memoire-m2

My M2 Memoire on mapping class groups & their representations

NameSizeMode
..
sections/representations.tex 26577B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
\chapter{Low-Dimensional Representations}\label{ch:representations}

Having built a solid understanding of the combinatorics of Dehn twists, we are
now ready to attack the problem of classifying the representations of
\(\Mod(\Sigma_g)\) of sufficiently small dimension. As promised, our strategy
is to make use of the \emph{geometrically-motivated} relations derived in
Chapter~\ref{ch:dehn-twists} and Chapter~\ref{ch:relations}.

Historically, these relations have been exploited by Funar \cite{funar},
Franks-Handel \cite{franks-handel} and others to establish the triviality of
low-dimensional representations, culminating in Korkmaz' \cite{korkmaz} recent
classification of representations of dimension \(n \le 2 g\) for \(g \ge 3\).
The goal of this chapter is to provide a concise account of Korkmaz' results.

\begin{theorem}[Korkmaz]\label{thm:low-dim-reps-are-trivial}
  Let \(\Sigma_g^b\) be the compact surface of genus \(g \ge 1\) with \(b\)
  boundary components and \(\rho : \Mod(\Sigma_g^b) \to \GL_n(\mathbb{C})\) be
  a linear representation with \(n < 2 g\). Then the image of \(\rho\) is
  Abelian. In particular, if \(g \ge 3\) then \(\rho\) is trivial.
\end{theorem}

Like some of the results we have encountered so far, the proof of
Theorem~\ref{thm:low-dim-reps-are-trivial} is elementary in nature: we proceed
by induction on \(g\) and tedious case analysis. We begin by the base case \(g
= 2\).

\begin{proposition}\label{thm:low-dim-reps-are-trivial-base-case}
  Given \(\rho : \Mod(\Sigma_2^b) \to \GL_n(\mathbb{C})\) with \(n \le 3\), the
  image of \(\rho\) is Abelian.
\end{proposition}

\begin{proof}[Sketch of proof]
  Given \(\alpha \subset \Sigma_2^b\), let \(L_\alpha = \rho(\tau_\alpha)\) and
  denote by \(E_{\alpha = \lambda} = \{ v \in \mathbb{C}^n : L_\alpha v =
  \lambda v \}\) its eigenspaces. Let \(\alpha_1, \alpha_2, \beta_1, \beta_2,
  \gamma, \eta_1, \ldots, \eta_{b-1} \subset \Sigma_2^b\) be the curves of the
  Lickorish generators from Theorem~\ref{thm:lickorish-gens}, as shown in
  Figure~\ref{fig:lickorish-gens-genus-2}.
  \begin{figure}
    \centering
    \includegraphics[width=.2\linewidth]{images/lickorish-gens-gen-2.eps}
    \caption{The Lickorish generators for $g = 2$.}
    \label{fig:lickorish-gens-genus-2}
  \end{figure}

  If \(n = 1\) then \(\rho(\Mod(\Sigma_2^b)) \subset \GL_1(\mathbb{C}) =
  \mathbb{C}^\times\) is Abelian. Now if \(n = 2\) or \(3\), by
  Proposition~\ref{thm:commutator-normal-gen} it suffices to show \(L_{\alpha_1}
  = L_{\beta_1}\), so that \(\tau_{\alpha_1} \tau_{\beta_1}^{-1} \in \ker
  \rho\) and thus \(\Mod(\Sigma_2^b)' \subset \ker \rho\) -- i.e.
  \(\rho(\Mod(\Sigma_2^b))\) is Abelian. Given the braid relation
  \begin{equation}\label{eq:braid-rel-induction-basis}
    L_{\alpha_1} L_{\beta_1} L_{\alpha_1}
    = L_{\beta_1} L_{\alpha_1} L_{\beta_1},
  \end{equation}
  this amounts to showing \(L_{\alpha_1}\) and \(L_{\beta_1}\) commute.

