memoire-m2
My M2 Memoire on mapping class groups & their representations
twists.tex (27362B)
1 \chapter{Dehn Twists}\label{ch:dehn-twists} 2 3 With the goal of studying the linear representations of mapping class groups in 4 mind, we now start investigating the group structure of \(\Mod(\Sigma)\). We 5 begin by computing some fundamental examples and then explore how we can use 6 these examples to understand the structure of the mapping class groups of other 7 surfaces. Namely, we compute \(\Mod(\mathbb{S}^1 \times [0, 1]) \cong 8 \mathbb{Z}\), and discuss how its generator gives rise to a convenient 9 generating set for \(\Mod(\Sigma)\), known as the set of \emph{Dehn twists}. 10 11 The idea here is to reproduce the proof of injectivity in 12 Observation~\ref{ex:torus-mcg}: by cutting along curves and arcs, we can always 13 decompose a surface into copies of \(\mathbb{D}^2\) and \(\mathbb{D}^2 14 \setminus \{0\}\). Observation~\ref{ex:alexander-trick} and 15 Observation~\ref{ex:mdg-once-punctured-disk} then imply the triviality of 16 mapping classes fixing such arcs and curves. Formally, this translates to the 17 following result. 18 19 \begin{proposition}[Alexander method]\label{thm:alexander-method} 20 Let \(\alpha_1, \ldots, \alpha_n \subset \Sigma\) be essential simple closed 21 curves or proper arcs satisfying the following conditions. 22 \begin{enumerate} 23 \item \([\alpha_i] \ne [\alpha_j]\) for \(i \ne j\). 24 \item Each pair \((\alpha_i, \alpha_j)\) crosses at most once. 25 \item Given distinct \(i, j, k\), at least one of \(\alpha_i \cap \alpha_j, 26 \alpha_i \cap \alpha_k, \alpha_j \cap \alpha_k\) is empty. 27 \item The surface obtained by cutting \(\Sigma\) along the \(\alpha_i\) is a 28 disjoint union of disks and once-punctured disks. 29 \end{enumerate} 30 Suppose \(f \in \Mod(\Sigma)\) is such that \(f \cdot \vec{[\alpha_i]} = 31 \vec{[\alpha_i]}\) for all \(i\). Then \(f = 1 \in \Mod(\Sigma)\). 32 \end{proposition} 33 34 See \cite[Proposition~2.8]{farb-margalit} for a proof of 35 Proposition~\ref{thm:alexander-method}. We now state some \emph{fundamental} 36 applications of the Alexander method. 37 38 \begin{example}\label{ex:mcg-annulus} 39 The mapping class group \(\Mod(\mathbb{S}^1 \times [0, 1])\) is freely 40 generated by \(f = [\phi]\), where 41 \begin{align*} 42 \phi : \mathbb{S}^1 \times [0, 1] & \isoto \mathbb{S}^1 \times [0, 1] \\ 43 (e^{2 \pi i t}, s) & \mapsto (e^{2 \pi i (t - s)}, s) 44 \end{align*} 45 is the map illustrated in Figure~\ref{fig:dehn-twist-cylinder}. In 46 particular, \(\Mod(\mathbb{S}^1 \times [0, 1]) \cong \mathbb{Z}\). 47 \end{example} 48 49 \begin{example}\label{ex:mcg-twice-punctured-disk} 50 The mapping class group \(\Mod(\mathbb{D}^2 \setminus \{-\sfrac{1}{2}, 51 \sfrac{1}{2}\})\) of the twice punctured unit disk in \(\mathbb{C}\) is 52 freely generated by \(f = [\phi]\), where 53 \begin{align*} 54 \phi : \mathbb{D}^2 \setminus \{-\sfrac{1}{2}, \sfrac{1}{2}\} 55 & \isoto \mathbb{D}^2 \setminus \{-\sfrac{1}{2}, \sfrac{1}{2}\} \\ 56 z & \mapsto -z 57 \end{align*} 58 is the map from Figure~\ref{fig:hald-twist-disk}. In particular, 59 \(\Mod(\mathbb{D}^2 \setminus \{-\sfrac{1}{2}, \sfrac{1}{2}\}) \cong 60 \mathbb{Z}\). 61 \end{example} 62 63 \noindent 64 \begin{minipage}[b]{.47\linewidth} 65 \centering 66 \includegraphics[width=.7\linewidth]{images/dehn-twist-cylinder.eps} 67 \captionof{figure}{The generator $f$ of $\Mod(\mathbb{S}^1 \times [0, 1]) 68 \cong \mathbb{Z}$ takes the yellow arc on the left-hand side to the arc on 69 the right-hand side that winds about the curve $\alpha$.