lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

NameSizeMode
..
sections/sl2-sl3.tex 55845B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
\chapter{Representations of \(\mathfrak{sl}_2(K)\) \& \(\mathfrak{sl}_3(K)\)}\label{ch:sl3}

We are, once again, faced with the daunting task of classifying the
finite-dimensional modules of a given (semisimple) algebra \(\mathfrak{g}\).
Having reduced the problem a great deal, all its left is classifying the simple
\(\mathfrak{g}\)-modules. We have encountered numerous examples of simple
\(\mathfrak{g}\)-modules over the previous chapter, but we have yet to subject
them to any serious scrutiny. In this chapter we begin a systematic
investigation of simple modules by looking at concrete examples. Specifically,
we will classify the simple finite-dimensional modules of certain
low-dimensional semisimple Lie algebras: \(\mathfrak{sl}_2(K)\) and
\(\mathfrak{sl}_3(K)\).

The reason why we chose \(\mathfrak{sl}_2(K)\) is a simple one: throughout the
previous chapters \(\mathfrak{sl}_2(K)\) has afforded us surprisingly
illuminating examples. We begin our analysis by recalling that the elements
\begin{align*}
  e & = \begin{pmatrix} 0 & 1 \\ 0 &  0 \end{pmatrix} &
  f & = \begin{pmatrix} 0 & 0 \\ 1 &  0 \end{pmatrix} &
  h & = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\end{align*}
form a basis for \(\mathfrak{sl}_2(K)\) and satisfy
\begin{align*}
  [e, f] & = h & [h, f] & = -2 f & [h, e] = 2 e
\end{align*}

Let \(M\) be a finite-dimensional simple \(\mathfrak{sl}_2(K)\)-module. We now
turn our attention to the action of \(h\) on \(M\), in particular, we
investigate the subspace \(\bigoplus_{\lambda} M_\lambda \subset M\) -- where
\(\lambda\) ranges over the eigenvalues of \(h\!\restriction_M\) and
\(M_\lambda\) is the corresponding eigenspace.

At this point, this is nothing short of a gamble: why look at the eigenvalues
of \(h\)? The short answer is that, as we shall see, this will pay off. We will
postpone the discussion about the real reason of why we chose \(h\), but for
now we may notice that, perhaps surprisingly, the action \(h\!\restriction_M\)
of \(h\) on a finite-dimensional simple \(\mathfrak{sl}_2(K)\)-module \(M\)
is always a diagonalizable operator.

Let \(\lambda\) be any eigenvalue of \(h\!\restriction_M\). Notice
\(M_\lambda\) is in general not a \(\mathfrak{sl}_2(K)\)-submodule of \(M\).
Indeed, if \(m \in M_\lambda\) then the identities
\begin{align*}
  h \cdot (e \cdot m) &=  2e \cdot m + e h \cdot m = (\lambda + 2) e \cdot m \\
  h \cdot (f \cdot m) &= -2f \cdot m + f h \cdot m = (\lambda - 2) f \cdot m
\end{align*}
follow. In other words, \(e\) sends an element of \(M_\lambda\) to an element
of \(M_{\lambda + 2}\), while \(f\) sends it to an element of \(M_{\lambda -
2}\). Visually, we may draw
\begin{center}
  \begin{tikzcd}
    \cdots          \rar[bend left=60]                          &
    M_{\lambda - 2} \rar[bend left=60]{e} \lar[bend left=60]    &
    M_{\lambda}     \rar[bend left=60]{e} \lar[bend left=60]{f} &
    M_{\lambda + 2} \rar[bend left=60]    \lar[bend left=60]{f} &
    \cdots                                \lar[bend left=60]
  \end{tikzcd}
\end{center}

This implies \(\bigoplus_\lambda M_\lambda\) is a
\(\mathfrak{sl}_2(K)\)-submodule, so that \(\bigoplus_\lambda M_\lambda\) is
either \(0\) or the entirety of \(M\) -- recall that \(M\) is simple. Since
\(M\) is finite dimensional, \(h\!\restriction_M\) has at least one eigenvalue
and therefore
\[
  M = \bigoplus_\lambda M_\lambda
\]

Even more so, we have seen that for any eigenvalue \(\lambda \in K\) of
\(h\!\restriction_M\), \(\bigoplus_{k \in \mathbb{Z}} M_{\lambda - 2 k}\) is a
\(\mathfrak{sl}_2(K)\)-invariant subspace, which goes to show
\[
  M = \bigoplus_{k \in \mathbb{Z}} M_{\lambda - 2 k},
\]
and the eigenvalues of \(h\) all have the form \(\lambda - 2 k\) for some
\(k\). By the same token, if \(a\) is the greatest \(k \in \mathbb{Z}\) such
that \(V_{\lambda - 2 k} \ne 0\) and, likewise, \(b\) is the smallest \(k \in
\mathbb{Z}\) such that \(V_{\lambda - 2 k} \ne 0\) then
\[
  M = \bigoplus_{\substack{k \in \mathbb{Z} \\ a \le k \le b}}
      M_{\lambda - 2 k}
\]

The eigenvalues of \(h\) thus form an unbroken string
\[
  \ldots, \lambda - 4, \lambda - 2, \lambda, \lambda + 2, \lambda + 4, \ldots
\]
around \(\lambda\). Our main objective is to show \(M\) is determined by this
string of eigenvalues. To do so, we suppose without any loss in generality that
\(\lambda\) is the right-most eigenvalue of \(h\), fix some nonzero \(m \in
M_\lambda\) and consider the set \(\{m, f \cdot m, f^2 \cdot m, \ldots\}\).

\begin{proposition}\label{thm:basis-of-irr-rep}
  The set \(\{m, f \cdot m, f^2 \cdot m, \ldots\}\) is a basis for \(M\). In
  addition, the action of \(\mathfrak{sl}_2(K)\) on \(M\) is given by the
  formulas
  \begin{equation}\label{eq:irr-rep-of-sl2}
    \begin{aligned}
        f^k \cdot m & \overset{e}{\mapsto} k(\lambda + 1 - k) f^{k - 1} \cdot m
      & f^k \cdot m & \overset{f}{\mapsto} f^{k + 1} \cdot m
      & f^k \cdot m & \overset{h}{\mapsto} (\lambda - 2 k) f^k \cdot m
    \end{aligned}
  \end{equation}
\end{proposition}

\begin{proof}
  First of all, notice \(f^k \cdot m\) lies in \(M_{\lambda - 2 k}\), so that
  \(\{m, f \cdot m, f^2 \cdot m, \ldots\}\) is a set of linearly independent
  vectors. Hence it suffices to show \(M = K \langle m, f \cdot m, f^2 \cdot m,
  \ldots \rangle\), which in light of the fact that \(M\) is simple is the same
  as showing \(K \langle m, f \cdot m, f^2 \cdot m, \ldots \rangle\) is
  invariant under the action of \(\mathfrak{sl}_2(K)\).

  The fact that \(h \cdot (f^k \cdot m) \in K \langle m, f \cdot m, f^2 \cdot
  m, \ldots \rangle\) follows immediately from our previous assertion that
  \(f^k \cdot m \in M_{\lambda - 2 k}\) -- indeed, \(h \cdot (f^k \cdot m) =
  (\lambda - 2 k) f^k \cdot m \in K \langle m, f \cdot m, f^2 \cdot m, \ldots
  \rangle\), which also goes to show one of the formulas in
  (\ref{eq:irr-rep-of-sl2}). Seeing \(e \cdot (f^k \cdot m) \in K \langle m, f
  \cdot m, f^2 \cdot m, \ldots \rangle\) is a bit more complex. Clearly,
  \[
    \begin{split}
      e \cdot (f \cdot m)
      & = h \cdot m + f \cdot (e \cdot m) \\
      \text{(since \(\lambda\) is the right-most eigenvalue)}
      & = h \cdot m + f \cdot 0 \\
      & = \lambda m
    \end{split}
  \]

  Next we compute
  \[
    \begin{split}
      e \cdot (f^2 \cdot m)
      & = (h + fe) \cdot (f \cdot m) \\
      & = h \cdot (f \cdot m) + f \cdot (\lambda m) \\
      & = 2 (\lambda - 1) f \cdot m
    \end{split}
  \]

  The pattern is starting to become clear: \(e\) sends \(f^k \cdot m\) to a
  multiple of \(f^{k - 1} \cdot m\). Explicitly, it is not hard to check by
  induction that
  \[
    e \cdot (f^k \cdot m) = k (\lambda + 1 - k) \cdot f^{k - 1} m,
  \]
  which which is the first formula of (\ref{eq:irr-rep-of-sl2}).
\end{proof}

