \in \mathbb{Z}\).

  Fix some \(u \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\). For any \(s \in
  (F_\beta)_{\beta \in \Sigma}\) and \(k > 0\) we have \(s^k u = \binom{k}{0}
  \operatorname{ad}(s)^0 u s^{k - 0} + \cdots + \binom{k}{k}
  \operatorname{ad}(s)^k u s^{k - k}\). Now if we take \(\ell\) such
  \(\operatorname{ad}(F_\beta)^{\ell + 1} u = 0\) for all \(\beta \in \Sigma\)
  we find
  \[
    \theta_{k_1 \beta_1 + \cdots + k_r \beta_r}(u)
    = \sum_{i_1, \ldots, i_r = 1, \ldots, \ell}
    \binom{k_1}{i_1} \cdots \binom{k_r}{i_r}
    \operatorname{ad}(F_{\beta_1})^{i_1} \cdots
    \operatorname{ad}(F_{\beta_r})^{i_r}
    u
    F_{\beta_1}^{- i_1} \cdots F_{\beta_r}^{- i_r}
  \]
  for all \(k_1, \ldots, k_r \in \mathbb{N}\).

  Since the binomial coefficients \(\binom{x}{k} = \frac{x (x-1) \cdots (x - k
  + 1)}{k!}\) can be uniquely extended to polynomial functions in \(x \in K\),
  we may in general define
  \[
    \theta_\lambda(u)
    = \sum_{i_1, \ldots, i_r \ge 0}
    \binom{\lambda_1}{i_1} \cdots \binom{\lambda_r}{i_r}
    \operatorname{ad}(F_{\beta_1})^{i_1} \cdots
    \operatorname{ad}(F_{\beta_r})^{i_r}
    r
    F_{\beta_1}^{- i_1} \cdots F_{\beta_r}^{- i_r}
  \]
  for \(\lambda_1, \ldots, \lambda_r \in K\), \(\lambda = \lambda_1 \beta_1 +
  \cdots + \lambda_r \beta_r \in \mathfrak{h}^*\).

  It is clear that the \(\theta_\lambda\) are endomorphisms. To see that the
  \(\theta_\lambda\) are indeed automorphisms, notice \(\theta_{- k_1 \beta_1 -
  \cdots - k_r \beta_r} = \theta_{k_1 \beta_1 + \cdots + k_r \beta_r}^{-1}\).
  The uniqueness of the polynomial extensions then implies \(\theta_{- \lambda}
  = \theta_\lambda^{-1}\) in general: given \(u \in \Sigma^{-1}
  \mathcal{U}(\mathfrak{g})\), the map
  \begin{align*}
    \mathfrak{h}^* & \to \Sigma^{-1} \mathcal{U}(\mathfrak{g})        \\
           \lambda & \mapsto \theta_\lambda(\theta_{-\lambda}(u)) - u
  \end{align*}
  is a polynomial extension of the zero map \(\mathbb{Z} \beta_1 \oplus \cdots
  \oplus \mathbb{Z} \beta_r \to \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) and is
  therefore identically zero.

  Finally, let \(N\) be a \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module
  whose restriction is a weight module. If \(n \in N\) then
  \[
    n \in \twisted{N}{\theta_\lambda}_{\mu + \lambda}
    \iff \theta_\lambda(H) \cdot n = (\mu + \lambda)(H) n
    \, \forall H \in \mathfrak{h}
  \]

  But
  \[
    \theta_\beta(H)
    = F_\beta H F_\beta^{-1}
    = ([F_\beta, H] + H F_\beta) F_\beta^{-1}
    = (\beta(H) + H) F_\beta F_\beta^{-1}
    = \beta(H) + H
  \]
  for all \(H \in \mathfrak{h}\) and \(\beta \in \Sigma\). In general,
  \(\theta_\lambda(H) = \lambda(H) + H\) for all \(\lambda \in \mathfrak{h}^*\)
  and hence
  \[
    \begin{split}
      n \in \twisted{N}{\theta_\lambda}_{\mu + \lambda}
      & \iff (\lambda(H) + H) \cdot n = (\mu + \lambda)(H) n
        \; \forall H \in \mathfrak{h} \\
      & \iff H \cdot n = \mu(H) n \; \forall H \in \mathfrak{h} \\
      & \iff n \in N_\mu
    \end{split},
  \]
  so that \(\twisted{N}{\theta_\lambda}_{\mu + \lambda} = N_\mu\).
\end{proof}