} 70 \label{fig:dehn-twist-cylinder} 71 \end{minipage} 72 \hspace{.6cm} % 73 \begin{minipage}[b]{.47\linewidth} 74 \centering 75 \includegraphics[width=.4\linewidth]{images/half-twist-disk.eps} 76 \captionof{figure}{The generator $f$ of $\Mod(\mathbb{D}^2 \setminus 77 \{-\sfrac{1}{2}, \sfrac{1}{2}) \cong \mathbb{Z}$ corresponds to the 78 clockwise rotation by $\pi$ about the origin.} 79 \label{fig:hald-twist-disk} 80 \end{minipage} 81 82 Let \(\Sigma\) be an orientable surface, possibly with punctures and non-empty 83 boundary. Given some closed \(\alpha \subset \Sigma\), we may envision doing 84 something similar to Example~\ref{ex:mcg-annulus} in \(\Sigma\) by looking at 85 annular neighborhoods of \(\alpha\). These are precisely the \emph{Dehn twists}, 86 illustrated in Figure~\ref{fig:dehn-twist-bitorus} in the case of the bitorus 87 \(\Sigma_2\). 88 89 \begin{definition} 90 Given a simple closed curve \(\alpha \subset \Sigma\), fix a closed annular 91 neighborhood \(A \subset \Sigma\) of \(\alpha\) -- i.e. \(A \cong 92 \mathbb{S}^1 \times [0, 1]\). Let \(f \in \Mod(A) \cong \Mod(\mathbb{S}^1 93 \times [0, 1]) \cong \mathbb{Z}\) be the generator from 94 Example~\ref{ex:mcg-annulus}. The \emph{Dehn twist \(\tau_\alpha \in 95 \Mod(\Sigma)\) about \(\alpha\)} is defined as the image of \(f\) under the 96 inclusion homomorphism \(\Mod(A) \to \Mod(\Sigma)\). 97 \end{definition} 98 99 \begin{figure}[ht] 100 \centering 101 \includegraphics[width=.6\linewidth]{images/dehn-twist-bitorus.eps} 102 \caption{The Dehn twist about the curve $\alpha$ takes the peanut-shaped curve 103 on the left-hand side to the yellow curve on the right-hand side.} 104 \label{fig:dehn-twist-bitorus} 105 \end{figure} 106 107 Similarly, using the description of the mapping class group of the 108 twice-puncture disk derived in Example~\ref{ex:mcg-twice-punctured-disk}, the 109 generator of \(\Mod(\mathbb{D}^2 \setminus \{-\sfrac{1}{2}, \sfrac{1}{2}\})\) 110 gives rise the so-called \emph{half-twists}. These are examples of mapping 111 classes that permute the punctures of \(\Sigma\). 112 113 \begin{definition} 114 Given an arc \(\alpha \subset \Sigma\) joining two punctures in the interior 115 of \(\Sigma\), fix a closed neighborhood \(D \subset \Sigma\) of \(\alpha\) 116 with \(D \cong \mathbb{D}^2 \setminus \{-\sfrac{1}{2}, \sfrac{1}{2}\}\). Let 117 \(f \in \Mod(D) \cong \Mod(\mathbb{D}^2 \setminus \{-\sfrac{1}{2}, 118 \sfrac{1}{2}\}) \cong \mathbb{Z}\) be the generator from 119 Example~\ref{ex:mcg-twice-punctured-disk}. The \emph{half-twist \(h_\alpha 120 \in \Mod(\Sigma)\) about \(\alpha\)} is defined as the image of \(f\) under 121 the inclusion homomorphism \(\Mod(D) \to \Mod(\Sigma)\). 122 \end{definition} 123 124 We can use the Alexander method to describe the kernel of capping and cutting 125 morphisms in terms of Dehn twists. 126 127 \begin{observation}[Capping exact sequence]\label{ex:capping-seq} 128 Let \(\delta \subset \partial \Sigma\) be a boundary component of \(\Sigma\) 129 and \(\operatorname{cap} : \Mod(\Sigma) \to \Mod(\Sigma \cup_\delta 130 (\mathbb{D}^2 \setminus \{0\}))\) be the corresponding the capping 131 homomorphism from Example~\ref{ex:capping-morphism}. There is an exact 132 sequence 133 \begin{center} 134 \begin{tikzcd} 135 1 \rar & 136 \langle \tau_\delta \rangle \rar & 137 \Mod(\Sigma) \rar{\operatorname{cap}} & 138 \Mod(\Sigma \cup_\delta (\mathbb{D}^2 \setminus \{0\}), 0) \rar & 139 1, 140 \end{tikzcd} 141 \end{center} 142 known as \emph{the capping exact sequence} -- see 143 \cite[Proposition~3.19]{farb-margalit} for a proof. 