The significance of Proposition~\ref{thm:basis-of-irr-rep} should be
self-evident: we have just provided a complete description of the action of
\(\mathfrak{sl}_2(K)\) on \(M\). In particular, this goes to show\dots

\begin{corollary}
  Every eigenspace of the action of \(h\) on \(M\) is \(1\)-dimensional.
\end{corollary}

\begin{proof}
  It suffices to note \(\{m, f \cdot m, f^2 \cdot m, \ldots \}\) is a basis for
  \(M\) consisting of eigenvalues of \(h\) and whose only element in
  \(M_{\lambda - 2 k}\) is \(f^k \cdot m\).
\end{proof}

\begin{corollary}\label{thm:sl2-find-weights}
  The eigenvalues of \(h\) in \(M\) form a symmetric, unbroken string of
  integers separated by intervals of length \(2\) whose right-most value is
  \(\dim M - 1\).
\end{corollary}

\begin{proof}
  If \(f^r\) is the lowest power of \(f\) that annihilates \(m\), it follows
  from the formulas in (\ref{eq:irr-rep-of-sl2}) that
  \[
    0 = e \cdot 0 = e \cdot (f^r \cdot m)
    = r (\lambda + 1 - r) f^{r - 1} \cdot m
  \]

  This implies \(\lambda + 1 - r = 0\) -- i.e. \(\lambda = r - 1 \in
  \mathbb{Z}\). Now since \(\{m, f \cdot m, f^2 \cdot m, \ldots, f^{r - 1}
  \cdot m\}\) is a basis for \(M\), \(r = \dim V\). Hence if \(\lambda =
  \dim V - 1\) then the eigenvalues of \(h\) are
  \[
    \ldots, \lambda - 6, \lambda - 4, \lambda - 2, \lambda
  \]

  To see that this string is symmetric around \(0\), simply note that the
  left-most eigenvalue of \(h\) is precisely \(\lambda - 2 (r - 1) =
  -\lambda\).
\end{proof}

Visually, the situation it thus
\begin{center}
  \begin{tikzcd}
    M_{-\lambda}      \rar[bend left=60]{e}                       &
    M_{- \lambda + 2} \rar[bend left=60]{e} \lar[bend left=60]{f} &
    M_{- \lambda + 4} \rar[bend left=60]    \lar[bend left=60]{f} &
    \cdots            \rar[bend left=60]    \lar[bend left=60]    &
    M_{\lambda - 4}   \rar[bend left=60]{e} \lar[bend left=60]    &
    M_{\lambda - 2}   \rar[bend left=60]{e} \lar[bend left=60]{f} &
    M_\lambda                               \lar[bend left=60]{f}
  \end{tikzcd}
\end{center}

Corollary~\ref{thm:sl2-find-weights} can be used to find the eigenvalues of the
action of \(h\) on an arbitrary finite-dimensional
\(\mathfrak{sl}_2(K)\)-module. Namely, if \(M\) and \(N\) are
\(\mathfrak{sl}_2(K)\)-modules, \(m \in M_\mu\) and \(n \in N_\mu\) then by
computing
\[
  h \cdot (m + n) = h \cdot m + h \cdot n = \mu (m + n)
\]
we can see that \((M \oplus N)_\mu = M_\mu + N_\mu\). Hence the set of
eigenvalues of \(h\) in a \(\mathfrak{sl}_2(K)\)-module \(M\) is the union of
the sets of eigenvalues in its simple components, and the corresponding
eigenspaces are the direct sums of the eigenspaces of such simple components.

In particular, if the eigenvalues of \(M\) all have the same parity -- i.e.
they are either all even integers or all odd integers -- and the dimension of
each eigenspace is no greater than \(1\) then \(M\) must be simple, for if \(N,
L \subset M\) are submodules with \(M = N \oplus L\) then either \(N_\lambda =
0\) for all \(\lambda\) or \(L_\lambda = 0\) for all \(\lambda \in
\mathfrak{h}^*\). To conclude our analysis all it is left is to show that for
each \(\lambda \in \mathbb{Z}\) with \(\lambda \ge 0\) there is some
finite-dimensional simple \(M\) whose highest weight is \(\lambda\).
Surprisingly, we have already encountered such a \(M\).

\begin{theorem}\label{thm:sl2-exist-unique}
  For each \(\lambda \ge 0\), \(\lambda \in \mathbb{Z}\), there exists a unique
  simple \(\mathfrak{sl}_2(K)\)-module whose left-most eigenvalue of \(h\) is
  \(\lambda\).
\end{theorem}

\begin{proof}
  Let \(M = K[x, y]^{(\lambda)}\) be the \(\mathfrak{sl}_2(K)\)-module of
  homogeneous polynomials of degree \(\lambda\) in two variables, as in
  Example~\ref{ex:sl2-polynomial-subrep}. A simple calculation shows \(M_{n - 2
  k} = K x^{\lambda - k} y^k\) for \(k = 0, \ldots, \lambda\) and \(M_\mu = 0\)
  otherwise. In particular, the right-most eigenvalue of \(M\) is \(\lambda\).
  Alternatively, one can readily check that if \(K^2\) is the natural
  \(\mathfrak{sl}_2(K)\)-module, then \(M = \operatorname{Sym}^\lambda K^2\)
  satisfies the relations of (\ref{eq:irr-rep-of-sl2}). Indeed, the map
  \begin{align*}
    K[x, y]^{(\lambda)} & \to     \operatorname{Sym}^\lambda K^2 \\
             x^k y^\ell & \mapsto e_1^k \cdot e_2^\ell
  \end{align*}
  is an isomorphism.

  Either way, by the previous observation that a finite-dimensional
  \(\mathfrak{sl}_2(K)\)-module whose eigenvalues all have the same parity and
  whose corresponding eigenspace are all \(1\)-dimensional must be simple,
  \(M\) is simple. As for the uniqueness of \(M\), it suffices to notice that
  if \(N\) is a finite-dimensional simple \(\mathfrak{sl}_2(K)\)-module with
  right-most eigenvalue \(\lambda\) and \(n \in N_\lambda\) is nonzero then
  relations (\ref{eq:irr-rep-of-sl2}) imply the map
  \begin{align*}
              M & \to     N           \\
    f^k \cdot m & \mapsto f^k \cdot n
  \end{align*}
  is an isomorphism -- this is, in effect, precisely how the isomorphism \(K[x,
  y]^{(\lambda)} \isoto \operatorname{Sym}^\lambda K^2\) was constructed.
\end{proof}

Our initial gamble of studying the eigenvalues of \(h\) may have seemed
arbitrary at first, but it payed off: we have \emph{completely} described
\emph{all} simple \(\mathfrak{sl}_2(K)\)-modules. It is not yet clear, however,
if any of this can be adapted to a general setting. In the following section we
shall double down on our gamble by trying to reproduce some of these results
for \(\mathfrak{sl}_3(K)\), hoping this will somehow lead us to a general
solution. In the process of doing so we will find some important clues on why
\(h\) was a sure bet and the race was fixed all along.

\section{Representations of \(\mathfrak{sl}_{2 + 1}(K)\)}\label{sec:sl3-reps}

The study of representations of \(\mathfrak{sl}_2(K)\) reminds me of the
difference between the derivative of a function \(\mathbb{R} \to \mathbb{R}\)
and that of a smooth map between manifolds: it is a simpler case of something
greater, but in some sense it is too simple of a case, and the intuition we
acquire from it can be a bit misleading in regards to the general setting. For
instance, I distinctly remember my Calculus I teacher telling the class ``the
derivative of the composition of two functions is not the composition of their
derivatives'' -- which is, of course, the \emph{correct} formulation of the
chain rule in the context of smooth manifolds.

The same applies to \(\mathfrak{sl}_2(K)\). It is a simple and beautiful
example, but unfortunately the general picture, modules of arbitrary semisimple
algebras, lacks its simplicity. The general purpose of this section is to
investigate to which extent the framework we developed for
\(\mathfrak{sl}_2(K)\) can be generalized to other semisimple Lie algebras. Of
course, the algebra \(\mathfrak{sl}_3(K)\) stands as a natural candidate for
potential generalizations: \(\mathfrak{sl}_3(K) = \mathfrak{sl}_{2 + 1}(K)\)
after all.

Our approach is very straightforward: we will fix some simple
\(\mathfrak{sl}_3(K)\)-module \(M\) and proceed step by step, at each point
asking ourselves how we could possibly adapt the framework we laid out for
\(\mathfrak{sl}_2(K)\). The first obvious question is one we have already asked
ourselves: why \(h\)?  More specifically, why did we choose to study its
eigenvalues and is there an analogue of \(h\) in \(\mathfrak{sl}_3(K)\)?

The answer to the former question is one we will discuss at length in the next
chapter, but for now we note that perhaps the most fundamental property of
\(h\) is that \emph{there exists an eigenvector \(m\) of \(h\) that is
annihilated by \(e\)} -- that being the generator of the right-most eigenspace
of \(h\). This was instrumental to our explicit description of the simple
\(\mathfrak{sl}_2(K)\)-modules culminating in
Theorem~\ref{thm:sl2-exist-unique}.