  To that end, we exhaustively analyze all of the possible Jordan forms
  \begin{align*}
    \begin{pmatrix}
      \lambda & 0 \\
      0       & \lambda
    \end{pmatrix}
    & \quad{\normalfont(1)}
    &
    \begin{pmatrix}
      \lambda & 0 \\
      0       & \mu
    \end{pmatrix}
    & \quad{\normalfont(2)}
    &
    \begin{pmatrix}
      \lambda & 1 \\
      0       & \lambda
    \end{pmatrix}
    & \quad{\normalfont(3)}
    \\
    \begin{pmatrix}
      \lambda & 0       & 0       \\
      0       & \lambda & 0       \\
      0       & 0       & \lambda
    \end{pmatrix}
    & \quad{\normalfont(4)}
    &
    \begin{pmatrix}
      \lambda & 0   & 0   \\
      0       & \mu & 0   \\
      0       & 0   & \nu
    \end{pmatrix}
    & \quad{\normalfont(5)}
    &
    \begin{pmatrix}
      \lambda & 1       & 0       \\
      0       & \lambda & 1       \\
      0       & 0       & \lambda
    \end{pmatrix}
    & \quad{\normalfont(6)}
    \\
    \begin{pmatrix}
      \lambda & 0   & 0   \\
      0       & \mu & 1   \\
      0       & 0   & \mu
    \end{pmatrix}
    & \quad{\normalfont(7)}
    &
    \begin{pmatrix}
      \lambda & 0       & 0       \\
      0       & \lambda & 1       \\
      0       & 0       & \lambda
    \end{pmatrix}
    & \quad{\normalfont(8)}
    &
    \begin{pmatrix}
      \lambda & 0       & 0   \\
      0       & \lambda & 0   \\
      0       & 0       & \mu
    \end{pmatrix}
    & \quad{\normalfont(9)}
  \end{align*}
  of \(L_{\alpha_2}\) -- where \(\lambda, \mu, \nu \in \mathbb{C}^\times\) are
  all distinct. By changing basis we may assume without loss of generality that
  the matrix \(L_{\alpha_2}\) is exactly its Jordan form, so that \(E_{\alpha_2
  = \lambda} = \bigoplus_{i \le \dim E_{\alpha_2}} \mathbb{C} e_i\).

  For cases (1) to (6), we use the change of coordinates principle and
  different relations to show \(L_{\alpha_1}\) and \(L_{\beta_1}\) lie inside
  some Abelian subgroup of \(\GL_n(\mathbb{C})\).

  \begin{enumerate}[leftmargin=1.9cm]
    \item[\bfseries\color{highlight}(1) \& (4)]
      By the change of coordinates principle, both \(L_{\alpha_1}\) and
      \(L_{\beta_1}\) are conjugate to \(L_{\alpha_2} = \lambda\). But the
      only matrix conjugate to \(\lambda\) is \(\lambda\) itself. Hence
      \(L_{\alpha_1} = L_{\beta_1} = \lambda \in \mathbb{C}^\times\).

    \item[\bfseries\color{highlight}(2) \& (5)]
      Since \(\alpha_2\) is disjoint from both \(\alpha_1\) and \(\beta_1\), it
      follows from the disjointness relations \([\tau_{\alpha_1},
      \tau_{\alpha_2}] = [\tau_{\beta_1}, \tau_{\alpha_2}] = 1\) that
      \(L_{\alpha_1}\) and \(L_{\beta_1}\) preserve the eigenspaces of
      \(L_{\alpha_2}\), which are all \(1\)-dimensional. Hence \(L_{\alpha_1}\)
      and \(L_{\beta_1}\) lie inside the subgroup of diagonal matrices -- an
      Abelian subgroup of \(\GL_n(\mathbb{C})\).

    \item[\bfseries\color{highlight}(3) \& (6)]
      As before, it follows from the disjointness relations that \(E_{\alpha_2
      = \lambda} = \ker (L_{\alpha_2} - \lambda)\) and \(\ker (L_{\alpha_2} -
      \lambda)^2\) are invariant under both \(L_{\alpha_1}\) and
      \(L_{\beta_1}\). This implies \(L_{\alpha_1}\) and \(L_{\beta_1}\) are
      upper triangular matrices with \(\lambda\) along their diagonals. Any
      such pair of matrices satisfying the braid relation
      (\ref{eq:braid-rel-induction-basis}) commute.
  \end{enumerate}

  Similarly, in case (7) we use the braid relation and the disjointness
  relations to show \(L_{\alpha_1}\) and \(L_{\beta_1}\) commute -- see
  \cite[Proposition~5.1]{korkmaz} for a full proof. Cases (8) and (9) require
  some extra thought. We consider the curve \(\beta_2\). In these cases, the
  eigenspace \(E_{\alpha_2 = \lambda}\) is \(2\)-dimensional. Since
  \(L_{\alpha_2}\) and \(L_{\beta_2}\) are conjugate, \(E_{\beta_2 = \lambda}\)
  is also \(2\)-dimensional -- indeed, conjugate operators have the same Jordan
  form. Now either \(E_{\alpha_2 = \lambda} = E_{\beta_2 = \lambda}\) or
  \(E_{\alpha_2 = \lambda} \ne E_{\beta_2 = \lambda}\). We begin by the first
  case.

