memoire-m2

My M2 Memoire on mapping class groups & their representations

presentation.tex (24869B)

  1 \chapter{Relations Between Twists}\label{ch:relations}
  2 
  3 Having found a convenient set of generators for \(\Mod(\Sigma_g)\), it is now
  4 natural to ask what the relations between such generators are. In this chapter,
  5 we highlight some additional relations between Dehn twists and the geometric
  6 intuition behind them, culminating in the statement of a presentation for
  7 \(\Mod(\Sigma_g)\) whose relations can be entirely explained in terms of the
  8 geometry of curves in \(\Sigma_g\) -- see
  9 Theorem~\ref{thm:wajnryb-presentation}.
 10 
 11 \begin{fundamental-observation}[Lantern relation]
 12   Let \(\Sigma_0^4\) be the surface of genus \(0\) with \(4\) boundary
 13   components and \(\alpha, \beta, \gamma, \delta_1, \ldots, \delta_4 \subset
 14   \Sigma_0^4\) be as in Figure~\ref{fig:latern-relation}. Consider the surfaces
 15   \(\Sigma_0^3 = \Sigma_0^4 \cup_{\delta_1} \mathbb{D}^2\) and \(\Sigma_{0,1}^3
 16   = \Sigma_0^4 \cup_{\delta_1} (\mathbb{D}^2 \setminus \{ 0 \})\), as well as
 17   the map \(\operatorname{push} : \pi_1(\Sigma_0^3, 0) \to
 18   \Mod(\Sigma_{0,1}^3)\). Let \(\eta_1, \eta_2, \eta_3 : \mathbb{S}^1 \to
 19   \Sigma_0^3\) be the loops from Figure~\ref{fig:lantern-relation-capped}, so
 20   that \([\eta_1] \cdot [\eta_2] = [\eta_3]\) in \(\pi_1(\Sigma_0^3, 0)\). From
 21   Observation~\ref{ex:push-simple-loop} we obtain
 22   \[
 23     (\tau_{\delta_2} \tau_\alpha^{-1}) (\tau_{\delta_3} \tau_\gamma^{-1})
 24     = \operatorname{push}([\eta_1]) \cdot \operatorname{push}([\eta_2])
 25     = \operatorname{push}([\eta_3])
 26     = \tau_\beta \tau_{\delta_4}^{-1}
 27     \in \Mod(\Sigma_{0, 1}^3).
 28   \]
 29   Using the capping exact sequence from Observation~\ref{ex:capping-seq}, we
 30   can then see \(\tau_{\delta_2} \tau_\alpha^{-1} \tau_{\delta_3}
 31   \tau_\gamma^{-1}, \tau_\beta \tau_{\delta_4}^{-1} \in \Mod(\Sigma_0^4)\)
 32   differ by a power of \(\tau_{\delta_1}\). In fact, one can show
 33   \((\tau_{\delta_2} \tau_\alpha^{-1} \tau_{\delta_3} \tau_\gamma^{-1})
 34   (\tau_\beta \tau_{\delta_4}^{-1})^{-1} = \tau_{\delta_1}^{-1} \in
 35   \Mod(\Sigma_0^4)\). Now the disjointness relations \([\tau_{\delta_i},
 36   \tau_\alpha] = [\tau_{\delta_i}, \tau_\beta] = [\tau_{\delta_i}, \tau_\gamma]
 37   = 1\) give us the \emph{lantern relation} (\ref{eq:lantern-relation}) in
 38   \(\Mod(\Sigma_0^4)\).
 39   \begin{equation}\label{eq:lantern-relation}
 40     \tau_\alpha \tau_\beta \tau_\gamma
 41     = \tau_{\delta_1} \tau_{\delta_2} \tau_{\delta_3} \tau_{\delta_4}
 42   \end{equation}
 43 \end{fundamental-observation}
 44 
 45 \noindent
 46 \begin{minipage}[t]{.5\linewidth}
 47   \centering
 48   \includegraphics[width=\linewidth]{images/lantern-relation.eps}
 49   \captionof{figure}{Two views of $\Sigma_0^4$: on the left-hand side we see
 50   the \emph{lantern-like} surface we get by subtracting \(4\) disjoint open
 51   disks from \(\mathbb{S}^2\), and on the right-hand side we see the disk with
 52   three open disks subtracted from its interior.}
 53   \label{fig:latern-relation}
 54 \end{minipage}
 55 \hspace{.6cm} %
 56 \begin{minipage}[t]{.44\linewidth}
 57   \centering
 58   \includegraphics[width=.45\linewidth]{images/lantern-relation-capped.eps}
 59   \captionof{figure}{The curves $\eta_1, \eta_2, \eta_3 \subset \Sigma_0^3$
 60   from the proof of the lantern relation.}
 61   \label{fig:lantern-relation-capped}
 62 \end{minipage}
 63 
 64 We may exploit different embeddings \(\Sigma_0^4 \hookrightarrow \Sigma\) and
 65 their corresponding inclusion homomorphisms \(\Mod(\Sigma_0^4) \to
 66 \Mod(\Sigma)\) to obtain interesting relations between the corresponding Dehn
 67 twists in \(\Mod(\Sigma)\). For example, the lantern relation can be used to
 68 compute \(\Mod(\Sigma_g^b)^\ab\) for \(g \ge 3\).