It should now be obvious\dots

\begin{proposition}[Mathieu]\label{thm:coh-ext-exists}
  There exists a coherent extension \(\mathcal{M}\) of \(M\).
\end{proposition}

\begin{proof}
  Take\footnote{Here we fix some $\lambda_\xi \in \xi$ for each $Q$-coset $\xi
  \in \mfrac{\mathfrak{h}^*}{Q}$. While there is a natural isomorphism
  $\twisted{(\Sigma^{-1} M)}{\theta_\lambda} \isoto \twisted{(\Sigma^{-1}
  M)}{\theta_\mu}$ for each $\mu \in \lambda + Q$, they are not the same
  \(\mathfrak{g}\)-modules strictly speaking. This is yet another obstruction
  to the functoriality of our constructions.}
  \[
    \mathcal{M}
    = \bigoplus_{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q}}
      \twisted{(\Sigma^{-1} M)}{\theta_\lambda}
  \]

  It is clear \(M\) lies in \(\Sigma^{-1} M = \twisted{(\Sigma^{-1}
  M)}{\theta_0}\) and therefore \(M \subset \mathcal{M}\). On the other hand,
  \(\dim \mathcal{M}_\mu = \dim \twisted{(\Sigma^{-1} M)}{\theta_\lambda}_\mu =
  \dim \Sigma^{-1} M_{\mu - \lambda} = d\) for all \(\mu \in \lambda + Q\) --
  \(\lambda\) standing for some fixed representative of its \(Q\)-coset.
  Furthermore, given \(u \in \mathcal{U}(\mathfrak{g})_0\) and \(\mu \in
  \lambda + Q\),
  \[
    \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu})
    = \operatorname{Tr}
      (\theta_\lambda(u)\!\restriction_{\Sigma^{-1} M_{\mu - \lambda}})
  \]
  is polynomial in \(\mu\) because of the second item of
  Proposition~\ref{thm:nice-automorphisms-exist}.
\end{proof}

Lo and behold\dots

\begin{theorem}[Mathieu]\label{thm:mathieu-ext-exists-unique}\index{coherent family!Mathieu's \(\mExt\) coherent extension}
  There exists a unique semisimple coherent extension \(\mExt(M)\) of \(M\).
  More precisely, if \(\mathcal{M}\) is any coherent extension of \(M\), then
  \(\mathcal{M}^{\operatorname{ss}} \cong \mExt(M)\). Furthermore, \(\mExt(M)\)
  is an irreducible coherent family.
\end{theorem}

\begin{proof}
  The existence part should be clear from the previous discussion: it suffices
  to fix some coherent extension \(\mathcal{M}\) of \(M\) and take
  \(\mExt(M) = \mathcal{M}^{\operatorname{ss}}\).

  To see that \(\mExt(M)\) is irreducible, recall from
  Corollary~\ref{thm:bounded-is-submod-of-extension} that \(M\) is a
  \(\mathfrak{g}\)-submodule of \(\mExt(M)\). Since the degree of \(M\) is the
  same as the degree of \(\mExt(M)\), some of its weight spaces have maximal
  dimension inside of \(\mExt(M)\). In particular, it follows from
  Lemma~\ref{thm:centralizer-multiplicity} that \(\mExt(M)_\lambda =
  M_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module for some
  \(\lambda \in \operatorname{supp} M\).