144 \end{observation} 145 146 \begin{observation}\label{ex:cutting-morphism-kernel} 147 Let \(\alpha \subset \Sigma\) be a simple closed curve and 148 \(\operatorname{cut} : \Mod(\Sigma)_{\vec{[\alpha]}} \to \Mod(\Sigma 149 \setminus \alpha)\) be the cutting homomorphism from 150 Example~\ref{ex:cutting-morphism}. Then \(\ker \operatorname{cut} = \langle 151 \tau_\alpha \rangle \cong \mathbb{Z}\). 152 \end{observation} 153 154 It is also interesting to study how the geometry of two curves affects the 155 relationship between their corresponding Dehn twists. For instance, 156 by investigating the geometric intersection number 157 \[ 158 \#(\alpha \cap \beta) = \min 159 \left\{ 160 |\alpha' \cap \beta'| : [\alpha'] = [\alpha] 161 \text{ and } 162 [\beta'] = [\beta] 163 \right\} 164 \] 165 we can distinguish between powers of Dehn twists 166 \cite[Proposition~3.2]{farb-margalit}. 167 168 \begin{proposition}\label{thm:twist-intersection-number} 169 Let \(\alpha \subset \Sigma\) be a simple closed curve and \(T_\alpha\) be a 170 representative of \(\tau_\alpha \in \Mod(\Sigma)\). Then \(\# 171 (T_\alpha^k(\beta) \cap \beta) = |k| \cdot \#(\alpha \cap \beta)^2\) for any 172 \(k \in \mathbb{Z}\). In particular, if \(\alpha\) is nontrivial then 173 \(\tau_\alpha\) has infinite order. 174 \end{proposition} 175 176 \begin{observation} 177 Given \(\alpha, \beta \subset \Sigma\), \(\tau_\alpha = \tau_\beta \iff 178 [\alpha] = [\beta]\). Indeed, if \(\alpha\) and \(\beta\) are non-isotopic, 179 we can find \(\gamma\) with \(\#(\gamma \cap \alpha) > 0\) and \(\#(\gamma 180 \cap \beta) = 0\). It thus follows from 181 Proposition~\ref{thm:twist-intersection-number} that \(\#(T_\alpha(\gamma) 182 \cap \gamma) > \#(T_\beta(\gamma) \cap \gamma)\), so \(\tau_\alpha \ne 183 \tau_\beta\). 184 \end{observation} 185 186 Many other relations between Dehn twists can derived be in a geometric fashion 187 too. 188 189 \begin{observation}\label{ex:conjugate-twists} 190 Given \(f = [\phi] \in \Mod(\Sigma)\), \(\tau_{\phi(\alpha)} = f \tau_\alpha 191 f^{-1}\). 192 \end{observation} 193 194 \begin{observation}[Disjointness relations] 195 Given \(f \in \Mod(\Sigma)\), \([f, \tau_\alpha] = 1 \iff f \cdot [\alpha] = 196 [\alpha]\). In particular, \([\tau_\alpha, \tau_\beta] = 1\) for \(\alpha\) 197 and \(\beta\) disjoint, for we can choose a representative of \(\tau_\beta\) 198 whose support is disjoint from \(\alpha\). 199 \end{observation} 200 201 \begin{observation} 202 If \(\alpha, \beta \subset \Sigma\) are both nonseparating then \(\tau_\alpha, 203 \tau_\beta \in \Mod(\Sigma)\) are conjugate. Indeed, by the change of 204 coordinates principle we can find \(f \in \Mod(\Sigma)\) with \(f \cdot 205 [\alpha] = [\beta]\) and then apply Observation~\ref{ex:conjugate-twists}. 206 \end{observation} 207 208 \begin{observation}[Braid relations]\label{ex:braid-relation} 209 Given \(\alpha, \beta \subset \Sigma\) with \(\#(\alpha \cap \beta) = 1\), it 210 is not hard to check that \(\tau_\beta \tau_\alpha \cdot [\beta] = 211 [\alpha]\). From Observation~\ref{ex:conjugate-twists} we then get 212 \((\tau_\alpha \tau_\beta) \tau_\alpha (\tau_\alpha \tau_\beta)^{-1} = 213 \tau_\beta\), from which follows the \emph{braid relation} 214 \[ 215 \tau_\alpha \tau_\beta \tau_\alpha = \tau_\beta \tau_\alpha \tau_\beta. 216 \] 217 \end{observation} 218 219 A perhaps less obvious fact about Dehn twists is the following. 