  We claim that if \(E_{\alpha_2 = \lambda} = E_{\beta_2 = \lambda}\) then
  \(E_{\alpha_2 = \lambda}\) is \(\Mod(\Sigma_2^b)\)-invariant. Indeed, by
  Observation~\ref{ex:change-of-coordinates-crossing} we can always find \(f,
  g, h_i \in \Mod(\Sigma_2^b)\) with
  \begin{align*}
    f \cdot [\alpha_2]      & = [\alpha_1]
    &
    g \cdot [\alpha_2]      & = [\beta_1]
    &
    h_i \cdot [\alpha_2]    & = [\alpha_2]    \\
    f \cdot [\beta_2]   & = [\beta_1]
    &
    g \cdot [\beta_2]   & = [\gamma]
    &
    h_i \cdot [\beta_2] & = [\eta_i].
  \end{align*}
  In particular,
  \begin{align*}
    f   \tau_{\alpha_2}    f^{-1}   & = \tau_{\alpha_1}
    &
    g   \tau_{\alpha_2}    g^{-1}   & = \tau_{\beta_1}
    &
    h_i \tau_{\alpha_2}    h_i^{-1} & = \tau_{\alpha_2}     \\
    f   \tau_{\beta_2} f^{-1}   & = \tau_{\beta_1}
    &
    g   \tau_{\beta_2} g^{-1}   & = \tau_{\gamma}
    &
    h_i \tau_{\beta_2} h_i^{-1} & = \tau_{\eta_i}.
  \end{align*}
  and thus
  \begin{align*}
    E_{\alpha_1 = \lambda}
    = \rho(f) E_{\alpha_2 = \lambda}
    & = \rho(f) E_{\beta_2 = \lambda}
    = E_{\beta_1 = \lambda}
    \\
    E_{\beta_1 = \lambda}
    = \rho(g) E_{\alpha_2 = \lambda}
    & = \rho(g) E_{\beta_2 = \lambda}
    = E_{\gamma = \lambda}
    \\
    E_{\eta_i = \lambda}
    = \rho(h_i) E_{\alpha_2 = \lambda}
    & = \rho(h_i) E_{\beta_2 = \lambda}
    = E_{\beta_2 = \lambda}.
  \end{align*}
  In other words, \(E_{\alpha_1 = \lambda} = E_{\alpha_2 = \lambda} =
  E_{\beta_1 = \lambda} = E_{\beta_2 = \lambda} = E_{\gamma = \lambda} =
  E_{\eta_1 = \lambda} = \cdots = E_{\eta_{b-1} = \lambda}\) is invariant
  under the action of all Lickorish generators.

  Hence \(\rho\) restricts to a subrepresentation \(\bar \rho :
  \Mod(\Sigma_2^b) \to \GL(E_{\alpha_2 = \lambda}) = \GL_2(\mathbb{C})\) --
  recall \(E_{\alpha_2 = \lambda} = \mathbb{C} e_1 \oplus \mathbb{C} e_2\). By
  case (2), \(\bar \rho(f) = 1\) for all \(f \in \Mod(\Sigma_2^b)'\), given
  that \(\bar \rho(\Mod(\Sigma_2^b))\) is Abelian. Thus
  \[
    \rho(\Mod(\Sigma_2^b)') \subset
    \begin{pmatrix}
      1 & 0 & * \\
      0 & 1 & * \\
      0 & 0 & *
    \end{pmatrix}
  \]
  lies inside the group of upper triangular matrices, a solvable subgroup of
  \(\GL_3(\mathbb{C})\). Now by Proposition~\ref{thm:commutator-is-perfect} we
  get \(\rho(\Mod(\Sigma_2^b)') = 1\): any homomorphism from a perfect group to
  a solvable group is trivial.