 69 
 70 \begin{proposition}\label{thm:trivial-abelianization}
 71   The Abelianization \(\Mod(\Sigma_g^b)^\ab =
 72   \mfrac{\Mod(\Sigma_g^b)}{[\Mod(\Sigma_g), \Mod(\Sigma_g)]}\) is cyclic.
 73   Moreover, if \(g \ge 3\) then \(\Mod(\Sigma_g^b)^\ab = 0\). In other words,
 74   \(\Mod(\Sigma_g)\) is a perfect group for \(g \ge 3\).
 75 \end{proposition}
 76 
 77 \begin{proof}
 78   By Theorem~\ref{thm:lickorish-gens}, \(\Mod(\Sigma_g^b)^\ab\) is generated by
 79   the image of the Lickorish generators, which are all conjugate and thus
 80   represent the same class in the Abelianization. In fact, any nonseparating
 81   \(\alpha \subset \Sigma_g^b\) is conjugate to the Lickorish generators too,
 82   so \(\Mod(\Sigma_g^b)^\ab = \langle [\alpha] \rangle\).
 83 
 84   Now for \(g \ge 3\) we can embed \(\Sigma_0^4\) in \(\Sigma_g^b\) in such a
 85   way that all the corresponding curves \(\alpha, \beta, \gamma, \delta_1,
 86   \ldots, \delta_4 \subset \Sigma_g^b\) are nonseparating, as shown in
 87   Figure~\ref{fig:latern-relation-trivial-abelianization}. The lantern relation
 88   (\ref{eq:lantern-relation}) then becomes
 89   \[
 90     3 \cdot [\tau_\alpha]
 91     = [\tau_\alpha] + [\tau_\beta] + [\tau_\gamma]
 92     = [\tau_{\delta_1}] + [\tau_{\delta_2}]
 93     + [\tau_{\delta_3}] + [\tau_{\delta_4}]
 94     = 4 \cdot [\tau_\alpha]
 95   \]
 96   in \(\Mod(\Sigma_g^b)^\ab\). In other words, \([\tau_\alpha] = 0\) and thus
 97   \(\Mod(\Sigma_g^b)^\ab = 0\).
 98 \end{proof}
 99 
100 \begin{figure}[ht]
101   \centering
102   \includegraphics[width=.5\linewidth]{images/lantern-relation-trivial-abelianization.eps}
103   \caption{The embedding of $\Sigma_0^4$ in $\Sigma_g^b$ for $g \ge 3$.}
104   \label{fig:latern-relation-trivial-abelianization}
105 \end{figure}
106 
107 To get extra relations we need to investigate certain branched covers \(\Sigma
108 \to \mathbb{D}^2 \setminus \{x_1, \ldots, x_r\}\), as well as the relationship
109 between \(\Mod(\Sigma)\) and \(\Mod(\mathbb{D}^2 \setminus \{x_1, \ldots,
110 x_r\})\). This is what is known as \emph{the Birman-Hilden theorem}.
111 
112 \section{The Birman-Hilden Theorem}\label{birman-hilden}
113 
114 Let \(\Sigma_{0, r}^1 = \mathbb{D}^2 \setminus \{x_1, \ldots, x_r\}\) be the
115 surface of genus \(0\) with \(r\) punctures and one boundary component. We
116 begin our investigation by providing an alternative description of its mapping
117 class group. Namely, we show that \(\Mod(\Sigma_{0, r}^1)\) is the braid group
118 on \(r\) strands.
119 
120 \begin{definition}
121   The \emph{braid group on \(n\) strands} \(B_n\) is the fundamental group
122   \(\pi_1(C(\mathbb{D}^2, n), *)\) of the configuration space \(C(\mathbb{D}^2,
123   n) = \mfrac{C^{\operatorname{ord}}(\mathbb{D}^2, n)}{S_n}\) of \(n\) points
124   in the interior of the disk. The elements of \(B_n\) are referred to as
125   \emph{braids}.