220 221 \begin{theorem}\label{thm:mcg-is-fg} 222 Let \(\Sigma_{g, r}^b\) be the orientable surface of genus \(g \ge 1\) with 223 \(r\) punctures and \(b\) boundary components. Then the pure mapping class 224 group \(\PMod(\Sigma_{g, r}^b)\) is generated by finitely many Dehn twists 225 about nonseparating curves or boundary components. 226 \end{theorem} 227 228 The proof of Theorem~\ref{thm:mcg-is-fg} is simple in nature: we proceed by 229 induction in \(g\), \(b\) and \(r\). On the other hand, the induction steps 230 require two ingredients we have not encountered so far, namely the \emph{Birman 231 exact sequence} and the \emph{modified graph of curves}. We now provide a 232 concise account of these ingredients. 233 234 \section{The Birman Exact Sequence} 235 236 Having the proof of Theorem~\ref{thm:mcg-is-fg} in mind, it is interesting to 237 consider the relationship between the mapping class group of \(\Sigma_{g, 238 r}^b\) and that of \(\Sigma_{g, r+1}^b = \Sigma_{g, r}^b \setminus \{ x \}\) 239 for some \(x\) in the interior \((\Sigma_{g, r}^b)\degree\) of \(\Sigma_{g, 240 r}^b\). Indeed, this will later allow us to establish the induction step on the 241 number of punctures \(r\). 242 243 Given an orientable surface \(\Sigma\) and \(x_1, \ldots, x_n \in 244 \Sigma\degree\), denote by \(\Mod(\Sigma \setminus \{x_1, \ldots, 245 x_n\})_{\{x_1, \ldots, x_n\}} \subset \Mod(\Sigma \setminus \{x_1, \ldots, 246 x_n\})\) the subgroup of mapping classes \(f\) that permute \(x_1, \ldots, 247 x_n\) -- i.e. \(f \cdot x_i = x_{\sigma(i)}\) for some permutation \(\sigma \in 248 S_n\). We certainly have a surjective homomorphism 249 \begin{align*} 250 \operatorname{forget} : 251 \Mod(\Sigma \setminus \{x_1, \ldots, x_n\})_{\{x_1, \ldots, x_n\}} 252 & \to \Mod(\Sigma) \\ 253 [\phi] & \mapsto [\tilde\phi] 254 \end{align*} 255 which ``\emph{forgets} the additional punctures \(x_1, \ldots, 256 x_n\) of \(\Sigma \setminus \{x_1, \ldots, x_n\}\),'' but what is its kernel? 257 258 To answer this question, we consider the configuration space \(C(\Sigma, n) = 259 \mfrac{C^{\operatorname{ord}}(\Sigma, n)}{S_n}\) of \(n\) (unordered) points in 260 the interior of \(\Sigma\) -- where \(C^{\operatorname{ord}}(\Sigma, n) = \{ 261 (x_1, \ldots, x_n) \in (\Sigma\degree)^n : x_i \ne x_j \ \text{for}\ i \ne j 262 \}\). Denote \(\Homeo^+(\Sigma, \partial \Sigma)_{x_1, \ldots, x_n} = \{\phi 263 \in \Homeo^+(\Sigma, \partial \Sigma) : \phi(x_i) = x_i \}\). From the 264 fibration\footnote{See \cite[Chapter~4]{hatcher} for a reference.} 265 \[ 266 \arraycolsep=1.4pt 267 \begin{array}{ccrcl} 268 \Homeo^+(\Sigma, \partial \Sigma)_{x_1, \ldots, x_n} 269 & \hookrightarrow & \Homeo^+(\Sigma, \partial \Sigma) 270 & \relbar\joinrel\twoheadrightarrow & C(\Sigma, n) \\ 271 & & \phi & \mapsto & [\phi(x_1), \ldots, \phi(x_n)] 272 \end{array} 273 \] 274 and its long exact sequence in homotopy we then obtain the following 275 fundamental result. 276 277 \begin{theorem}[Birman exact sequence]\label{thm:birman-exact-seq} 278 Suppose \(\pi_1(\Homeo^+(\Sigma, \partial \Sigma), 1) = 1\). Then there is an 279 exact sequence 280 \begin{center} 281 \begin{tikzcd}[cramped] 282 1 \rar 283 & \pi_1(C(\Sigma, n), [x_1, \ldots, x_n]) \rar{\operatorname{push}} 284 & \Mod(\Sigma \setminus \{x_1, \ldots, x_n\})_{\{x_1, \ldots, x_n\}} 285 \rar{\operatorname{forget}} 286 & \Mod(\Sigma) \rar 287 & 1. 288 \end{tikzcd} 289 \end{center} 290 \end{theorem} 291 292 \begin{remark} 293 Notice that \(C(\Sigma, 1) = \Sigma\degree \simeq \Sigma\). Hence for \(n = 294 1\) Theorem~\ref{thm:birman-exact-seq} gives us a sequence 295 \begin{center} 296 \begin{tikzcd} 297 1 \rar 298 & \pi_1(\Sigma, x) \rar{\operatorname{push}} 299 & \Mod(\Sigma \setminus \{x\}, x) \rar{\operatorname{forget}} 300 & \Mod(\Sigma) \rar 301 & 1. 