  Finally, if \(E_{\alpha_2 = \lambda} \ne E_{\beta_2 = \lambda}\) and
  the Jordan form of \(L_{\alpha_2}\) is given by (8) then the disjointness
  relations \([\tau_{\alpha_2}, \tau_{\alpha_1}] = [\tau_{\alpha_2},
  \tau_{\beta_1}] = [\tau_{\beta_2}, \tau_{\alpha_1}] = [\tau_{\beta_2},
  \tau_{\beta_1}] = 1\) implies that \(L_{\alpha_1}\) and \(L_{\beta_1}\)
  preserve the eigenspaces of both \(L_{\alpha_2}\) and \(L_{\beta_2}\), so
  \[
    0
    \subsetneq E_{\alpha_2 = \lambda} \cap E_{\beta_2 = \lambda}
    \subsetneq E_{\alpha_2 = \lambda}
    \subsetneq V
  \]
  is a flag of subspaces invariant under \(L_{\alpha_1}\) and \(L_{\beta_1}\).
  In this case we can find a basis for \(\mathbb{C}^3\) with respect to which
  the matrices of \(L_{\alpha_1}\) and \(L_{\beta_1}\) are both upper
  triangular with \(\lambda\) along the diagonal: take \(v_1, v_2, v_3 \in
  \mathbb{C}^3\) with \(v_1 \in E_{\alpha_2 = \lambda} \cap E_{\beta_2 =
  \lambda}\) and \(v_2 \in V_{L_{\alpha_2}}\). Any such pair of matrices
  satisfying the braid relation (\ref{eq:braid-rel-induction-basis}) commute.

  Similarly, if \(L_{\alpha_2}\) has Jordan form (9) and \(E_{\alpha_2 =
  \lambda} \ne E_{\beta_2 = \lambda}\) we use
  (\ref{eq:braid-rel-induction-basis}) to conclude \(L_{\alpha_1}\) and
  \(L_{\beta_1}\) commute -- again, see \cite[Proposition~5.1]{korkmaz}. We are
  done.
\end{proof}

We are now ready to establish the triviality of low-dimensional
representations.

\begin{proof}[Proof of Theorem~\ref{thm:low-dim-reps-are-trivial}]
  Let \(g \ge 1\), \(b \ge 0\), and fix \(\rho : \Mod(\Sigma_g^b) \to
  \GL_n(\mathbb{C})\) with \(n < 2g\). We want to show
  \(\rho(\Mod(\Sigma_g^b))\) is Abelian. As promised, we proceed by induction
  on \(g\). The base case \(g = 1\) is again clear from the fact \(n = 1\) and
  \(\GL_1(\mathbb{C}) = \mathbb{C}^\times\). The case \(g = 2\) was also
  established in Proposition~\ref{thm:low-dim-reps-are-trivial-base-case}.

  Now suppose \(g \ge 3\) and every \(m\)-dimensional representation of
  \(\Sigma_{g - 1}^{b'}\) has Abelian image for \(m < 2(g - 1)\).
  Let \(\alpha_1, \ldots, \alpha_g, \beta_1, \ldots, \beta_g, \gamma_1, \ldots,
  \gamma_{g - 1}, \eta_1, \ldots, \eta_{b-1} \subset \Sigma_g^b\) be the curves
  from the Lickorish generators of \(\Mod(\Sigma_g^b)\), as in
  Figure~\ref{fig:lickorish-gens}. Once again, let \(L_\alpha =
  \rho(\tau_\alpha)\) and denote by \(E_{\alpha = \lambda}\) the eigenspace of
  \(L_\alpha\) associated to \(\lambda \in \mathbb{C}\). Let \(\Sigma \cong
  \Sigma_{g - 1}^1\) be the closed subsurface highlighted in
  Figure~\ref{fig:korkmaz-proof-subsurface}.

  \begin{figure}[ht]
    \centering
    \includegraphics[width=.35\linewidth]{images/lickorish-gens-korkmaz-proof.eps}
    \caption{The subsurface $\Sigma \subset \Sigma_g^b$.}
    \label{fig:korkmaz-proof-subsurface}
  \end{figure}