126 \end{definition}
127 
128 \begin{example}
129   Given \(i = 1, \ldots, n-1\), we define \(\sigma_i \in B_n\) as in
130   Figure~\ref{fig:braid-group-generator}.
131 \end{example}
132 
133 \begin{figure}[ht]
134   \centering
135   \includegraphics[width=.25\linewidth]{images/braid-group-generator.eps}
136   \caption{The braid $\sigma_i$.}
137   \label{fig:braid-group-generator}
138 \end{figure}
139 
140 The third Reidemeister move translates to the so-called \emph{braid
141 relations}
142 \[
143   \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_1 \sigma_i
144 \]
145 in \(B_n\), which motivates the name used in
146 Observation~\ref{ex:braid-relation}. In his seminal paper on braid groups,
147 Artin \cite{artin} gave the following finite presentation of \(B_n\).
148 
149 \begin{theorem}[Artin]
150   \[
151     \arraycolsep=1.2pt
152     B_n =
153     \left\langle
154     \sigma_1, \ldots, \sigma_{n - 1} :
155     \begin{array}{rll}
156       \sigma_i \sigma_{i+1} \sigma_i & = \sigma_{i+1} \sigma_i \sigma_{i+1} &
157       \quad \text{for all} \ i, \\
158       \sigma_i \sigma_j & = \sigma_j \sigma_i &
159       \quad \text{for} \ j \ne i + 1 \ \text{and} \ j \ne i - 1
160     \end{array}
161     \right\rangle.
162   \]
163 \end{theorem}
164 
165 As promised, we now show that \(B_n\) coincides with \(\Mod(\Sigma_{0, n}^1)\).
166 Recall from Theorem~\ref{thm:birman-exact-seq} that there is an exact
167 sequence
168 \begin{center}
169   \begin{tikzcd}
170       1 \rar
171       & B_n \rar{\operatorname{push}}
172       & \Mod(\Sigma_{0, n}^1) \rar
173       & \cancelto{1}{\Mod(\mathbb{D}^2)} \rar
174       & 1,
175   \end{tikzcd}
176 \end{center}
177 for \(\Homeo^+(\mathbb{D}^2, \mathbb{S}^1)\) is contractible by
178 Observation~\ref{ex:alexander-trick}. We thus obtain the following result.
179 
180 \begin{proposition}
181   The map \(\operatorname{push} : B_n \to \Mod(\Sigma_{0, n}^1)\) is a group
182   isomorphism.
183 \end{proposition}
184 
185 \noindent
186 \begin{minipage}[b]{.47\linewidth}
187 \begin{observation}\label{ex:braid-group-center}
188   Using the capping exact sequence from Observation~\ref{ex:capping-seq} and
189   the Alexander method, one can check that the center \(Z(\Mod(\Sigma_{0,
190   n}^1))\) of \(\Mod(\Sigma_{0, n}^1)\) is freely generated by the Dehn twist
191   \(\tau_\delta\) about the boundary \(\delta = \partial \Sigma_{0, n}^1\). It
192   is also not very difficult to see that \(\operatorname{push} : B_n \to
193   \Mod(\Sigma_{0, n}^1)\) takes \(\sigma_1 \cdots \sigma_{n-1}\) to the
194   rotation by \(\sfrac{2\pi}{n}\) as in Figure~\ref{fig:braid-group-center},
195   which is an \(n\)-th root of \(\tau_\delta\). Hence the center \(Z(B_n)\) is
196   freely generated by \(z = (\sigma_1 \cdots \sigma_{n - 1})^n\).
197 \end{observation}
198 \end{minipage}
199 \hspace{.6cm} %
200 \begin{minipage}[b]{.47\textwidth}
201   \centering
202   \includegraphics[width=.4\linewidth]{images/braid-group-center.eps}
203   \captionof{figure}{The clockwise rotation by $\sfrac{2\pi}{n}$ about an axis
204   centered around the punctures $x_1, \ldots, x_n$ of $\Sigma_{0, n}^1$.}
205   \label{fig:braid-group-center}
206 \end{minipage}
207 \smallskip
208 
209 To get from \(\Sigma_{0, n}^1\) to surfaces of genus \(g > 0\) we may consider
210 the \emph{hyperelliptic involution} \(\iota : \Sigma_g \isoto \Sigma_g\), which
211 rotates \(\Sigma_g\) by \(\pi\) around some axis as in
212 Figure~\ref{fig:hyperelliptic-involution}. Given \(\ell < g\) and \(b = 1, 2\),
213 we can also embed \(\Sigma_\ell^b\) in \(\Sigma_g\) in such way that \(\iota\)
214 restricts to an involution\footnote{This involution does not fix $\partial
215 \Sigma_\ell^b$ point-wise.} \(\Sigma_\ell^b \isoto \Sigma_\ell^b\).