Our first task is to find some analogue of \(h\) in \(\mathfrak{sl}_3(K)\), but
it is still unclear what exactly we are looking for. We could say we are
looking for an element of \(M\) that is annihilated by some analogue of \(e\),
but the meaning of \emph{some analogue of \(e\)} is again unclear. In fact, as
we shall see, no such analogue exists and neither does such element. Instead,
the actual way to proceed is to consider the subalgebra
\[
  \mathfrak{h}
  = \left\{
    X \in
    \begin{pmatrix} K & 0 & 0 \\ 0 & K & 0 \\ 0 & 0 & K \end{pmatrix}
    : \operatorname{Tr}(X) = 0
    \right\}
\]

The choice of \(\mathfrak{h}\) may seem like an odd choice at the moment, but
the point is we will later show that there exists some \(m \in M\) that is
simultaneously an eigenvector of each \(H \in \mathfrak{h}\) and annihilated by
half of the remaining elements of \(\mathfrak{sl}_3(K)\). This is exactly
analogous to the situation we found in \(\mathfrak{sl}_2(K)\): \(h\)
corresponds to the subalgebra \(\mathfrak{h}\), and the eigenvalues of \(h\) in
turn correspond to linear functions \(\lambda : \mathfrak{h} \to k\) such that
\(H \cdot m = \lambda(H) m\) for each \(H \in \mathfrak{h}\) and some nonzero
\(m \in M\). We call such functionals \(\lambda\) \emph{eigenvalues of
\(\mathfrak{h}\)}, and we say \emph{\(m\) is an eigenvector of
\(\mathfrak{h}\)}.

Once again, we will pay special attention to the eigenvalue decomposition
\begin{equation}\label{eq:weight-module}
  M = \bigoplus_\lambda M_\lambda
\end{equation}
where \(\lambda\) ranges over all eigenvalues of \(\mathfrak{h}\) and
\(M_\lambda = \{ m \in M : H \cdot m = \lambda(H) m, \forall H \in \mathfrak{h}
\}\). We should note that the fact that (\ref{eq:weight-module}) holds is not
at all obvious. This is because in general \(M_\lambda\) is not the eigenspace
associated with an eigenvalue of any particular operator \(H \in
\mathfrak{h}\), but instead the eigenspace of the action of the entire algebra
\(\mathfrak{h}\). Fortunately for us, (\ref{eq:weight-module}) always holds,
but we will postpone its proof to the next chapter.

Next we turn our attention to the remaining elements of \(\mathfrak{sl}_3(K)\).
In our analysis of \(\mathfrak{sl}_2(K)\) we saw that the eigenvalues of \(h\)
differed from one another by multiples of \(2\). A possible way to interpret
this is to say \emph{the eigenvalues of \(h\) differ from one another by
integral linear combinations of the eigenvalues of the adjoint action of
\(h\)}. In English, since
\begin{align*}
  \operatorname{ad}(h) e & = 2 e  &
  \operatorname{ad}(h) f & = -2 f &
  \operatorname{ad}(h) h & = 0,
\end{align*}
the eigenvalues of the adjoint actions of \(h\) are \(0\) and \(\pm 2\), and
the eigenvalues of the action of \(h\) on a simple
\(\mathfrak{sl}_2(K)\)-module differ from one another by integral multiples of
\(2\).

In the case of \(\mathfrak{sl}_3(K)\), a simple calculation shows that if \([H,
X]\) is scalar multiple of \(X\) for all \(H \in \mathfrak{h}\) then all but
one entry of \(X\) are zero. Hence the eigenvectors of the adjoint action of
\(\mathfrak{h}\) are \(E_{i j}\) and its eigenvalues are \(\epsilon_i -
\epsilon_j\), where
\[
  \epsilon_i
  \begin{pmatrix}
    a_1 &   0 &   0 \\
      0 & a_2 &   0 \\
      0 &   0 & a_3
  \end{pmatrix}
  = a_i
\]

Visually we may draw

\begin{figure}[h]
  \centering
  \begin{tikzpicture}[scale=2]
    \begin{rootSystem}{A}
      \filldraw[black] \weight{0}{0} circle (.5pt);
      \node[black, above right] at \weight{0}{0} {\small$0$};
      \wt[black]{-1}{2}
      \wt[black]{-2}{1}
      \wt[black]{1}{1}
      \wt[black]{-1}{-1}
      \wt[black]{2}{-1}
      \wt[black]{1}{-2}
      \node[above] at \weight{-1}{2}  {$\epsilon_2 - \epsilon_3$};
      \node[left]  at \weight{-2}{1}  {$\epsilon_2 - \epsilon_1$};
      \node[right] at \weight{1}{1}   {$\epsilon_1 - \epsilon_3$};
      \node[left]  at \weight{-1}{-1} {$\epsilon_3 - \epsilon_1$};
      \node[right] at \weight{2}{-1}  {$\epsilon_1 - \epsilon_2$};
      \node[below] at \weight{1}{-2}  {$\epsilon_3 - \epsilon_1$};
      \node[black, above] at \weight{1}{0}  {$\epsilon_1$};
      \node[black, above] at \weight{-1}{1} {$\epsilon_2$};
      \node[black, above] at \weight{0}{-1} {$\epsilon_3$};
      \filldraw[black] \weight{1}{0}  circle (.5pt);
      \filldraw[black] \weight{-1}{1} circle (.5pt);
      \filldraw[black] \weight{0}{-1} circle (.5pt);
    \end{rootSystem}
  \end{tikzpicture}
\end{figure}

If we denote the eigenspace of the adjoint action of \(\mathfrak{h}\) on
\(\mathfrak{sl}_3(K)\) associated to \(\alpha\) by
\(\mathfrak{sl}_3(K)_\alpha\) and fix some \(X \in \mathfrak{sl}_3(K)_\alpha\),
\(H \in \mathfrak{h}\) and \(m \in M_\lambda\) then
\[
  \begin{split}
    H \cdot (X \cdot m)
    & = X \cdot (H \cdot m) + [H, X] \cdot m \\
    & = X \cdot (\lambda(H) m) + \alpha(H) X \cdot m \\
    & = (\lambda + \alpha)(H) X \cdot m
  \end{split}
\]
so that \(X\) carries \(m\) to \(M_{\lambda + \alpha}\). In other words,
\(\mathfrak{sl}_3(k)_\alpha\) \emph{acts on \(M\) by translating vectors
between eigenspaces}.

For instance \(\mathfrak{sl}_3(K)_{\epsilon_1 - \epsilon_3}\) will act on the
adjoint \(\mathfrak{sl}_3(K)\)-modules via
\begin{figure}[h]
  \centering
  \begin{tikzpicture}[scale=2]
    \begin{rootSystem}{A}
      \wt[black]{0}{0}
      \wt[black]{-1}{2}
      \wt[black]{-2}{1}
      \wt[black]{1}{1}
      \wt[black]{-1}{-1}
      \wt[black]{2}{-1}
      \wt[black]{1}{-2}
      \draw[-latex, black] \weight{-1.9}{1.1} -- \weight{-1.1}{1.9};
      \draw[-latex, black] \weight{-.9}{-.9} -- \weight{-.1}{-.1};
      \draw[-latex, black] \weight{0.1}{0.1} -- \weight{.9}{.9};
      \draw[-latex, black] \weight{1.1}{-1.9} -- \weight{1.9}{-1.1};
    \end{rootSystem}
  \end{tikzpicture}
\end{figure}

This is again entirely analogous to the situation we observed in
\(\mathfrak{sl}_2(K)\). In fact, we may once more conclude\dots

\begin{theorem}\label{thm:sl3-weights-congruent-mod-root}
  The eigenvalues of the action of \(\mathfrak{h}\) on a simple
  \(\mathfrak{sl}_3(K)\)-module \(M\) differ from one another by integral
  linear combinations of the eigenvalues \(\epsilon_i - \epsilon_j\) of the adjoint
  action of \(\mathfrak{h}\) on \(\mathfrak{sl}_3(K)\).
\end{theorem}

\begin{proof}
  This proof goes exactly as that of the analogous statement for
  \(\mathfrak{sl}_2(K)\): it suffices to note that if we fix some eigenvalue
  \(\lambda\) of \(\mathfrak{h}\) and let \(i\) and \(j\) vary then
  \[
    \bigoplus_{i j} M_{\lambda + \epsilon_i - \epsilon_j}
  \]
  is an invariant subspace of \(M\).
\end{proof}

To avoid confusion we better introduce some notation to differentiate between
eigenvalues of the action of \(\mathfrak{h}\) on \(M\) and eigenvalues of the
adjoint action of \(\mathfrak{h}\).