  We claim that it suffices to find a \(m\)-dimensional
  \(\Mod(\Sigma)\)-invariant\footnote{Here we view $\Mod(\Sigma)$ as a subgroup
  of $\Mod(\Sigma_g^b)$ via the inclusion homomorphism $\Mod(\Sigma) \to
  \Mod(\Sigma_g^b)$ from Example~\ref{ex:inclusion-morphism}, which can be
  shown to be injective in this particular case.} subspace \(W \subset
  \mathbb{C}^n\) with \(2 \le m \le n - 2\). Indeed, in this case \(m < 2(g -
  1)\) and \(\dim \mfrac{\mathbb{C}^n}{W} = n - m < 2(g - 1)\). Thus both
  representations
  \begin{align*}
    \rho_1 : \Mod(\Sigma) & \to \GL(W) \cong \GL_m(\mathbb{C})
    &
    \rho_2 : \Mod(\Sigma) & \to \GL(\mfrac{\mathbb{C}^n}{W})
    \cong \GL_{n - m}(\mathbb{C})
  \end{align*}
  fall into the induction hypothesis -- i.e. \(\rho_i(\Mod(\Sigma))\) is
  Abelian. In particular, \(\rho_i(\Mod(\Sigma)') = 1\) and we can find some
  basis for \(\mathbb{C}^n\) with respect to which
  \[
    \rho(f) =
    \left(
    \begin{array}{c|c}
      1_m & *         \\ \hline
        0 & 1_{n - m}
    \end{array}
    \right)
  \]
  for all \(f \in \Mod(\Sigma)'\) -- where \(1_k\) denotes the \(k \times k\)
  identity matrix. Since the group of upper triangular matrices is solvable, it
  follows from Proposition~\ref{thm:commutator-is-perfect} that \(\rho\)
  annihilates all of \(\Mod(\Sigma)'\) and, in particular, \(\tau_{\alpha_1}
  \tau_{\beta_1}^{-1} \in \ker \rho\). Now recall from
  Proposition~\ref{thm:commutator-normal-gen} that \(\Mod(\Sigma_g^b)'\) is
  normally generated by \(\tau_{\alpha_1} \tau_{\beta_1}^{-1}\), from which we
  conclude \(\rho(\Mod(\Sigma_g^b)') = 1\), as desired.

  As before, we exhaustively analyze all possible Jordan forms of
  \(L_{\alpha_g}\). First, consider the case where we can find eigenvalues
  \(\lambda_1, \ldots, \lambda_k\) of \(L_{\alpha_g}\) such that the sum \(W =
  \bigoplus_i E_{\alpha_g = \lambda_i}\) of the corresponding eigenspaces has
  dimension \(m\) with \(2 \le m \le n - 2\). In this case, it suffices to
  observe that since \(\alpha_g\) lies outside of \(\Sigma\), each
  \(E_{\alpha_g = \lambda_i}\) is \(\Mod(\Sigma)\)-invariant: the Lickorish
  generators \(\tau_{\alpha_1}, \ldots, \tau_{\alpha_{g - 1}}, \tau_{\beta_1},
  \ldots, \tau_{\beta_{g - 1}}\), \(\tau_{\gamma_1}, \ldots, \tau_{\gamma_{g -
  2}}\) of \(\Sigma \cong \Sigma_{g - 1}^1\) all commute with
  \(\tau_{\alpha_g}\) and thus preserve the eigenspaces of its action on
  \(\mathbb{C}^n\).

  If no sum of the form \(\bigoplus_i E_{\alpha_g = \lambda_i}\) has dimension
  lying between \(2\) and \(n - 2\), then there must be at most \(2\) distinct
  eigenvalues \(\lambda\) of \(L_{\alpha_g}\), and \(\dim E_{\alpha_g =
  \lambda} = 1, n - 1, n\) for all such \(\lambda\). Hence the Jordan form of
  \(L_{\alpha_g}\) has to be one of
  \begin{align*}
    \begin{pmatrix}
      \lambda & 0       & 0      & \cdots & 0       & 0       \\
      0       & \lambda & 0      & \ldots & 0       & 0       \\
      \vdots  & \vdots  & \vdots & \ddots & \vdots  & \vdots  \\
      0       & 0       & 0      & \cdots & \lambda & 0       \\
      0       & 0       & 0      & \cdots & 0       & \lambda
    \end{pmatrix}
    & \quad{\normalfont(1)}
    &
    \begin{pmatrix}
      \lambda & 1       & 0      & \cdots & 0       & 0       \\
      0       & \lambda & 1      & \ldots & 0       & 0       \\
      \vdots  & \vdots  & \vdots & \ddots & \vdots  & \vdots  \\
      0       & 0       & 0      & \cdots & \lambda & 1       \\
      0       & 0       & 0      & \cdots & 0       & \lambda
    \end{pmatrix}
    & \quad{\normalfont(2)}
    \\
    \begin{pmatrix}
      \lambda & 0       & 0      & \cdots & 0       & 0       \\
      0       & \lambda & 0      & \ldots & 0       & 0       \\
      \vdots  & \vdots  & \vdots & \ddots & \vdots  & \vdots  \\
      0       & 0       & 0      & \cdots & \lambda & 1       \\
      0       & 0       & 0      & \cdots & 0       & \lambda
    \end{pmatrix}
    & \quad{\normalfont(3)}
    &
    \begin{pmatrix}
      \lambda & 0       & 0      & \cdots & 0       & 0       \\
      0       & \lambda & 0      & \ldots & 0       & 0       \\
      \vdots  & \vdots  & \vdots & \ddots & \vdots  & \vdots  \\
      0       & 0       & 0      & \cdots & \lambda & 0       \\
      0       & 0       & 0      & \cdots & 0       & \mu
    \end{pmatrix}
    & \quad{\normalfont(4)}
  \end{align*}
  for \(\lambda \ne \mu\). We analyze the first two sporadic cases
  individually.