216 
217 \begin{figure}[ht]
218   \centering
219   \includegraphics[width=\linewidth]{images/hyperelliptic-involution.eps}
220   \caption{The hyperelliptic involution $\iota$.}
221   \label{fig:hyperelliptic-involution}
222 \end{figure}
223 
224 It is clear from Figure~\ref{fig:hyperelliptic-involution} that the quotients
225 \(\mfrac{\Sigma_\ell^1}{\iota}\) and \(\mfrac{\Sigma_\ell^2}{\iota}\) are both
226 disks, with boundary corresponding to the projection of the boundaries of
227 \(\Sigma_\ell^1\) and \(\Sigma_\ell^2\), respectively. Given \(b = 1, 2\), the
228 quotient map \(\Sigma_\ell^b \to \mfrac{\Sigma_\ell^b}{\iota} \cong
229 \mathbb{D}^2\) is a double cover with \(2\ell + b\) branch points corresponding
230 to the fixed points of \(\iota\). We may thus regard
231 \(\mfrac{\Sigma_\ell^b}{\iota}\) as the disk \(\Sigma_{0, 2\ell + b}^1\) with
232 \(2\ell + b\) punctures in its interior, as shown in
233 Figure~\ref{fig:hyperelliptic-covering}. We also draw the curves \(\alpha_1,
234 \ldots, \alpha_{2\ell} \subset \Sigma_\ell^b\) of the Humphreys generators of
235 \(\Mod(\Sigma_g)\). Since these curves are invariant under the action of
236 \(\iota\), they descend to arcs \(\bar{\alpha}_1, \ldots, \bar{\alpha}_{2\ell + b} \subset \Sigma_{0, 2\ell + b}^1\) joining the punctures of the quotient
237 surface.
238 
239 \begin{figure}[ht]
240   \centering
241   \includegraphics[width=.77\linewidth]{images/hyperelliptic-covering.eps}
242   \caption{The double branched covers given by $\iota$.}
243   \label{fig:hyperelliptic-covering}
244 \end{figure}
245 
246 \begin{observation}\label{ex:push-generators-description}
247   The map \(\operatorname{push} : B_{2\ell + b} \to \Mod(\Sigma_{0, 2\ell + b}^1)\) takes \(\sigma_i\) to the half-twist \(h_{\bar{\alpha}_i}\) about
248   the arc \(\bar{\alpha}_i \subset \Sigma_{0, 2\ell + b}^1\).
249 \end{observation}
250 
251 We now study the homeomorphisms of \(\Sigma_\ell^1\) and \(\Sigma_\ell^2\) that
252 descend to the quotient surfaces and their mapping classes, known as \emph{the
253 symmetric mapping classes}.
254 
255 \begin{definition}
256   Let \(\ell \ge 0\) and \(b = 1, 2\). The \emph{group of symmetric
257   homeomorphisms of \(\Sigma_\ell^b\)} is \(\SHomeo^+(\Sigma_\ell^b, \partial \Sigma_\ell^b) =
258   \{\phi \in \Homeo^+(\Sigma_\ell^b, \partial \Sigma_\ell^b) : [\phi, \iota] = 1\}\). The
259   \emph{symmetric mapping class group of \(\Sigma_\ell^b\)} is the subgroup
260   \(\SMod(\Sigma_\ell^1) = \{ [\phi] \in \Mod(\Sigma_\ell^b) : \phi \in
261   \SHomeo^+(\Sigma_\ell^b, \partial \Sigma_\ell^b) \}\).
262 \end{definition}
263 
264 Fix \(b = 1\) or \(2\). It follows from the universal property of quotients
265 that any \(\phi \in \SHomeo^+(\Sigma_\ell^b, \partial \Sigma_\ell^b)\) defines
266 a homeomorphism \(\bar \phi : \Sigma_{0, 2\ell+b}^1 \isoto \Sigma_{0,
267 2\ell+b}^1\). This yields a homomorphism of topological groups
268 \begin{align*}
269   \SHomeo^+(\Sigma_\ell^b, \partial \Sigma_\ell^b)
270   & \to \Homeo^+(\Sigma_{0, 2\ell + b}^1, \partial \Sigma_{0, 2\ell + b}^1) \\
271   \phi
272   & \mapsto \bar \phi,
273 \end{align*}
274 which is surjective because any \(\psi \in \Homeo^+(\Sigma_{0, 2\ell + b}^1,
275 \partial \Sigma_{0, 2\ell + b}^1)\) lifts to \(\Sigma_\ell^b\).