302 \end{tikzcd} 303 \end{center} 304 \end{remark} 305 306 We may regard a simple loop \(\alpha : \mathbb{S}^1 \to C(\Sigma, n)\) based at 307 \([x_1, \ldots, x_n]\) as \(n\) disjoint curves \(\alpha_1, \ldots, \alpha_n : 308 [0, 1] \to \Sigma\) with \(\alpha_i(0) = x_i\) and \(\alpha_i(1) = 309 x_{\sigma(i)}\) for some \(\sigma \in S_n\). The element 310 \(\operatorname{push}([\alpha]) \in \Mod(\Sigma)\) can then be seen as the 311 mapping class that ``\emph{pushes} a neighborhood of \(x_{\sigma(i)}\) towards 312 \(x_i\) along the curve \(\alpha_i^{-1}\),'' as shown in 313 Figure~\ref{fig:push-map} for the case \(n = 1\). Indeed, this goes to 314 show \(\operatorname{push}([\alpha])\) can be descrived as a product of Dehn 315 twists. 316 317 \begin{fundamental-observation}\label{ex:push-simple-loop} 318 Using the notation of Figure~\ref{fig:push-map}, 319 \(\operatorname{push}([\alpha]) = \tau_{\delta_1} \tau_{\delta_2}^{-1} \in 320 \Mod(\Sigma)\). 321 \end{fundamental-observation} 322 323 \begin{figure}[ht] 324 \centering 325 \includegraphics[width=.35\linewidth]{images/push-map.eps} 326 \caption{The inclusion $\operatorname{push} : \pi_1(\Sigma, x) \to 327 \Mod(\Sigma)$ maps a simple loop $\alpha : \mathbb{S}^1 \to \Sigma$ to the 328 mapping class supported at an annular neighborhood $A$ of $\alpha$. Inside 329 this neighborhood, $\operatorname{push}([\alpha])$ takes the arc joining the 330 boundary components $\delta_i \subset \partial A$ on the left-hand side to 331 the yellow arc on the right-hand side.} 332 \label{fig:push-map} 333 \end{figure} 334 335 \section{The Modified Graph of Curves} 336 337 Having established Theorem~\ref{thm:birman-exact-seq}, we now need to address 338 the induction step in the genus \(g\) of \(\Sigma_{g, r}^b\). Our strategy is 339 to apply the following lemma from geometric group theory. 340 341 \begin{lemma}\label{thm:ggt-lemma} 342 Let \(G\) be a group and \(\Gamma\) be a \emph{connected} graph with \(G 343 \leftaction \Gamma\) via graph automorphisms. Suppose that \(G\) acts 344 transitively on both \(V(\Gamma)\) and \(\{(v, w) \in V(\Gamma)^2 : 345 v \text{ --- } w \text{ in } \Gamma \}\). If \(v, w \in V(\Gamma)\) are 346 connected by an edge and \(g \in G\) is such that \(g \cdot w = v\) then 347 \(G\) is generated by \(g\) and the stabilizer \(G_v\). 348 \end{lemma} 349 350 We are interested, of course, in the group \(G = \PMod(\Sigma_{g, r}^b)\). As 351 for the the role of \(\Gamma\), we consider the following graph. 352 353 \begin{definition} 354 The \emph{modified graph of nonseparating curves 355 \(\hat{\mathcal{N}}(\Sigma)\) of a surface \(\Sigma\)} is the graph whose 356 vertices are (unoriented) isotopy classes of nonseparating simple closed 357 curves in \(\Sigma\) and 358 \[ 359 \text{\([\alpha]\) --- \([\beta]\) in \(\hat{\mathcal{N}}(\Sigma)\)} 360 \iff \#(\alpha \cap \beta) = 1, 361 \] 362 where \(\#(\alpha \cap \beta)\) is the geometric intersection number of 363 \(\alpha\) and \(\beta\). 364 \end{definition} 365 366 It is clear from the change of coordinates principle and 367 Observation~\ref{ex:change-of-coordinates-crossing} that the actions of 368 \(\Mod(\Sigma_{g, r}^b)\) on \(V(\hat{\mathcal{N}}(\Sigma_{g, r}^b))\) and 369 \(\{([\alpha], [\beta]) \in V(\hat{\mathcal{N}}(\Sigma_{g, r}^b))^2 : \#(\alpha 370 \cap \beta) = 1 \}\) are both transitive. But why should 371 \(\hat{\mathcal{N}}(\Sigma_{g, r}^b)\) be connected? 