  \begin{enumerate}
    \item[\bfseries\color{highlight}(1)]
      Here we use the change of coordinates principle: each \(L_{\alpha_i},
      L_{\beta_i}, L_{\gamma_i},  L_{\eta_i}\) is conjugate to \(L_{\alpha_g} =
      \lambda\), so all Lickorish generators of \(\Mod(\Sigma_g^b)\) act on
      \(\mathbb{C}^n\) as scalar multiplication by \(\lambda\) as well. Hence
      \(\rho(\Mod(\Sigma_g^b)) = \langle \lambda \rangle\) is Abelian.

    \item[\bfseries\color{highlight}(2)]
      In this case, \(W = \ker (L_{\alpha_g} - \lambda)^2\) is a
      \(2\)-dimensional \(\Mod(\Sigma)\)-invariant subspace.
  \end{enumerate}

  For cases (3) and (4), we consider two situations: \(E_{\alpha_g = \lambda}
  \ne E_{\beta_g = \lambda}\) or \(E_{\alpha_g = \lambda} = E_{\beta_g =
  \lambda}\). If \(E_{\alpha_2 = \lambda} \ne E_{\beta_2 = \lambda}\), then \(W
  = E_{\alpha_g = \lambda} \cap E_{\beta_g = \lambda}\) is a \((n -
  2)\)-dimensional \(\Mod(\Sigma)\)-invariant subspace: since \(\beta_g\) lies
  outside of \(\Sigma\) and \(L_{\alpha_g}, L_{\beta_g}\) are conjugate, both
  \(E_{\alpha_g = \lambda}\) and \(E_{\beta_g = \lambda}\) are
  \(\Mod(\Sigma)\)-invariant \((n - 1)\)-dimensional subspaces.

  Finally, we consider the case where \(E_{\alpha_g = \lambda} = E_{\beta_g
  = \lambda}\). In this situation, as in the proof of
  Proposition~\ref{thm:low-dim-reps-are-trivial-base-case}, it follows from
  Observation~\ref{ex:change-of-coordinates-crossing} that there are \(f_i,
  g_i, h_i \in \Mod(\Sigma_g^b)\) with
  \begin{align*}
    f_i \tau_{\alpha_g}    f_i^{-1} & = \tau_{\alpha_i}
    &
    g_i \tau_{\alpha_g}    g_i^{-1} & = \tau_{\beta_i}
    &
    h_i \tau_{\alpha_g}    h_i^{-1} & = \tau_{\alpha_g}
    \\
    f_i \tau_{\beta_g} f_i^{-1} & = \tau_{\beta_i}
    &
    g_i \tau_{\beta_g} g_i^{-1} & = \tau_{\gamma_i}
    &
    h_i \tau_{\beta_g} h_i^{-1} & = \tau_{\eta_i}
  \end{align*}
  and thus
  \(E_{\alpha_1 = \lambda} = \cdots = E_{\alpha_g = \lambda} = E_{\beta_1 =
  \lambda} = \cdots = E_{\beta_g = \lambda} = E_{\gamma_1 = \lambda} = \cdots =
  E_{\gamma_{g - 1} = \lambda} = E_{\eta_1 = \lambda} = \cdots = E_{\eta_{b-1}
  = \lambda}\).