\begin{definition}\index{weights}
  Given a \(\mathfrak{sl}_3(K)\)-module \(M\), we will call the \emph{nonzero}
  eigenvalues of the action of \(\mathfrak{h}\) on \(M\) \emph{weights of
  \(M\)}. As you might have guessed, we will correspondingly refer to
  eigenvectors and eigenspaces of a given weight by \emph{weight vectors} and
  \emph{weight spaces}.
\end{definition}

It is clear from our previous discussion that the weights of the adjoint
\(\mathfrak{sl}_3(K)\)-module deserve some special attention.

\begin{definition}\index{weights!roots}
  The weights of the adjoint \(\mathfrak{sl}_3(K)\)-module are called
  \emph{roots of \(\mathfrak{sl}_3(K)\)}. Once again, the expressions
  \emph{root vector} and \emph{root space} are self-explanatory.
\end{definition}

Theorem~\ref{thm:sl3-weights-congruent-mod-root} can thus be restated as\dots

\begin{definition}\index{weights!root lattice}
  The lattice \(Q = \mathbb{Z} \langle \epsilon_i - \epsilon_j : i, j = 1, 2, 3
  \rangle\) is called \emph{the root lattice of \(\mathfrak{sl}_3(K)\)}.
\end{definition}

\begin{corollary}
  The weights of a simple \(\mathfrak{sl}_3(K)\)-module \(M\) are all congruent
  modulo the root lattice \(Q\). In other words, the weights of \(M\) all lie
  in a single \(Q\)-coset \(\xi \in \mfrac{\mathfrak{h}^*}{Q}\).
\end{corollary}

At this point we could keep playing the tedious game of reproducing the
arguments from the previous section in the context of \(\mathfrak{sl}_3(K)\).
However, it is more profitable to use our knowledge of
\(\mathfrak{sl}_2(K)\)-modules instead. Notice that the canonical inclusion
\(\mathfrak{gl}_2(K) \to \mathfrak{gl}_3(K)\) -- as described in
Example~\ref{ex:gln-inclusions} -- restricts to an injective homomorphism
\(\mathfrak{sl}_2(K) \to \mathfrak{sl}_3(K)\). In other words,
\(\mathfrak{sl}_2(K)\) is isomorphic to the image \(\mathfrak{s}_{1 2} = K
\langle E_{1 2}, E_{2 1}, [E_{1 2}, E_{2 1}] \rangle \subset
\mathfrak{sl}_3(K)\) of the inclusion \(\mathfrak{sl}_2(K) \to
\mathfrak{sl}_3(K)\). We may thus regard \(M\) as a
\(\mathfrak{sl}_2(K)\)-module by restricting to \(\mathfrak{s}_{1 2}\).

Our first observation is that, since the root spaces act by translation, the
subspace
\[
  \bigoplus_{k \in \mathbb{Z}} M_{\lambda - k (\epsilon_1 - \epsilon_2)},
\]
must be invariant under the action of \(E_{1 2}\) and \(E_{2 1}\) for all
\(\lambda \in \mathfrak{h}^*\). This goes to show \(\bigoplus_k M_{\lambda - k
(\epsilon_1 - \epsilon_2)}\) is a \(\mathfrak{sl}_2(K)\)-submodule of \(M\) for all
weights \(\lambda\) of \(M\). Furthermore, one can easily see that the
eigenspace of the action of \(h\) on \(\bigoplus_{k \in \mathbb{Z}} M_{\lambda
- k (\epsilon_1 - \epsilon_2)}\) associated with the eigenvalue \(\lambda(H) - 2k\)
is precisely the weight space \(M_{\lambda - k (\epsilon_2 - \epsilon_1)}\).

Visually,
\begin{center}
  \begin{tikzpicture}
    \begin{rootSystem}{A}
      \node at \weight{-4}{2} (l) {};
      \node at \weight{-2}{1} (a) {};
      \node at \weight{0}{0}  (b) {};
      \node at \weight{2}{-1} (c) {};
      \node at \weight{4}{-2} (r) {};
      \draw \weight{-3}{1.5} -- \weight{3}{-1.5};
      \draw[dotted] \weight{-3}{1.5} -- (l);
      \draw[dotted] \weight{3}{-1.5} -- (r);
      \foreach \i in {-1, 0, 1}{\wt[black]{-2*\i}{\i}}
      \draw[-latex] (l) to[bend left=40] (a);
      \draw[-latex] (a) to[bend left=40] (b);
      \draw[-latex] (b) to[bend left=40] (c);
      \draw[-latex] (c) to[bend left=40] (r);
      \draw[-latex] (r) to[bend left=40] (c);
      \draw[-latex] (c) to[bend left=40] (b);
      \draw[-latex] (b) to[bend left=40] (a);
      \draw[-latex] (a) to[bend left=40] (l);
      \node[above right] at (b) {\small\(\lambda\)};
      \node[above right=2pt] at \weight{-3}{1.5} {\small\(E_{1 2}\)};
      \node[below left=2pt]  at \weight{-3}{1.5} {\small\(E_{2 1}\)};
    \end{rootSystem}
  \end{tikzpicture}
\end{center}

In general, we find\dots

\begin{proposition}
  Given \(i < j\), the subalgebra \(\mathfrak{s}_{i j} = K \langle E_{i j},
  E_{j i}, [E_{i j}, E_{j i}] \rangle\) is isomorphic to
  \(\mathfrak{sl}_2(K)\). In addition, given a weight \(\lambda \in
  \mathfrak{h}^*\) of \(M\), the space
  \[
    N = \bigoplus_{k \in \mathbb{Z}} M_{\lambda - k (\epsilon_i - \epsilon_j)}
  \]
  is invariant under the action of \(\mathfrak{s}_{i j}\) and
  \[
    M_{\lambda - k (\epsilon_i - \epsilon_j)}
    = N_{\lambda([E_{i j}, E_{j i}]) - 2k}
  \]
\end{proposition}

\begin{proof}
  In effect, if \(i \ne k \ne j\) then \(\mathfrak{s}_{i j}\) is the subalgebra
  of matrices whose \(k\)-th row and \(k\)-th column are nil. For instance, if
  \(i = 1\) and \(j = 3\) then
  \[
    \mathfrak{s}_{1 3}
    = \begin{pmatrix} K & 0 & K \\ 0 & 0 & 0 \\ K & 0 & K \end{pmatrix}
      \cap \mathfrak{sl}_3(K)
  \]

  In this case, the map
  \begin{align*}
    \mathfrak{s}_{1 3} & \to \mathfrak{sl}_2(K) \\
    \begin{pmatrix} a & 0 & b \\ 0 & 0 & 0 \\ c & 0 & -a \end{pmatrix}
    & \mapsto
    \begin{pmatrix}
                  a &    \tm{topA}{0} &              b \\
      \tm{leftA}{0} &               0 & \tm{rightA}{0} \\
                  c & \tm{bottomA}{0} &             -a
    \end{pmatrix}
    = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}
    \DrawVLine[black]{topA}{bottomA}
    \DrawHLine[black]{leftA}{rightA}
  \end{align*}
  is an isomorphism of Lie algebras. In general, the map
  \begin{align*}
    \mathfrak{s}_{i j} & \to     \mathfrak{sl}_2(K) \\
    E_{i j}            & \mapsto e                  \\
    E_{j i}            & \mapsto f                  \\
    [E_{i j}, E_{j i}] & \mapsto h
  \end{align*}
  which ``erases the \(k\)-th row and the \(k\)-th column'' of a matrix is an
  isomorphism.

  To see that \(N\) is invariant under the action of \(\mathfrak{s}_{i j}\), it
  suffices to notice \(E_{i j}\) and \(E_{j i}\) map \(m \in M_{\lambda - k
  (\epsilon_i - \epsilon_j)}\) to \(E_{i j} \cdot m \in M_{\lambda - (k - 1) (\epsilon_i -
  \epsilon_j)}\) and \(E_{j i} \cdot m \in M_{\lambda - (k + 1) (\epsilon_i -
  \epsilon_j)}\), respectively. Moreover,
  \[
    (\lambda - k (\epsilon_i - \epsilon_j))([E_{i j}, E_{j i}])
    = \lambda([E_{i j}, E_{j i}]) - k (1 - (-1))
    = \lambda([E_{i j}, E_{j i}]) - 2 k,
  \]
  which goes to show \(M_{\lambda - k (\epsilon_i - \epsilon_j)} \subset
  N_{\lambda([E_{i j}, E_{j i}]) - 2k}\). On the other hand, if we suppose \(0
  < \dim M_{\lambda - k (\epsilon_i - \epsilon_j)} < \dim N_{\lambda([E_{i j}, E_{j
  i}]) - 2 k}\) for some \(k\) we arrive at
  \[
    \dim N
    = \sum_k \dim M_{\lambda - k (\epsilon_i - \epsilon_j)}
    < \sum_k \dim N_{\lambda([E_{i j}, E_{j i}]) - 2k}
    = \dim N,
  \]
  a contradiction.
\end{proof}

