natural-number-game
Solututions to the Natural Number Game
Name | Size | Mode | |
.. | |||
advanced-multiplication.lean | 1344B | -rw-r--r-- |
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
theorem mul_pos (a b : ℕ) : a ≠ 0 → b ≠ 0 → a * b ≠ 0 := begin intros ha hb, cases b with d, exfalso, apply hb, refl, rw mul_succ, rw add_comm, intro h, apply ha, apply add_right_eq_zero, exact h, end theorem eq_zero_or_eq_zero_of_mul_eq_zero (a b : ℕ) (h : a * b = 0) : a = 0 ∨ b = 0 := begin cases b with c, right, refl, rw mul_succ at h, cases a with d, left, refl, exfalso, rw add_succ at h, apply succ_ne_zero, exact h, end theorem mul_eq_zero_iff (a b : ℕ): a * b = 0 ↔ a = 0 ∨ b = 0 := begin split, intro h, apply eq_zero_or_eq_zero_of_mul_eq_zero, exact h, intro h, cases h with a_zero b_zero, rw a_zero, rw zero_mul, refl, rw b_zero, rw mul_zero, refl, end theorem mul_left_cancel (a b c : ℕ) (ha : a ≠ 0) : a * b = a * c → b = c := begin revert b, induction c with n, rw mul_zero, intros b h, cases eq_zero_or_eq_zero_of_mul_eq_zero a b h with a_zero b_zero, exfalso, apply ha, exact a_zero, exact b_zero, intro b, intro h, cases b with d, exfalso, rw mul_zero at h, rw mul_succ at h, symmetry at h, apply ha, exact add_left_eq_zero h, rw mul_succ at h, rw mul_succ at h, have p := add_right_cancel _ _ _ h, have q := c_ih d p, rw q, refl, end