  In particular, we can find a basis for \(\mathbb{C}^n\) with respect to
  which the matrix of any Lickorish generator has the form
  \[
    \begin{pmatrix}
      \lambda & 0       & \cdots & 0       & *      \\
      0       & \lambda & \ldots & 0       & *      \\
      \vdots  & \vdots  & \ddots & \vdots  & \vdots \\
      0       & 0       & \cdots & \lambda & *      \\
      0       & 0       & \cdots & 0       & *
    \end{pmatrix}.
  \]
  Since the group of upper triangular matrices is solvable and
  \(\Mod(\Sigma_g^b)\) is perfect, it follows that \(\rho(\Mod(\Sigma_g^b))\) is
  trivial. This concludes the proof \(\rho(\Mod(\Sigma_g^b))\) is Abelian.

  To see that \(\rho(\Mod(\Sigma_g^b)) = 1\) for \(g \ge 3\) we note that,
  since \(\rho\) has Abelian image and thus factors though the Abelianization
  map \(\Mod(\Sigma_g^b) \to \Mod(\Sigma_g^b)^\ab =
  \mfrac{\Mod(\Sigma_g^b)}{[\Mod(\Sigma_g^b), \Mod(\Sigma_g^b)]}\). Now recall
  from Proposition~\ref{thm:trivial-abelianization} that \(\Mod(\Sigma_g^b)^\ab
  = 0\) for \(g \ge 3\). We are done.
\end{proof}

Having established the triviality of the low-dimensional representations \(\rho
: \Mod(\Sigma_g^b) \to \GL_n(\mathbb{C})\), all that remains for us is to
understand the \(2g\)-dimensional representations of \(\Mod(\Sigma_g^b)\). We
certainly know a nontrivial example of such, namely the symplectic
representation \(\psi : \Mod(\Sigma_g) \to \operatorname{Sp}_{2g}(\mathbb{Z})\)
from Example~\ref{ex:symplectic-rep}. Surprisingly, this turns out to be
\emph{essentially} the only example of a nontrivial \(2g\)-dimensional
representation in the compact case. More precisely,

\begin{theorem}[Korkmaz]\label{thm:reps-of-dim-2g-are-symplectic}
  Let \(g \ge 3\) and \(\rho : \Mod(\Sigma_g^b) \to \GL_{2g}(\mathbb{C})\).
  Then \(\rho\) is either trivial or conjugate to the symplectic
  representation\footnote{Here the map $\Mod(\Sigma_g^b) \to
  \operatorname{Sp}_{2g}(\mathbb{Z})$ is given by the composition of the
  inclusion morphism $\Mod(\Sigma_g^b) \to \Mod(\Sigma_g)$ with the usual
  symplectic representation $\psi : \Mod(\Sigma_g) \to
  \operatorname{Sp}_{2g}(\mathbb{Z})$.} \(\Mod(\Sigma_g^b) \to
  \operatorname{Sp}_{2g}(\mathbb{Z})\) of \(\Mod(\Sigma_g^b)\).
\end{theorem}

Unfortunately, the limited scope of these master's thesis does not allow us to
dive into the proof of Theorem~\ref{thm:reps-of-dim-2g-are-symplectic}. The
heart of this proof lies in a result about representations of the product
\(B_3^n = B_3 \times \cdots \times B_3\), which Korkmaz refers to as \emph{the
main lemma}.

\begin{lemma}[Korkmaz' main lemma]\label{thm:main-lemma}
  Given \(i = 1, \ldots, n\), denote by 
  \begin{align*}
    a_i & = (1, \ldots, 1, \sigma_1, 1, \ldots, 1) &
    b_i & = (1, \ldots, 1, \sigma_2, 1, \ldots, 1)
  \end{align*}
  the \(n\)-tuples in \(B_3^n\) whose \(i\)-th coordinates are \(\sigma_1\) and
  \(\sigma_2\), respectively, and with all other coordinates equal to \(1\).
  Let \(m \ge 2n\) and \(\rho : B_3^n \to \GL_m(\mathbb{C})\) be a
  representation satisfying:
  \begin{enumerate}
    \item The only eigenvalue of \(\rho(a_i)\) is \(1\) and its eigenspace is
      \((m - 1)\)-dimensional.
    \item The eigenspaces of \(\rho(a_i)\) and \(\rho(b_i)\) associated to the
      eigenvalue \(1\) do not coincide.
  \end{enumerate}
  Then \(\rho\) is conjugate to the representation
  \begin{align*}
    B_3^n & \to \GL_m(\mathbb{C}) \\
    a_i
    & \mapsto
    \left(
    \begin{array}{c|c|c}
      1_{2(i-1)} & 0                                            & 0 \\ \hline
               0 & \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} & 0 \\ \hline
               0 & 0                                            & 1_{m-2i}
    \end{array}
    \right) \\
    b_i
    & \mapsto
    \left(
    \begin{array}{c|c|c}
      1_{2(i-1)} & 0                                             & 0 \\ \hline
               0 & \begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array} & 0 \\ \hline
                 0 & 0                                             & 1_{m-2i}
    \end{array}
    \right),
  \end{align*}
  where \(1_k\) denotes the \(k \times k\) identity matrix.
\end{lemma}