As a first consequence of this, we show\dots

\begin{definition}\index{weights!weight lattice}
  The lattice \(P = \mathbb{Z} \langle \epsilon_1, \epsilon_2, \epsilon_3 \rangle\)
  is called \emph{the weight lattice of \(\mathfrak{sl}_3(K)\)}.
\end{definition}

\begin{corollary}\label{thm:sl3-weights-fit-in-weight-lattice}
  Every weight \(\lambda\) of \(M\) lies in the weight lattice \(P\).
\end{corollary}

\begin{proof}
  It suffices to note \(\lambda([E_{i j}, E_{j i}])\) is an eigenvalue of \(h\)
  in a finite-dimensional \(\mathfrak{sl}_2(K)\)-module, so it must be an
  integer. Now since
  \[
    \lambda
    \begin{pmatrix}
      a & 0 & 0     \\
      0 & b & 0     \\
      0 & 0 & -a -b
    \end{pmatrix}
    =
    \lambda
    \begin{pmatrix}
      a & 0 & 0  \\
      0 & 0 & 0  \\
      0 & 0 & -a
    \end{pmatrix}
    +
    \lambda
    \begin{pmatrix}
      0 & 0 & 0  \\
      0 & b & 0  \\
      0 & 0 & -b
    \end{pmatrix}
    =
    a \lambda([E_{1 3}, E_{3 1}]) + b \lambda([E_{2 3}, E_{3 2}]),
  \]
  which is to say \(\lambda = \lambda([E_{1 3}, E_{3 1}]) \epsilon_1 +
  \lambda([E_{2 3}, E_{3 2}]) \epsilon_2 \in P\).
\end{proof}

There is a clear parallel between the case of \(\mathfrak{sl}_3(K)\) and that
of \(\mathfrak{sl}_2(K)\), where we observed that the eigenvalues of the action
of \(h\) all lied in the lattice \(P = \mathbb{Z}\) and were congruent modulo
the sublattice \(Q = 2 \mathbb{Z}\).

Among other things, this last result goes to show that the diagrams we have
been drawing are in fact consistent with the theory we have developed. Namely,
since all weights lie in the rational span of \(\{\epsilon_1, \epsilon_2,
\epsilon_3\}\), we may as well draw them in the Cartesian plane. In fact, the
attentive reader may notice that \(\kappa(E_{1 2}, E_{2 3}) = - \sfrac{1}{2}\),
so that the angle -- with respect to the Killing form \(\kappa\) -- between the
root vectors \(E_{1 2}\) and \(E_{2 3}\) is precisely the same as the angle
between the points representing their roots \(\epsilon_1 - \epsilon_2\) and
\(\epsilon_2 - \epsilon_3\) in the Cartesian plane. Since \(\epsilon_1 - \epsilon_2\)
and \(\epsilon_2 - \epsilon_3\) span \(\mathfrak{h}^*\), this implies the diagrams
we've been drawing are given by an isometry \(\mathbb{Q} P \isoto
\mathbb{Q}^2\), where \(\mathbb{Q} P\) is endowed with the bilinear form
defined by \((\epsilon_i - \epsilon_j, \epsilon_k - \alpha_\ell) \mapsto \kappa(E_{i
j}, E_{k \ell})\) -- which we denote by \(\kappa\) as well.

To proceed we once more refer to the previously established framework: next we
saw that the eigenvalues of \(h\) form an unbroken string of integers symmetric
around \(0\). To prove this we analyzed the right-most eigenvalues of \(h\) and
their eigenvectors, providing an explicit description of the simple
\(\mathfrak{sl}_2(K)\)-modules in terms of these vectors. We may
reproduce these steps in the context of \(\mathfrak{sl}_3(K)\) by fixing a
direction in the plane an considering the weight lying the furthest in that
direction. 

For instance, let's say we fix the direction
\begin{center}
  \begin{tikzpicture}[scale=2]
    \begin{rootSystem}{A}
      \wt[black]{0}{0}
      \wt[black]{-1}{2}
      \wt[black]{-2}{1}
      \wt[black]{1}{1}
      \wt[black]{-1}{-1}
      \wt[black]{2}{-1}
      \wt[black]{1}{-2}
      \draw[-latex, black, thick] \weight{-1.5}{-.5} -- \weight{1.5}{.5};
    \end{rootSystem}
  \end{tikzpicture}
\end{center}
and let \(\lambda\) be the weight lying the furthest in this direction.

Its easy to see what we mean intuitively by looking at the previous picture,
but its precise meaning is still allusive. Formally this means we will choose a
linear functional \(f : \mathbb{Q} P \to \mathbb{Q}\) and pick the weight that
maximizes \(f\). To avoid any ambiguity we should choose the direction of a
line irrational with respect to the root lattice \(Q\) -- for if \(f\) is not
irrational there may be multiple choices the ``weight lying the furthest''
along this direction.

\begin{definition}
  We say that a root \(\alpha\) is positive if \(f(\alpha) > 0\) -- i.e. if it
  lies to the right of the direction we chose. Otherwise we say \(\alpha\) is
  negative. Notice that \(f(\alpha) \ne 0\) since by definition \(\alpha \ne
  0\) and \(f\) is irrational with respect to the lattice \(Q\).
\end{definition}

The next observation we make is that all others weights of \(M\) must lie in a
sort of \(\frac{1}{3}\)-cone with apex at \(\lambda\), as shown in
\begin{center}
  \begin{tikzpicture}
    \AutoSizeWeightLatticefalse
    \begin{rootSystem}{A}
      \weightLattice{3}
      \fill[gray!50,opacity=.2] (hex cs:x=5,y=-7) -- (hex cs:x=1,y=1) --
      (hex cs:x=-7,y=5) arc (150:270:{7*\weightLength});
      \draw[black, thick] (hex cs:x=5,y=-7) -- (hex cs:x=1,y=1) --
      (hex cs:x=-7,y=5);
      \filldraw[black] (hex cs:x=1,y=1) circle (1pt);
      \node[above right=-2pt] at (hex cs:x=1,y=1) {\small\(\lambda\)};
    \end{rootSystem}
  \end{tikzpicture}
\end{center}

Indeed, if this is not the case then, by definition, \(\lambda\) is not the
weight placed the furthest in the direction we chose. Given our previous
assertion that the root spaces of \(\mathfrak{sl}_3(K)\) act on the weight
spaces of \(M\) via translation, this implies that \(E_{1 2}\), \(E_{1 3}\) and
\(E_{2 3}\) all annihilate \(M_\lambda\), or otherwise one of \(M_{\lambda +
\epsilon_1 - \epsilon_2}\), \(M_{\lambda + \epsilon_1 - \epsilon_3}\) and \(M_{\lambda
+ \epsilon_2 - \epsilon_3}\) would be nonzero -- which contradicts the hypothesis
that \(\lambda\) lies the furthest in the direction we chose. In other
words\dots

\begin{proposition}\label{thm:sl3-mod-is-highest-weight}
  There is a weight vector \(m \in M\) that is annihilated by all positive root
  spaces of \(\mathfrak{sl}_3(K)\).
\end{proposition}

\begin{proof}
  It suffices to note that the positive roots of \(\mathfrak{sl}_3(K)\) are
  precisely \(\epsilon_1 - \epsilon_2\), \(\epsilon_1 - \epsilon_3\) and \(\epsilon_2 -
  \epsilon_3\), with root vectors \(E_{1 2}\), \(E_{1 3}\) and \(E_{2 3}\),
  respectively.
\end{proof}

\index{weights!highest weight}
We call \(\lambda\) \emph{the highest weight of \(M\)}, and we call any nonzero
\(m \in M_\lambda\) \emph{a highest weight vector}. Going back to the case of
\(\mathfrak{sl}_2(K)\), we then constructed an explicit basis for our simple
module in terms of a highest weight vector, which allowed us to provide an
explicit description of the action of \(\mathfrak{sl}_2(K)\) in terms of its
standard basis, and finally we concluded that the eigenvalues of \(h\) must be
symmetrical around \(0\). An analogous procedure could be implemented for
\(\mathfrak{sl}_3(K)\) -- and indeed that's what we will do later down the line
-- but instead we would like to focus on the problem of finding the weights of
\(M\) in the first place.