276 
277 It is also not difficult to see \(\SHomeo^+(\Sigma_\ell^b, \partial
278 \Sigma_\ell^b) \to \Homeo^+(\Sigma_{0, 2\ell + b}^1, \partial \Sigma_{0, 2\ell
279 + b}^1)\) is injective: the only candidates for elements of its kernel are
280 \(1\) and \(\iota\), but \(\iota\) is not an element of
281 \(\SHomeo^+(\Sigma_\ell^b, \partial \Sigma_\ell^b)\) since it does not fix
282 \(\partial \Sigma_\ell^b\) point-wise. Now since we have a continuous bijective
283 homomorphism we find
284 \[
285   \begin{split}
286     \pi_0(\SHomeo^+(\Sigma_\ell^b, \partial \Sigma_\ell^b))
287     & \cong \pi_0(\Homeo^+(\Sigma_{0, 2\ell+b}^1, \partial \Sigma_{0, 2\ell+b}^1))     \\
288     & = \mfrac{\Homeo^+(\Sigma_{0,2\ell+b}^1, \partial \Sigma_{0, 2\ell+b}^1)}{\simeq} \\
289     & = \Mod(\Sigma_{0, 2\ell+b}^1)                                               \\
290     & \cong B_{2\ell + b}.
291   \end{split}
292 \]
293 
294 We would like to say \(\pi_0(\SHomeo^+(\Sigma_\ell^b, \partial \Sigma_\ell^b)) =
295 \SMod(\Sigma_\ell^b)\), but a priori the story looks a little more complicated:
296 \(\phi, \psi \in \SHomeo^+(\Sigma_\ell^b, \partial \Sigma_\ell^b)\) define the same class
297 in \(\SMod(\Sigma_\ell^b)\) if they are isotopic, but they may not lie in same
298 connected component of \(\SHomeo^+(\Sigma_\ell^b, \partial \Sigma_\ell^b)\) if they are
299 not isotopic \emph{through symmetric homeomorphisms}. Birman-Hilden
300 \cite{birman-hilden} showed that this is never the case.
301 
302 \begin{theorem}[Birman-Hilden]
303   If \(\phi, \psi \in \SHomeo^+(\Sigma_\ell^b, \partial \Sigma_\ell^b)\) are isotopic
304   then \(\phi\) and \(\psi\) are isotopic through symmetric homeomorphisms. In
305   particular, there is an isomorphism
306   \begin{align*}
307     \SMod(\Sigma_\ell^b) & \isoto \Mod(\Sigma_{0, 2\ell + b}) \\
308              [\phi] & \mapsto [\bar \phi].
309   \end{align*}
310 \end{theorem}
311 
312 \begin{observation}
313   Using the notation of Figure~\ref{fig:hyperelliptic-covering}, the
314   Birman-Hilden isomorphism \(\SMod(\Sigma_\ell^b) \isoto \Mod(\Sigma_{0, 2g + b})\) takes \(\tau_{\alpha_i}\) to the half twist \(h_{\bar{\alpha}_i} \in
315   \Mod(\Sigma_{0, 2g + b})\). This can be checked by looking at
316   \(\iota\)-invariant annular neighborhoods of the curves \(\alpha_i\) --
317   \cite[Section~9.4]{farb-margalit}.
318 \end{observation}
319 
320 \begin{fundamental-observation}[$k$-chain relations]
321   The Birman-Hilden isomorphism \(\SMod(\Sigma_\ell^1) \isoto \Mod(\Sigma_{0,
322   2\ell+1}^1)\) takes the twists \(\tau_\delta \in \SMod(\Sigma_\ell^1)\) about
323   the boundary \(\delta = \partial \Sigma_\ell^1\) to \(\tau_{\bar\delta}^2 \in
324   \Mod(\Sigma_{0, 2\ell+1}^1)\). Similarly, \(\SMod(\Sigma_\ell^2) \isoto
325   \Mod(\Sigma_{0, 2\ell+2})\) takes \(\tau_{\delta_1} \tau_{\delta_2} \in
326   \SMod(\Sigma_\ell^2)\) to \(\tau_{\bar\delta_1} = \tau_{\bar\delta_2}\). In
327   light of Observation~\ref{ex:push-generators-description},
328   Observation~\ref{ex:braid-group-center} translates into the so-called
329   \emph{\(k\)-chain relations} in \(\SMod(\Sigma_\ell^b) \subset
330   \Mod(\Sigma_g)\).