372 Historically, the modified graph of nonseparating curves first arose as a 373 \emph{modified} version of another graph, known as \emph{the graph of of 374 curves}. 375 376 \begin{definition} 377 Given a surface \(\Sigma\), the \emph{graph of curves \(\mathcal{C}(\Sigma)\) 378 of \(\Sigma\)} is the graph whose vertices are (unoriented) isotopy classes 379 of essential simple closed curves in \(\Sigma\) and 380 \[ 381 \text{\([\alpha]\) --- \([\beta]\) in \(\mathcal{C}(\Sigma)\)} 382 \iff \#(\alpha \cap \beta) = 0. 383 \] 384 The \emph{graph of nonseparating curves \(\mathcal{N}(\Sigma)\)} is the 385 subgraph of \(\mathcal{C}(\Sigma)\) whose vertices consist of nonseparating 386 curves. 387 \end{definition} 388 389 Lickorish \cite{lickorish} essentially showed that, apart from a small number 390 of sporadic cases, \(\mathcal{C}(\Sigma_{g, r})\) is connected. 391 392 \begin{theorem} 393 If \(\Sigma_{g, r}\) is not one \(\Sigma_0 = \mathbb{S}^2, \Sigma_{0, 1}, 394 \ldots, \Sigma_{0, 4}, \Sigma_1 = \mathbb{T}^2\) and \(\Sigma_{1, 1}\) then 395 \(\mathcal{C}(\Sigma_{g, r})\) is connected. 396 \end{theorem} 397 398 In other words, given simple closed curves \(\alpha, \beta \subset \Sigma_{g, 399 r}\), we can find closed \(\alpha = \alpha_1, \alpha_2, \ldots, \alpha_n = 400 \beta\) in \(\Sigma_{g, r}\) with \(\alpha_i\) disjoint from \(\alpha_{i+1}\). 401 Now if \(\alpha\) and \(\beta\) are nonseparating, by inductively adjusting 402 this sequence of curves we obtain the following corollary. 403 404 \begin{corollary}\label{thm:mofied-graph-is-connected} 405 If \(g \ge 2\) then both \(\mathcal{N}(\Sigma_{g, r})\) and 406 \(\hat{\mathcal{N}}(\Sigma_{g, r})\) are connected. 407 \end{corollary} 408 409 See \cite[Section~4.1]{farb-margalit} for a proof of 410 Corollary~\ref{thm:mofied-graph-is-connected}. We are now ready to show 411 Theorem~\ref{thm:mcg-is-fg}. 412 413 \begin{proof}[Proof of Theorem~\ref{thm:mcg-is-fg}] 414 Let \(\Sigma_{g, r}^b\) be the orientable surface of genus \(g \ge 1\) with 415 \(r\) punctures and \(b\) boundary components. We want to establish that 416 \(\PMod(\Sigma_{g, r}^b)\) is generated by a finite number of Dehn twists 417 about nonseparating simple closed curves or boundary components. As promised, 418 we proceed by triple induction on \(r\), \(g\) and \(b\). 419 420 For the base case, it is clear from Observation~\ref{ex:torus-mcg} and 421 Observation~\ref{ex:punctured-torus-mcg} that \(\Mod(\mathbb{T}^2) \cong 422 \Mod(\Sigma_{1, 1}) \cong \operatorname{SL}_2(\mathbb{Z})\) are generated by 423 the Dehn twists about the curves \(\alpha\) and \(\beta\) from 424 Figure~\ref{fig:torus-mcg-generators}, each corresponding to one of the 425 standard generators 426 \begin{align*} 427 \begin{pmatrix} 428 1 & 1 \\ 429 0 & 1 430 \end{pmatrix} 431 && 432 \begin{pmatrix} 433 1 & 0 \\ 434 -1 & 1 435 \end{pmatrix} 436 \end{align*} 437 of \(\operatorname{SL}_2(\mathbb{Z})\). 438 439 \begin{figure}[ht] 440 \centering 441 \includegraphics[width=.5\linewidth]{images/torus-mcg-generators.eps} 442 \caption{The curves $\alpha$ and $\beta$ whose Dehn twists generate 443 $\Mod(\mathbb{T}^2)$ and $\Mod(\Sigma_{1, 1})$.