We will start out by trying to understand the weights in the boundary of
previously drawn cone. As we have just seen, we can get to other weight spaces
from \(M_\lambda\) by successively applying \(E_{2 1}\).
\begin{center}
  \begin{tikzpicture}
    \begin{rootSystem}{A}
      \node at \weight{3}{1}  (a) {};
      \node at \weight{1}{2}  (b) {};
      \node at \weight{-1}{3} (c) {};
      \node at \weight{-3}{4} (d) {};
      \node at \weight{-5}{5} (e) {};
      \draw \weight{3}{1} -- \weight{-4}{4.5};
      \draw[dotted] \weight{-4}{4.5} -- \weight{-5}{5};
      \foreach \i in {1,...,4}{\wt[black]{5-2*\i}{\i}}
      \node[above right=-2pt] at (hex cs:x=3,y=1){\small\(\lambda\)};
      \draw[-latex] (a) to[bend left=40] (b);
      \draw[-latex] (b) to[bend left=40] (c);
      \draw[-latex] (c) to[bend left=40] (d);
      \draw[-latex] (d) to[bend left=40] (e);
    \end{rootSystem}
  \end{tikzpicture}
\end{center}

Notice that \(\lambda([E_{1 2}, E_{2 1}]) \in \mathbb{Z}\) is the right-most
eigenvalue of the \(\mathfrak{sl}_2(K)\)-module \(\bigoplus_{k \in \mathbb{Z}}
M_{\lambda - k (\epsilon_1 - \epsilon_2)}\). In particular, \(\lambda([E_{1 2},
E_{2 1}])\) must be positive. In addition, since the eigenspace of the
eigenvalue \(\lambda([E_{1 2}, E_{2 1}]) - 2k\) of the action of \(h\) on
\(\bigoplus_{k \in \mathbb{N}} M_{\lambda - k (\epsilon_1 - \epsilon_2)}\) is
\(M_{\lambda - k (\epsilon_1 - \epsilon_2)}\), the weights of \(M\) appearing the
string \(\lambda, \lambda + (\epsilon_1 - \epsilon_2), \ldots, \lambda + k
(\epsilon_1 - \epsilon_2), \ldots\) must be symmetric with respect to the line
\(\kappa(\epsilon_1 - \epsilon_2, \alpha) =  0\). The picture is thus
\begin{center}
  \begin{tikzpicture}
    \AutoSizeWeightLatticefalse
    \begin{rootSystem}{A}
      \setlength{\weightRadius}{2pt}
      \weightLattice{4}
      \draw[thick] \weight{3}{1} -- \weight{-3}{4};
      \wt[black]{0}{0}
      \node[above left] at \weight{0}{0} {\small\(0\)};
      \foreach \i in {1,...,4}{\wt[black]{5-2*\i}{\i}}
      \node[above right=-2pt] at (hex cs:x=3,y=1){\small\(\lambda\)};
      \draw[very thick] \weight{0}{-4} -- \weight{0}{4}
      node[above]{\small\(\kappa(\epsilon_1 - \epsilon_2, \alpha) = 0\)};
    \end{rootSystem}
  \end{tikzpicture}
\end{center}

We could apply this same argument to the subspace \(\bigoplus_k M_{\lambda - k
(\epsilon_2 - \epsilon_3)}\), so that the weights in this subspace must be
symmetric with respect to the line \(\kappa(\epsilon_2 - \epsilon_3, \alpha) = 0\).
The picture is now
\begin{center}
  \begin{tikzpicture}
    \AutoSizeWeightLatticefalse
    \begin{rootSystem}{A}
      \setlength{\weightRadius}{2pt}
      \weightLattice{4}
      \draw[thick] \weight{3}{1} -- \weight{-3}{4};
      \draw[thick] \weight{3}{1} -- \weight{4}{-1};
      \wt[black]{0}{0}
      \wt[black]{4}{-1}
      \node[above left] at \weight{0}{0} {\small\(0\)};
      \foreach \i in {1,...,4}{\wt[black]{5-2*\i}{\i}}
      \node[above right=-2pt] at (hex cs:x=3,y=1){\small\(\lambda\)};
      \draw[very thick] \weight{0}{-4} -- \weight{0}{4}
      node[above]{\small\(\kappa(\epsilon_1 - \epsilon_2, \alpha) = 0\)};
      \draw[very thick] \weight{-4}{0} -- \weight{4}{0}
      node[right]{\small\(\kappa(\epsilon_2 - \epsilon_3, \alpha) = 0\)};
    \end{rootSystem}
  \end{tikzpicture}
\end{center}

Needless to say, we could keep applying this method to the weights at the ends
of our string, arriving at
\begin{center}
  \begin{tikzpicture}
    \AutoSizeWeightLatticefalse
    \begin{rootSystem}{A}
      \setlength{\weightRadius}{2pt}
      \weightLattice{5}
      \draw[thick] \weight{3}{1} -- \weight{-3}{4};
      \draw[thick] \weight{3}{1} -- \weight{4}{-1};
      \draw[thick] \weight{-3}{4} -- \weight{-4}{3};
      \draw[thick] \weight{-4}{3} -- \weight{-1}{-3};
      \draw[thick] \weight{1}{-4} -- \weight{4}{-1};
      \draw[thick] \weight{-1}{-3} -- \weight{1}{-4};
      \wt[black]{-4}{3}
      \wt[black]{-3}{1}
      \wt[black]{-2}{-1}
      \wt[black]{-1}{-3}
      \wt[black]{1}{-4}
      \wt[black]{2}{-3}
      \wt[black]{3}{-2}
      \wt[black]{4}{-1}
      \foreach \i in {1,...,4}{\wt[black]{5-2*\i}{\i}}
      \node[above right=-2pt] at (hex cs:x=3,y=1){\small\(\lambda\)};
      \draw[very thick] \weight{-5}{5} -- \weight{5}{-5};
      \draw[very thick] \weight{0}{-5} -- \weight{0}{5};
      \draw[very thick] \weight{-5}{0} -- \weight{5}{0};
    \end{rootSystem}
  \end{tikzpicture}
\end{center}

We claim all dots \(\mu\) lying inside the hexagon we have drawn must also be
weights -- i.e. \(M_\mu \ne 0\). Indeed, by applying the same argument to an
arbitrary weight \(\nu\) in the boundary of the hexagon we get a
\(\mathfrak{sl}_2(K)\)-module whose weights correspond to weights of \(M\)
lying in a string inside the hexagon, and whose right-most weight is precisely
the weight of \(M\) we started with.
\begin{center}
  \begin{tikzpicture}
    \AutoSizeWeightLatticefalse
    \begin{rootSystem}{A}
      \setlength{\weightRadius}{2pt}
      \weightLattice{5}
      \draw[thick] \weight{3}{1}   -- \weight{-3}{4};
      \draw[thick] \weight{3}{1}   -- \weight{4}{-1};
      \draw[thick] \weight{-3}{4}  -- \weight{-4}{3};
      \draw[thick] \weight{-4}{3}  -- \weight{-1}{-3};
      \draw[thick] \weight{1}{-4}  -- \weight{4}{-1};
      \draw[thick] \weight{-1}{-3} -- \weight{1}{-4};
      \wt[black]{-4}{3}
      \wt[black]{-3}{1}
      \wt[black]{-2}{-1}
      \wt[black]{-1}{-3}
      \wt[black]{1}{-4}
      \wt[black]{2}{-3}
      \wt[black]{3}{-2}
      \wt[black]{4}{-1}
      \foreach \i in {1,...,4}{\wt[black]{5-2*\i}{\i}}
      \node[above right=-2pt] at \weight{1}{2} {\small\(\nu\)};
      \node[above right=-2pt] at (hex cs:x=3,y=1){\small\(\lambda\)};
      \draw[very thick] \weight{-5}{5} -- \weight{5}{-5};
      \draw[very thick] \weight{0}{-5} -- \weight{0}{5};
      \draw[very thick] \weight{-5}{0} -- \weight{5}{0};
      \draw[dashed, thick] \weight{1}{2} -- \weight{-2}{-1};
      \wt[black]{1}{2}
      \wt[black]{-2}{-1}
      \wt[black]{0}{1}
      \wt[black]{-1}{0}
    \end{rootSystem}
  \end{tikzpicture}
\end{center}

By construction, \(\nu\) corresponds to the right-most weight of a
\(\mathfrak{sl}_2(K)\)-module, so that all dots lying on the dashed string must
occur in \(\mathfrak{sl}_2(K)\)-module. Hence they must also be weights of
\(M\). The final picture is thus
\begin{center}
  \begin{tikzpicture}
    \AutoSizeWeightLatticefalse
    \begin{rootSystem}{A}
      \setlength{\weightRadius}{2pt}
      \weightLattice{5}
      \draw[thick] \weight{3}{1} -- \weight{-3}{4};
      \draw[thick] \weight{3}{1} -- \weight{4}{-1};
      \draw[thick] \weight{-3}{4} -- \weight{-4}{3};
      \draw[thick] \weight{-4}{3} -- \weight{-1}{-3};
      \draw[thick] \weight{1}{-4} -- \weight{4}{-1};
      \draw[thick] \weight{-1}{-3} -- \weight{1}{-4};
      \wt[black]{-4}{3}
      \wt[black]{-3}{1}
      \wt[black]{-2}{-1}
      \wt[black]{-1}{-3}
      \wt[black]{1}{-4}
      \wt[black]{2}{-3}
      \wt[black]{3}{-2}
      \wt[black]{4}{-1}
      \foreach \i in {1,...,4}{\wt[black]{5-2*\i}{\i}}
      \node[above right=-2pt] at (hex cs:x=3,y=1){\small\(\lambda\)};
      \draw[very thick] \weight{-5}{5} -- \weight{5}{-5};
      \draw[very thick] \weight{0}{-5} -- \weight{0}{5};
      \draw[very thick] \weight{-5}{0} -- \weight{5}{0};
      \wt[black]{-2}{2}
      \wt[black]{0}{1}
      \wt[black]{-1}{0}
      \wt[black]{0}{-2}
      \wt[black]{1}{-1}
      \wt[black]{2}{0}
    \end{rootSystem}
  \end{tikzpicture}
\end{center}