331   \[
332     \arraycolsep=1.4pt
333     \begin{array}{rlcrll}
334       (\sigma_1 \cdots \sigma_k)^{2k+2} & = z^2 \in B_{k + 1} &
335       \; \rightsquigarrow &
336       \; (\tau_{\alpha_1} \cdots \tau_{\alpha_k})^{2k + 2} & = \tau_\delta &
337       \; \text{for } k = 2 \ell \text{ even} \\
338       (\sigma_1 \cdots \sigma_k)^{k+1} & = z \in B_{k + 1} &
339       \; \rightsquigarrow &
340       \; (\tau_{\alpha_1} \cdots \tau_{\alpha_k})^{k + 1}
341         & = \tau_{\delta_1} \tau_{\delta_2} &
342       \; \text{for } k = 2 \ell + 1 \text{ odd}
343     \end{array}
344   \]
345 \end{fundamental-observation}
346 
347 We may also exploit the quotient \(\mfrac{\Sigma_g}{\iota} \cong \mathbb{S}^2\)
348 to obtain other relations. Since \(\iota\) has \(2g + 2\) fixed points in
349 \(\Sigma_g\), we get branched double cover \(\Sigma_g \to \Sigma_{0, 2g+2}\).
350 
351 \begin{theorem}[Birman-Hilden without boundary]\label{thm:boundaryless-birman-hilden}
352   If \(g \ge 2\) then we have an exact sequence
353   \begin{center}
354     \begin{tikzcd}
355       1 \rar
356       & \langle [\iota] \rangle \rar
357       & C_{\Mod(\Sigma_g)}([\iota]) \rar
358       & \Mod(\Sigma_{0, 2g + 2}) \rar
359       & 1,
360     \end{tikzcd}
361   \end{center}
362   where \(C_{\Mod(\Sigma_g)}([\iota]) \subset \Mod(\Sigma_g)\) is the
363   commutator subgroup of \([\iota]\) and the right map takes \([\phi] \in
364   C_{\Mod(\Sigma_g)}([\iota])\) to \([\bar \phi] \in \Mod(\Sigma_{0, 2g +
365   2})\).
366 \end{theorem}
367 
368 \begin{fundamental-observation}[Hyperelliptic relations]
369   Let \(\alpha_1, \ldots, \alpha_{2g}, \delta \subset \Sigma_g\) be as in
370   Figure~\ref{fig:hyperellipitic-relations}. Then
371   \begin{equation}\label{eq:hyperelliptic-eq}
372     [\iota]
373     = \tau_\delta \tau_{\alpha_{2g}} \cdots \tau_{\alpha_1}
374       \tau_{\alpha_1} \cdots \tau_{\alpha_{2g}} \tau_\delta.
375   \end{equation}
376   Indeed, \(C_{\Mod(\Sigma_g)}([\iota]) \to \Mod(\Sigma_{0, 2g+2})\) takes
377   \(\tau_\delta \tau_{\alpha_{2g}} \cdots \tau_{\alpha_1}\) to the rotation
378   from Figure~\ref{fig:hyperelliptic-relation-rotation}, while
379   \(\tau_{\alpha_1} \cdots \tau_{\alpha_{2g}} \tau_\delta\) is taken to its
380   inverse. By Theorem~\ref{thm:boundaryless-birman-hilden},
381   \[
382     \tau_\delta \tau_{\alpha_{2g}} \cdots \tau_{\alpha_1}
383     \tau_{\alpha_1} \cdots \tau_{\alpha_{2g}} \tau_\delta
384     \in \ker (C_{\Mod(\Sigma_g)}([\iota]) \to \Mod(\Sigma_{0, 2g+2}))
385     = \langle [\iota] \rangle \cong \mathbb{Z}/2.
386   \]
387   One can then show \(\tau_\delta \tau_{\alpha_{2g}} \cdots \tau_{\alpha_1}
388   \tau_{\alpha_1} \cdots \tau_{\alpha_{2g}} \tau_\delta\) inverts the
389   orientation of \(\alpha_1\), so \(\tau_\delta \tau_{\alpha_{2g}} \cdots
390   \tau_{\alpha_1} \tau_{\alpha_1} \cdots \tau_{\alpha_{2g}} \tau_\delta \ne 1\)
391   and (\ref{eq:hyperelliptic-eq}) follows. In particular, we obtain the
392   so-called \emph{hyperelliptic relations} (\ref{eq:hyperelliptic-rel-1}) and
393   (\ref{eq:hyperelliptic-rel-2}) in \(\Mod(\Sigma_g)\).