} 444 \label{fig:torus-mcg-generators} 445 \end{figure} 446 447 Now suppose \(\PMod(\Sigma_{g, r})\) is finitely-generated by twists about 448 nonseparating curves for \(g \ge 2\) or \(g = 1\) and \(r > 1\). In both 449 case, \(\chi(\Sigma_{g, r}) = 2 - 2g - r < 0\) and thus 450 \(\pi_1(\Homeo^+(\Sigma_{g, r})) = 1\) -- see 451 \cite[Theorem~1.14]{farb-margalit}. The Birman exact sequence from 452 Theorem~\ref{thm:birman-exact-seq} then gives us 453 \begin{center} 454 \begin{tikzcd} 455 1 \rar 456 & \pi_1(\Sigma_{g, r}, x) \rar{\operatorname{push}} 457 & \PMod(\Sigma_{g, r + 1}) \rar{\operatorname{forget}} 458 & \PMod(\Sigma_{g, r}) \rar 459 & 1, 460 \end{tikzcd} 461 \end{center} 462 where \(\Sigma_{g, r + 1} = \Sigma_{g, r} \setminus \{x\}\). Since \(g \ge 463 1\), \(\pi_1(\Sigma_{g, r}, x)\) is generated by finitely many nonseparating 464 loops. We have seen in Observation~\ref{ex:push-simple-loop} that 465 \(\operatorname{push} : \pi_1(\Sigma_{g, r}, x) \to \Mod(\Sigma_{g, r+1}, 466 x)\) takes nonseparating simple loops to products of twists about 467 nonseparating simple curves. Furthermore, we may lift the 468 generators of \(\PMod(\Sigma_{g, r})\) to Dehn twists about the corresponding 469 curves in \(\Sigma_{g, r + 1}\). This goes to show that 470 \(\PMod(\Sigma_{g, r + 1})\) is also generated by finitely many twists about 471 simple curves, concluding the induction step on \(r\). 472 473 As for the induction step on \(g\), fix \(g \ge 1\) and suppose that, for 474 each \(r \ge 0\), \(\PMod(\Sigma_{g, r})\) is finitely generated by twists 475 about nonseparating curves or boundary components. Let us show that the same 476 holds for \(\Mod(\Sigma_{g + 1})\). To that end, we consider the action 477 \(\Mod(\Sigma_{g + 1}) \leftaction \hat{\mathcal{N}}(\Sigma_{g + 1})\). Since 478 \(g + 1 \ge 2\), \(\hat{\mathcal{N}}(\Sigma_{g + 1})\) is connected and the 479 conditions of Lemma~\ref{thm:ggt-lemma} are met. Now recall from 480 Observation~\ref{ex:braid-relation} that, given nonseparating \(\alpha, \beta 481 \subset \Sigma_{g + 1}\) crossing once, \(\tau_\beta \tau_\alpha \cdot 482 [\beta] = [\alpha]\). It thus follows from Lemma~\ref{thm:ggt-lemma} that 483 \(\Mod(\Sigma_{g + 1})\) is generated by \(\tau_\beta \tau_\alpha\) and 484 \(\Mod(\Sigma_{g + 1})_{[\alpha]} = \{ f \in \Mod(\Sigma_{g + 1}) : f \cdot 485 [\alpha] = [\alpha]\}\). 486 487 In turn, \(\Mod(\Sigma_{g + 1})_{[\alpha]}\) has its index \(2\) subgroup 488 \[ 489 \Mod(\Sigma_{g + 1})_{\vec{[\alpha]}} 490 = \{ f \in \Mod(\Sigma_{g + 1}) : f \cdot \vec{[\alpha]} = \vec{[\alpha]}\} 491 \] 492 of mapping classes fixing any given choice of orientation of \(\alpha\). One 493 can check that \(\tau_\beta \tau_\alpha^2 \tau_\beta \in \Mod(\Sigma_{g + 494 1})_{[\alpha]}\) inverts the orientation of \(\alpha\) and is thus a 495 representative of the nontrivial 496 \(\Mod(\Sigma_{g+1})_{\vec{[\alpha]}}\)-coset in 497 \(\Mod(\Sigma_{g+1})_{[\alpha]}\). In particular, \(\Mod(\Sigma_{g+1})\) is 498 generated by \(\Mod(\Sigma_{g+1})_{\vec{[\alpha]}}\), \(\tau_\beta 499 \tau_\alpha\) and \(\tau_\beta \tau_\alpha^2 \tau_\beta\). 500 501 We now claim \(\Mod(\Sigma_{g+1})_{\vec{[\alpha]}}\) is generated by 502 finitely many twists about nonseparating curves. First observe that 503 \(\Sigma_{g+1} \setminus \alpha \cong \Sigma_{g,2}\), as shown in 504 Figure~\ref{fig:cut-along-nonseparating-adds-two-punctures}. 505 Observation~\ref{ex:cutting-morphism-kernel} then gives us an exact sequence 506 \begin{equation}\label{eq:cutting-seq} 507 \begin{tikzcd} 508 1 \rar & 509 \langle \tau_\alpha \rangle \rar & 510 \Mod(\Sigma_{g+1})_{\vec{[\alpha]}} \rar{\operatorname{cut}} & 511 \PMod(\Sigma_{g,2}) \rar & 512 1. 