\index{weights!weight diagrams}
This final picture is known as \emph{the weight diagram of \(M\)}. Finally\dots

\begin{theorem}\label{thm:sl3-irr-weights-class}
  The weights of \(M\) are precisely the elements of the weight lattice \(P\)
  congruent to \(\lambda\) module the sublattice \(Q\) and lying inside hexagon
  with vertices the images of \(\lambda\) under the group generated by
  reflections across the lines \(\kappa(\epsilon_i - \epsilon_j, \alpha) = 0\).
\end{theorem}

Having found all of the weights of \(M\), the only thing we are missing is an
existence and uniqueness theorem analogous to
Theorem~\ref{thm:sl2-exist-unique}. It is clear from the symmetries of the
locus of weights found in Theorem~\ref{thm:sl3-irr-weights-class} that if
\(\lambda \in P\) is the highest weight of some finite-dimensional simple
\(\mathfrak{sl}_3(K)\)-module \(M\) then \(\lambda\) lies in the cone
\(\mathbb{N} \langle \epsilon_1, - \epsilon_3 \rangle\). What's perhaps more
surprising is the fact that this condition is sufficient for the existence of
such a \(M\). In other words, our next goal is establishing\dots

\begin{definition}\index{weights!dominant weight}
  An element \(\lambda \in P\) is called \emph{dominant} if it lies in the cone
  \(\mathbb{N} \langle \epsilon_1, - \epsilon_3 \rangle\).
\end{definition}

\begin{theorem}\label{thm:sl3-existence-uniqueness}
  For each dominant \(\lambda \in P\), there exists precisely one
  finite-dimensional simple \(\mathfrak{sl}_3(K)\)-module \(M\) whose highest
  weight is \(\lambda\).
\end{theorem}

To proceed further we once again refer to the approach we employed in the case
of \(\mathfrak{sl}_2(K)\): next we showed in
Proposition~\ref{thm:basis-of-irr-rep} that any simple
\(\mathfrak{sl}_2(K)\)-module is spanned by the images of its highest weight
vector under \(f\). A more abstract way of putting it is to say that a simple
\(\mathfrak{sl}_2(K)\)-module \(M\) of is spanned by the images of its highest
weight vector under successive applications of the action of half of the root
spaces of \(\mathfrak{sl}_2(K)\). The advantage of this alternative formulation
is, of course, that the same holds for \(\mathfrak{sl}_3(K)\).
Specifically\dots

\begin{proposition}\label{thm:sl3-positive-roots-span-all-irr-rep}
  Given a simple \(\mathfrak{sl}_3(K)\)-module \(M\) and a highest weight
  vector \(m \in M\), \(M\) is spanned by the images of \(m\) under successive
  applications of \(E_{2 1}\), \(E_{3 1}\) and \(E_{3 2}\).
\end{proposition}

\begin{proof}
  Given the fact \(M\) is simple, it suffices to show that the subspace \(N\)
  spanned by successive applications of \(E_{2 1}\), \(E_{3 1}\) and \(E_{3
  2}\) to \(m\) is stable under the action of \(\mathfrak{sl}_3(K)\). In
  addition, since \([E_{2 1}, E_{3 1}] = [E_{3 1}, E_{3 2}] = 0\) and \([E_{2
  1}, E_{3 2}] = - E_{3 1}\), all successive product of \(E_{2 1}\), \(E_{3
  1}\) and \(E_{3 2}\) in \(\mathcal{U}(\mathfrak{sl}_3(K))\) can be written as
  \(E_{2 1}^a E_{3 1}^b E_{3 1}^c\) for some \(a\), \(b\) and \(c\), so that
  \(N\) is spanned by the elements \(E_{2 1}^a E_{3 1}^b E_{3 1}^c \cdot m\).

  Recall that \(E_{i j}\) maps \(M_\mu\) to \(M_{\mu + \epsilon_i - \epsilon_j}\).
  In particular, \(E_{2 1}^a E_{3 1}^b E_{3 1}^c \cdot m \in M_{\lambda - a
  (\epsilon_1 - \epsilon_2) - b (\epsilon_1 - \epsilon_3) - c (\epsilon_2 - \epsilon_3)}\).
  In other words,
  \[
    H E_{2 1}^a E_{3 1}^b E_{3 1}^c \cdot m
    = (\lambda - a (\epsilon_1 - \epsilon_2)
               - b (\epsilon_1 - \epsilon_3)
               - c (\epsilon_2 - \epsilon_3))(H)
      E_{2 1}^a E_{3 1}^b E_{3 1}^c \cdot m
      \in N
  \]
  for all \(H \in \mathfrak{h}\) and \(N\) is stable under the action of
  \(\mathfrak{h}\). On the other hand, \(N\) is clearly stable under the action
  of \(E_{2 1}\), \(E_{3 1}\) and \(E_{3 2}\). All it is left is to show \(N\)
  is stable under the action of \(E_{1 2}\), \(E_{1 3}\) and \(E_{2 3}\).

  We begin by analyzing the case of \(E_{1 2}\). We have
  \[
    \begin{split}
      E_{1 2} E_{2 1}^a E_{3 1}^b E_{3 2}^c \cdot m
      & = ([E_{1 2}, E_{2 1}] + E_{2 1} E_{1 2})
          E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c \cdot m \\
      & = E_{2 1} ([E_{1 2}, E_{2 1}] + E_{2 1} E_{1 2})
          E_{2 1}^{a - 2} E_{3 1}^b E_{3 2}^c \cdot m \\
      & \phantom{=} \; +
          (\lambda - (a - 1) (\epsilon_1 - \epsilon_2)
                   - b (\epsilon_1 - \epsilon_3)
                   - c (\epsilon_2 - \epsilon_3)) ([E_{1 2}, E_{2 1}])
          E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c \cdot m \\
      & = E_{2 1}^2 ([E_{1 2}, E_{2 1}] + E_{2 1} E_{1 2})
          E_{2 1}^{a - 3} E_{3 1}^b E_{3 2}^c \cdot m \\
      & \phantom{=} \; +
          (\lambda - (a - 1) (\epsilon_1 - \epsilon_2)
                   - b (\epsilon_1 - \epsilon_3)
                   - c (\epsilon_2 - \epsilon_3)) ([E_{1 2}, E_{2 1}])
          E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c \cdot m \\
      & \phantom{=} \; +
        (\lambda - (a - 2) (\epsilon_1 - \epsilon_2)
                   - b (\epsilon_1 - \epsilon_3)
                   - c (\epsilon_2 - \epsilon_3)) ([E_{1 2}, E_{2 1}])
          E_{2 1}^{a - 2} E_{3 1}^b E_{3 2}^c \cdot m \\
      & \; \; \vdots \\
      & = E_{2 1}^a E_{1 2} E_{3 1}^b E_{3 2}^c \cdot m \\
      & \phantom{=} \; +
          (\lambda - (a - 1) (\epsilon_1 - \epsilon_2)
                   - b (\epsilon_1 - \epsilon_3)
                   - c (\epsilon_2 - \epsilon_3)) ([E_{1 2}, E_{2 1}])
          E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c \cdot m \\
      & \phantom{=} \; +
        (\lambda - (a - 2) (\epsilon_1 - \epsilon_2)
                   - b (\epsilon_1 - \epsilon_3)
                   - c (\epsilon_2 - \epsilon_3)) ([E_{1 2}, E_{2 1}])
          E_{2 1}^{a - 2} E_{3 1}^b E_{3 2}^c \cdot m \\
      & \phantom{=} \; \; \, \vdots \\
      & \phantom{=} \; +
        (\lambda - (a - a) (\epsilon_1 - \epsilon_2)
                   - b (\epsilon_1 - \epsilon_3)
                   - c (\epsilon_2 - \epsilon_3)) ([E_{1 2}, E_{2 1}])
          E_{2 1}^{a - a} E_{3 1}^b E_{3 2}^c \cdot m \\
    \end{split}
  \]