394   \begin{align}\label{eq:hyperelliptic-rel-1}
395     (\tau_\delta \tau_{\alpha_{2g}} \cdots \tau_{\alpha_1}
396     \tau_{\alpha_1} \cdots \tau_{\alpha_{2g}} \tau_\delta)^2
397     & = 1 \\
398     \label{eq:hyperelliptic-rel-2}
399     [\tau_\delta \tau_{\alpha_{2g}} \cdots \tau_{\alpha_1}
400     \tau_{\alpha_1} \cdots \tau_{\alpha_{2g}} \tau_\delta, \tau_\delta]
401     & = 1
402   \end{align}
403 \end{fundamental-observation}
404 
405 \noindent
406 \begin{minipage}[b]{.47\textwidth}
407   \centering
408   \includegraphics[width=.7\linewidth]{images/hyperelliptic-relation.eps}
409   \vspace*{.5cm}
410   \captionof{figure}{The curves from the Humphreys generators of
411   $\Mod(\Sigma_g)$ and the curve $\delta$ from the hyperelliptic relations.}
412   \label{fig:hyperellipitic-relations}
413 \end{minipage}
414 \hspace{.6cm} %
415 \begin{minipage}[b]{.47\textwidth}
416   \centering
417   \includegraphics[width=.33\linewidth]{images/sphere-rotation.eps}
418   \captionof{figure}{The  clockwise rotation by $\sfrac{\pi}{g + 1}$ about an
419   axis centered around the punctures of $\Sigma_{0, 2g + 1}$.}
420   \label{fig:hyperelliptic-relation-rotation}
421 \end{minipage}
422 \medskip
423 
424 \section{Presentations of Mapping Class Groups}
425 
426 Having explored some of the relations in \(\Mod(\Sigma)\), it is natural to ask
427 if these relations are enough to completely describe the structure of
428 \(\Mod(\Sigma)\). Different presentations of mapping class groups are due to
429 the work of Birman-Hilden \cite{birman-hilden}, Gervais \cite{gervais} and many
430 others. Wajnryb \cite{wajnryb} derived a presentation of \(\Mod(\Sigma_g)\)
431 only using the relations discussed in Chapter~\ref{ch:dehn-twists} and
432 Section~\ref{birman-hilden}. This is quite a satisfactory result, for we have
433 seen that all of these relations can be explained in terms of the topology of
434 \(\Sigma_g\).
435 
436 \begin{theorem}[Wajnryb]\label{thm:wajnryb-presentation}
437   Suppose \(g \ge 3\). If \(\alpha_0, \ldots, \alpha_g\) are as in
438   Figure~\ref{fig:humphreys-gens} and \(a_i = \tau_{\alpha_i} \in
439   \Mod(\Sigma_g)\) are the Humphreys generators, then there is a presentation
440   of \(\Mod(\Sigma_g)\) with generators \(a_0, \ldots a_{2g}\) subject to the
441   following relations.
442   \begin{enumerate}
443     \item The \emph{disjointness relations} \([a_i, a_j] = 1\) for \(\alpha_i\)
444       and \(\alpha_j\) disjoint.
445 
446     \item The \emph{braid relations} \(a_i a_j a_i = a_j a_i a_j\) for
447       \(\alpha_i\) and \(\alpha_j\) crossing once.
448 
449     \item The \emph{\(3\)-chain relation} \((a_1 a_2 a_3)^4 = a_0 b_0\), where
450       \[
451         b_0 = (a_4 a_3 a_2 a_1 a_1 a_2 a_3 a_4)
452         a_0 (a_4 a_3 a_2 a_1 a_1 a_2 a_3 a_4)^{-1}.
453       \]
454 
455     \item The \emph{lantern relation} \(a_0 b_2 b_1 = a_1 a_3 a_5 b_3\), where
456       \begin{align*}
457         b_1 & = (a_4 a_5 a_3 a_4)^{-1} a_0 (a_4 a_5 a_3 a_4) \\
458         b_2 & = (a_2 a_3 a_1 a_2)^{-1} b_1 (a_2 a_3 a_1 a_2) \\
459         b_2 & = u b_1 u^{-1} \\
460         u & = (a_6 a_5) (a_4 a_3 a_2) (a_6 a_5)^{-1} b_1 (a_6 a_5) a_1^{-1}
461               (a_4 a_3 a_2)^{-1}.