This is proved in \cite[Lemma 7.6]{korkmaz} using the braid relations. Notice
that for \(n = g\) and \(m = 2g\) the matrices in Lemma~\ref{thm:main-lemma}
coincide with the action of the Lickorish generators \(\tau_{\alpha_1}, \ldots,
\tau_{\alpha_g}, \tau_{\beta_1}, \ldots, \tau_{\beta_g} \in \Mod(\Sigma_g^b)\) on
\(H_1(\Sigma_g, \mathbb{C}) \cong \mathbb{C}^{2g}\) -- represented in the standard
basis \([\alpha_1], \ldots, [\alpha_g], [\beta_1], \ldots, [\beta_g]\) for
\(H_1(\Sigma_g, \mathbb{C})\).
\begin{align*}
  (\tau_{\alpha_i})_* & =
  \left(
  \begin{array}{c|c|c}
    1 & 0                                            & 0 \\ \hline
    0 & \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} & 0 \\ \hline
    0 & 0                                            & 1
  \end{array}
  \right) &
  (\tau_{\beta_i})_* & =
  \left(
  \begin{array}{c|c|c}
    1 & 0                                             & 0 \\ \hline
    0 & \begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array} & 0 \\ \hline
    0 & 0                                             & 1
  \end{array}
  \right)
\end{align*}

Hence by embedding \(B_3^g\) in \(\Mod(\Sigma_g^b)\) via
\begin{align*}
  B_3^g & \to \Mod(\Sigma_g^b)         \\
  a_i   & \mapsto \tau_{\alpha_i}    \\
  b_i   & \mapsto \tau_{\beta_i}
\end{align*}
we can see that any \(\rho : \Mod(\Sigma_g^b) \to \GL_{2g}(\mathbb{C})\) in a
certain class of representation satisfying some technical conditions must be
conjugate to the symplectic representation \(\Mod(\Sigma_g^b) \to
\operatorname{Sp}_{2g}(\mathbb{Z})\) when restricted to \(B_3^g\).

Korkmaz then goes on to show that such technical conditions are met for any
nontrivial \(\rho : \Mod(\Sigma_g^b) \to \GL_{2g}(\mathbb{C})\). Furthermore,
Korkmaz also argues that we can find a basis for \(\mathbb{C}^{2g}\) with
respect to which the matrices of \(\rho(\tau_{\gamma_1}), \ldots,
\rho(\tau_{\gamma_{g - 1}}), \rho(\tau_{\eta_1}), \ldots,
\rho(\tau_{\eta_{b-1}})\) also agree with the action of \(\Mod(\Sigma_g^b)\) on
\(H_1(\Sigma_g, \mathbb{C})\), concluding the classification of
\(2g\)-dimensional representations.

Recently, Kasahara \cite{kasahara} also classified the \((2g+1)\)-dimensional
representations of \(\Mod(\Sigma_g^b)\) for \(g \ge 7\) in terms of certain
twisted \(1\)-cohomology groups. On the other hand, the representations of
dimension \(n > 2g + 1\) are still poorly understood, and fundamental questions
remain unsweared. In the short and mid-terms, the works of Korkmaz and Kasahara
lead to many follow-up questions. For example,
\begin{enumerate}
  \item In the \(g \ge 3\) case, Korkmaz \cite[Theorem~3]{korkmaz} established
    the lower bound of \(3g - 3\) for the dimension of an injective linear
    representation of \(\Mod(\Sigma_g)\) -- if one such representation exists.
    Can we improve this lower bound?

  \item What is the minimal dimension for a representation of
    \(\Mod(\Sigma_g)\) which does not annihilate the entire kernel of the
    symplectic representation \(\psi : \Mod(\Sigma_g) \to
    \operatorname{Sp}_{2g}(\mathbb{Z})\)? In particular, do the \((2g +
    1)\)-dimensional representations classified by Kasahara \cite{kasahara}
    annihilate all of \(\ker \psi\)?
\end{enumerate}

These are some of the questions which I plan to work on during my upcoming PhD.