513 \end{tikzcd} 514 \end{equation} 515 But by the induction hypothesis, \(\PMod(\Sigma_{g, 2})\) is 516 finitely-generated by twists about nonseparating simple closed curves. As 517 before, these generators may be lifted to appropriate twists in 518 \(\Mod(\Sigma_{g+1})_{\vec{[\alpha]}}\). Now by (\ref{eq:cutting-seq}) we get 519 that \(\Mod(\Sigma_{g+1})_{\vec{[\alpha]}}\) is finitely generated by twists 520 about nonseparating curves, as desired. This concludes the induction step in 521 \(g\). 522 523 \begin{figure}[ht] 524 \centering 525 \includegraphics[width=.75\linewidth]{images/cutting-homeo.eps} 526 \caption{The homeomorphism $\Sigma_{g + 1} \setminus \alpha \cong 527 \Sigma_{g, 2}$: removing the curve $\alpha$ has the same effect as cutting 528 along $\alpha$ and then capping the two resulting boundary components with 529 once-punctured disks, which gives us $\Sigma_{g, 2}$.} 530 \label{fig:cut-along-nonseparating-adds-two-punctures} 531 \end{figure} 532 533 Finally, we handle the induction in \(b\). The boundaryless case \(b = 0\) 534 was already dealt with before. Now suppose \(\PMod(\Sigma_{g, s}^b)\) is 535 finitely generated by twists about simple closed curves or boundary 536 components for all \(g\) and \(s\). Fix some boundary component \(\delta 537 \subset \partial \Sigma_{g, r}^{b+1}\). From the homeomorphism \(\Sigma_{g, 538 r+1}^b \cong \Sigma_{g, r}^{b+1} \cup_\delta (\mathbb{D}^2 \setminus \{ 0 539 \})\) and the capping exact sequence from Observation~\ref{ex:capping-seq} 540 we obtain a sequence 541 \begin{center} 542 \begin{tikzcd} 543 1 \rar & 544 \langle \tau_\delta \rangle \rar & 545 \PMod(\Sigma_{g, r}^{b+1}) \rar{\operatorname{cap}} & 546 \PMod(\Sigma_{g, r+1}^b) \rar & 547 1. 548 \end{tikzcd} 549 \end{center} 550 Now by induction hypothesis we may once again lift the generators of 551 \(\PMod(\Sigma_{g, r+1}^b)\) to Dehn twists about the corresponding curves in 552 \(\Sigma_{g, r}^{b+1}\) and add \(\tau_\delta\) to the generating set, 553 concluding the induction in \(b \ge 0\). We are done. 554 \end{proof} 555 556 There are many possible improvements to this last result. For instance, in 557 \cite[Section~4.4]{farb-margalit} Farb-Margalit exhibit an explicit set of 558 generators of \(\Mod(\Sigma_g^b)\) by adapting the induction steps in the 559 proof of Theorem~\ref{thm:mcg-is-fg}. These are known as the \emph{Lickorish 560 generators}. 561 562 \begin{theorem}[Lickorish generators]\label{thm:lickorish-gens} 563 If \(g \ge 1\) then \(\Mod(\Sigma_g^b)\) is generated by the Dehn twists 564 about the curves \(\alpha_1, \ldots, \alpha_g, \beta_1, \ldots, \beta_g, 565 \gamma_1, \ldots, \gamma_{g - 1}, \eta_1, \ldots, \eta_{b-1}\) as in 566 Figure~\ref{fig:lickorish-gens} 567 \end{theorem} 568 569 In the boundaryless case \(b = 0\), we can write \(\tau_{\alpha_3}, \ldots, 570 \tau_{\alpha_g} \in \Mod(\Sigma_g)\) as products of the twists about the 571 remaining curves, from which we get the so-called \emph{Humphreys generators}. 572 573 \begin{corollary}[Humphreys generators]\label{thm:humphreys-gens} 574 If \(g \ge 2\) then \(\Mod(\Sigma_g)\) is generated by the Dehn twists about the 575 curves \(\alpha_0, \ldots, \alpha_{2g}\) as in 576 Figure~\ref{fig:humphreys-gens}. 577 \end{corollary} 578 579 \noindent 580 \begin{minipage}[b]{.47\linewidth} 581 \centering 582 \includegraphics[width=\linewidth]{images/lickorish-gens.eps} 583 \captionof{figure}{The curves from Lickorish generators of 584 $\Mod(\Sigma_g^b)$.} 585 \label{fig:lickorish-gens} 586 \end{minipage} 587 \hspace{.6cm} % 588 \begin{minipage}[b]{.47\textwidth} 589 \centering 590 \includegraphics[width=\linewidth]{images/humphreys-gens.eps} 591 \captionof{figure}{The curves from Humphreys generators of $\Mod(\Sigma_g)$.} 592 \label{fig:humphreys-gens} 593 \end{minipage}