462       \end{align*}
463 
464     \item The \emph{hyperelliptic relation} \([a_{2g} \cdots a_1 a_1 \cdots
465       a_{2g}, d] = 1\), where \(d = n_g\) for \(n_1 = a_1\), \(n_2 = b_0\) and
466       \begin{align*}
467         n_{i + 2} & = w_i n_i w_i^{-1} \\
468         w_i & = (a_{2i + 4} a_{2i + 3} a_{2i + 2} n_{i + 1})
469                 (a_{2i + 1} a_{2i}^2 a_{2i + 1})
470                 (a_{2i + 3} a_{2i + 2} a_{2i + 4} a_{2i + 3})
471                 (n_1 a_{2i + 2} a_{2i + 1} a_{2i}).
472       \end{align*}
473   \end{enumerate}
474 \end{theorem}
475 
476 \begin{remark}
477   The mapping classes \(b_0, \ldots, b_3, d\)  in the statement of
478   Theorem~\ref{thm:wajnryb-presentation} correspond to the Dehn twists about
479   the curves \(\beta_0, \ldots, \beta_3, \delta \subset \Sigma_g\) highlighted
480   in Figure~\ref{fig:wajnryb-presentation-curves}, so Wajnryb's presentation is
481   not as intractable as it might look at first glance.
482 \end{remark}
483 
484 \begin{figure}[ht]
485   \centering
486   \includegraphics[width=.7\linewidth]{images/wajnryb-presentation-curves.eps}
487   \caption{The curves from Wajnryb's presentation.}
488   \label{fig:wajnryb-presentation-curves}
489 \end{figure}
490 
491 Different presentations can be used to compute the Abelianization of
492 \(\Mod(\Sigma_g)\) for \(g \le 2\). Indeed, if \(G = \langle g_1, \ldots, g_n :
493 R \rangle\) is a finitely-presented group, then \(G^\ab = \langle g_1, \ldots,
494 g_n : R, [g_i, g_j] \text{ for all } i, j \rangle\). Using this approach,
495 Farb-Margalit \cite[Section~5.1.3]{farb-margalit} show the Abelianization is
496 given by
497 \begin{center}
498   \begin{tabular}{r|c|l}
499     \(g\) & \(\Sigma_g\)          & \(\Mod(\Sigma_g)^\ab\) \\[1pt]
500     \hline
501           &                  &                   \\[-10pt]
502     \(0\) & \(\mathbb{S}^2\) & \(0\)             \\
503     \(1\) & \(\mathbb{T}^2\)   & \(\mathbb{Z}/12\) \\
504     \(2\) & \(\Sigma_2\)          & \(\mathbb{Z}/10\) \\
505   \end{tabular}
506 \end{center}
507 for closed surfaces of small genus. In \cite{korkmaz-mccarthy} Korkmaz-McCarthy
508 showed that even though \(\Mod(\Sigma_2^b)\) is not perfect, its commutator
509 subgroup is. In addition, they also show \([\Mod(\Sigma_g^b),
510 \Mod(\Sigma_g^b)]\) is normally generated by a single mapping class.
511 
512 \begin{proposition}\label{thm:commutator-is-perfect}
513   The commutator subgroup \(\Mod(\Sigma_2^b)' = [\Mod(\Sigma_2^b),
514   \Mod(\Sigma_2^b)]\) is perfect -- i.e. \(\Mod(\Sigma_2^b)^{(2)} =
515   [\Mod(\Sigma_2^b)', \Mod(\Sigma_2^b)']\) is the whole of
516   \(\Mod(\Sigma_2^b)'\).
517 \end{proposition}
518 
519 \begin{proposition}\label{thm:commutator-normal-gen}
520   If \(g \ge 2\) and \(\alpha, \beta \subset \Sigma_g\) are simple closed
521   crossing only once, then \(\Mod(\Sigma_g)'\) is \emph{normally generated} by
522   \(\tau_\alpha \tau_\beta^{-1}\) -- i.e. if \(\tau_\alpha \tau_\beta^{-1} \in
523   N \normal \Mod(\Sigma_g)'\) then \(\Mod(\Sigma_g)' \subset N\).
524 \end{proposition}
525 
526 The different presentations of \(\Mod(\Sigma_g)\) may also be used to study its
527 representations. Indeed, in light of Theorem~\ref{thm:wajnryb-presentation}, a
528 representation \(\rho : \Mod(\Sigma_g) \to \GL_n(\mathbb{C})\) is nothing other
529 than a choice of \(2g + 1\) matrices \(\rho(\tau_{\alpha_0}), \ldots,
530 \rho(\tau_{\alpha_{2g}}) \in \GL_n(\mathbb{C})\) satisfying the relations
531 \strong{(i)} to \strong{(v)} as above. In the next chapter, we will discuss how
532 these relations may be used to derive obstructions to the existence of
533 nontrivial representations of certain dimensions.