  As for the uniqueness of \(\mExt(M)\), fix some other semisimple coherent
  extension \(\mathcal{N}\) of \(M\). We claim that the multiplicity of a given
  simple \(\mathfrak{g}\)-module \(L\) in \(\mathcal{N}\) is determined by its
  \emph{trace function}
  \begin{align*}
    \mathfrak{h}^* \times \mathcal{U}(\mathfrak{g})_0 &
    \to K \\
    (\lambda, u) &
    \mapsto \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda})
  \end{align*}

  It is a well known fact of the theory of modules that, given an associative
  \(K\)-algebra \(A\), a finite-dimensional semisimple \(A\)-module \(L\) is
  determined, up to isomorphism, by its \emph{character}
  \begin{align*}
    \chi_L : A & \to     K                                    \\
             a & \mapsto \operatorname{Tr}(a\!\restriction_L)
  \end{align*}

  In particular, the multiplicity of \(L\) in \(\mathcal{N}\), which is the
  same as the multiplicity of \(L_\lambda\) in \(\mathcal{N}_\lambda\), is
  determined by the character \(\chi_{\mathcal{N}_\lambda} :
  \mathcal{U}(\mathfrak{g})_0 \to K\). Since this holds for all simple weight
  \(\mathfrak{g}\)-modules, it follows that \(\mathcal{N}\) is determined by
  its trace function. Of course, the same holds for \(\mExt(M)\). We now claim
  that the trace function of \(\mathcal{N}\) is the same as that of
  \(\mExt(M)\). Clearly,
  \(\operatorname{Tr}(u\!\restriction_{\mExt(M)_\lambda}) =
  \operatorname{Tr}(u\!\restriction_{M_\lambda}) =
  \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda})\) for all \(\lambda
  \in \operatorname{supp}_{\operatorname{ess}} M\), \(u \in
  \mathcal{U}(\mathfrak{g})_0\). Since the essential support of \(M\) is
  Zariski-dense and the maps \(\lambda \mapsto
  \operatorname{Tr}(u\!\restriction_{\mExt(M)_\lambda})\) and \(\lambda \mapsto
  \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda})\) are polynomial in
  \(\lambda \in \mathfrak{h}^*\), it follows that these maps coincide for all
  \(u\).

  In conclusion, \(\mathcal{N} \cong \mExt(M)\) and \(\mExt(M)\) is unique.
\end{proof}

A sort of ``reciprocal'' of Theorem~\ref{thm:mathieu-ext-exists-unique} also
holds. Namely\dots

\begin{proposition}\label{thm:coherent-families-are-all-ext}
  Let \(\mathcal{M}\) be a semisimple irreducible coherent family and \(M
  \subset \mathcal{M}\) be an infinite-dimensional simple submodule. Then
  \(\mathcal{M} \cong \mExt(M)\). In particular, all semisimple coherent
  families have the form \(\mathcal{M} \cong \mExt(M)\) for some simple bounded
  \(\mathfrak{g}\)-module \(M\).
\end{proposition}

\begin{proof}
  Since \(M \subset \mathcal{M}\), \(M\) is bounded and
  \(\operatorname{supp}_{\operatorname{ess}} M\) is Zariski-dense. In addition,
  it follows from Lemma~\ref{thm:set-of-simple-u0-mods-is-open} that \(U =
  \{\lambda \in \mathfrak{h}^* : \mathcal{M}_\lambda \ \text{is a simple
  $\mathcal{U}(\mathfrak{g})_0$-module}\}\) is a Zariski-open subset -- which
  is non-empty since \(\mathcal{M}\) is irreducible.

  Hence there is some \(\lambda \in \operatorname{supp}_{\operatorname{ess}} M
  \cap U\). In particular, there is some \(\lambda \in
  \operatorname{supp}_{\operatorname{ess}} M\) such that \(M_\lambda =
  \mathcal{M}_\lambda\) and thus \(\deg M = \dim \mathcal{M}_\lambda = \deg
  \mathcal{M}\). This implies that \(\mathcal{M}\) is a coherent extension of
  \(M\), so that by the uniqueness of semisimple irreducible coherent
  extensions we get \(\mathcal{M} \cong \mExt(M)\).
\end{proof}

Having thus reduced the problem of classifying the cuspidal
\(\mathfrak{g}\)-modules to that of understanding semisimple irreducible
coherent families, the only remaining question for us to tackle is: what are
the coherent \(\mathfrak{g}\)-families? This turns out to be a decently
complicated question on its own, and we will require a full chapter to answer
it. This will be the focus of our final chapter.