  Since \((\lambda - (a - k) (\epsilon_1 - \epsilon_2) - b (\epsilon_1 - \epsilon_3) -
  c (\epsilon_2 - \epsilon_3)) ([E_{1 2}, E_{2 1}]) E_{2 1}^{a - k} E_{3 1}^b
  E_{3 2}^c \cdot m \in N\) for all \(k\), it suffices to show \(E_{2 1}^a E_{1
  2} E_{3 1}^b E_{3 2}^c \cdot m \in N\). But
  \[
    \begin{split}
      E_{1 2} E_{3 1}^b
      & = (E_{3 1} E_{1 2} - E_{3 2}) E_{3 1}^{b - 1} \\
      & = E_{3 1} E_{1 2} E_{3 1}^{b - 1}
        - E_{3 1} E_{3 2} E_{3 1}^{b - 1} \\
      & = E_{3 1} (E_{3 1} E_{1 2} - E_{3 2}) E_{3 1}^{b - 2}
        - E_{3 2} E_{3 1}^b \\
      & \; \; \vdots \\
      & = E_{3 1}^b  E_{1 2} - b E_{3 2} E_{3 1}^b \\
    \end{split},
  \]
  given \([E_{1 2}, E_{3 1}] = - E_{3 2}\) and \([E_{3 2}, E_{3 1}] = 0\).
  It then follows from the fact \(E_{1 2} \cdot m = 0\) that
  \[
    E_{2 1}^a E_{1 2} E_{3 1}^b E_{3 2}^c \cdot m
    = E_{2 1}^a E_{3 1}^b E_{3 2}^c E_{1 2} \cdot m
    - b E_{2 1}^a E_{3 1}^b E_{3 2}^{c + 1} \cdot m
    = - b E_{2 1}^a E_{3 1}^b E_{3 2}^{c + 1} \cdot m \in N,
  \]
  given that \(E_{1 2}\) and \(E_{3 2}\) commute. Hence \(E_{1 2} \cdot (E_{2
  1}^a E_{3 1}^b E_{3 2}^c \cdot m) \in N\). Similarly,
  \[
    E_{1 3} \cdot (E_{2 1}^a E_{3 1}^b E_{3 2}^c \cdot m),
    E_{2 3} \cdot (E_{2 1}^a E_{3 1}^b E_{3 2}^c \cdot m) \in N
  \]
\end{proof}

The same argument also goes to show\dots

\begin{corollary}\label{thm:irr-component-of-high-vec}
  Given a finite-dimensional \(\mathfrak{sl}_3(K)\)-module \(M\) with highest
  weight \(\lambda\) and \(m \in M_\lambda\), the subspace spanned by
  successive applications of \(E_{2 1}\), \(E_{3 1}\) and \(E_{3 2}\) to \(m\)
  is a simple submodule whose highest weight is \(\lambda\).
\end{corollary}

This is very interesting to us since it implies that finding \emph{any}
finite-dimensional module whose highest weight is \(\lambda\) is enough for
establishing the ``existence'' part of
Theorem~\ref{thm:sl3-existence-uniqueness}. Moreover, constructing such a
module turns out to be quite simple.

\begin{proof}[Proof of existence]
  Take \(\lambda = k \epsilon_1 - \ell \epsilon_3 \in P\) with \(k, \ell \ge 0\),
  so that \(\lambda\) is dominant. Consider the natural
  \(\mathfrak{sl}_3(K)\)-module \(K^3\). We claim that the highest weight of
  \(\operatorname{Sym}^k K^3 \otimes \operatorname{Sym}^\ell (K^3)^*\) is
  \(\lambda\).

  First of all, notice that the weight vector of \(K^3\) are the canonical
  basis elements \(e_1\), \(e_2\) and \(e_3\), whose corresponding weights are
  \(\epsilon_1\), \(\epsilon_2\) and \(\epsilon_3\) respectively. Hence the weight
  diagram of \(K^3\) is
  \begin{center}
    \begin{tikzpicture}[scale=2]
      \AutoSizeWeightLatticefalse
      \begin{rootSystem}{A}
        \weightLattice{2}
        \wt[black]{1}{0}
        \wt[black]{-1}{1}
        \wt[black]{0}{-1}
        \node[right] at \weight{1}{0}  {$\epsilon_1$};
        \node[above left] at \weight{-1}{1} {$\epsilon_2$};
        \node[below left] at \weight{0}{-1} {$\epsilon_3$};
      \end{rootSystem}
    \end{tikzpicture}
  \end{center}
  and \(\epsilon_1\) is the highest weight of \(K^3\).

  On the one hand, if \(\{f_1, f_2, f_3\}\) is the dual basis for \(\{e_1, e_2,
  e_3\}\) then \(H \cdot f_i = - \epsilon_i(H) f_i\) for each \(H \in
  \mathfrak{h}\), so that the weights of \((K^3)^*\) are precisely the
  opposites of the weights of \(K^3\). In other words,
  \begin{center}
    \begin{tikzpicture}[scale=2]
      \AutoSizeWeightLatticefalse
      \begin{rootSystem}{A}
        \weightLattice{2}
        \wt[black]{-1}{0}
        \wt[black]{1}{-1}
        \wt[black]{0}{1}
        \node[left]        at \weight{-1}{0} {$-\epsilon_1$};
        \node[below right] at \weight{1}{-1} {$-\epsilon_2$};
        \node[above right] at \weight{0}{1}  {$-\epsilon_3$};
      \end{rootSystem}
    \end{tikzpicture}
  \end{center}
  is the weight diagram of \((K^3)^*\) and \(\epsilon_3\) is the highest weight
  of \((K^3)^*\).

  On the other hand if we fix two \(\mathfrak{sl}_3(K)\)-modules \(N\) and
  \(L\), by computing
  \[
    \begin{split}
      H \cdot (n \otimes l)
      & = H \cdot n \otimes l + n \otimes H \cdot l \\
      & = \lambda(H) n \otimes l + n \otimes \mu(H) l \\
      & = (\lambda + \mu)(H) \, (n \otimes l)
    \end{split}
  \]
  for each \(H \in \mathfrak{h}\), \(n \in N_\lambda\) and \(l \in L_\mu\) we
  can see that the weights of \(N \otimes L\) are precisely the sums of the
  weights of \(N\) with the weights of \(L\).

  This implies that the highest weights of \(\operatorname{Sym}^k K^3\) and
  \(\operatorname{Sym}^\ell (K^3)^*\) are \(k \epsilon_1\) and \(- \ell
  \epsilon_3\) respectively -- with highest weight vectors \(e_1^k\) and
  \(f_3^\ell\). Furthermore, by the same token the highest weight of
  \(\operatorname{Sym}^k K^3 \otimes \operatorname{Sym}^\ell (K^3)^*\) must be
  \(\lambda = k e_1 - \ell e_3\) -- with highest weight vector \(e_1^k \otimes
  f_3^\ell\).
\end{proof}

The ``uniqueness'' part of Theorem~\ref{thm:sl3-existence-uniqueness} is even
simpler than that.

\begin{proof}[Proof of uniqueness]
  Let \(M\) and \(N\) be two simple \(\mathfrak{sl}_3(K)\)-modules with highest
  weight \(\lambda\). By Theorem~\ref{thm:sl3-irr-weights-class}, the weights
  of \(M\) are precisely the same as those of \(N\).

  Now by computing
  \[
    H \cdot (m + n)
    = H \cdot m + H \cdot n
    = \mu(H) m + \mu(H) n
    = \mu(H) (m + n)
  \]
  for each \(H \in \mathfrak{h}\), \(m \in M_\mu\) and \(n \in N_\mu\), we can
  see that the weights of \(M \oplus N\) are same as those of \(M\) and \(N\).
  Hence the highest weight of \(M \oplus N\) is \(\lambda\) -- with highest
  weight vectors given by the sum of highest weight vectors of \(M\) and \(N\).

  Fix some \(m \in M_\lambda\) and \(n \in N_\lambda\) and consider the
  submodule \(L = \mathcal{U}(\mathfrak{sl}_3(K)) \cdot m + n \subset M \oplus
  N\) generated by \(m + n\). Since \(m + n\) is a highest weight of \(M \oplus
  N\), it follows from corollary~\ref{thm:irr-component-of-high-vec} that \(L\)
  is simple. The projection maps \(\pi_1 : L \to M\), \(\pi_2 : L \to N\),
  being nonzero homomorphism between simple \(\mathfrak{sl}_3(K)\)-modules,
  must be isomorphism. Finally,
  \[
    M \cong L \cong N
  \]
\end{proof}

We have been very successful in our pursue for a classification of the simple
modules of \(\mathfrak{sl}_2(K)\) and \(\mathfrak{sl}_3(K)\), but so far we
have mostly postponed the discussion on the motivation behind our methods. In
particular, we did not explain why we chose \(h\) and \(\mathfrak{h}\), and
neither why we chose to look at their eigenvalues. Apart from the obvious fact
we already knew it would work a priory, why did we do all that? In the
following chapter we will attempt to answer this question by looking at what we
did in the last chapter through more abstract lenses and studying the
representations of an arbitrary finite-dimensional semisimple Lie algebra
\(\mathfrak{g}\).