natural-number-game
Solututions to the Natural Number Game
Name | Size | Mode | |
.. | |||
advanced-proposition.lean | 2104B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
example (P Q : Prop) (p : P) (q : Q) : P ∧ Q := begin split, exact p, exact q, end lemma and_symm (P Q : Prop) : P ∧ Q → Q ∧ P := begin intro h, cases h with p q, split, exact q, exact p, end lemma and_trans (P Q R : Prop) : P ∧ Q → Q ∧ R → P ∧ R := begin intro h1, cases h1 with p _, intro h2, cases h2 with _ r, split, exact p, exact r, end lemma iff_trans (P Q R : Prop) : (P ↔ Q) → (Q ↔ R) → (P ↔ R) := begin intro p_iff_q, cases p_iff_q with hpq hqp, intro q_iff_r, cases q_iff_r with hqr hrq, split, intro p, apply hqr, apply hpq, exact p, intro r, apply hqp, apply hrq, exact r, end lemma iff_trans (P Q R : Prop) : (P ↔ Q) → (Q ↔ R) → (P ↔ R) := begin intro p_iff_q, cases p_iff_q with hpq hqp, intro q_iff_r, cases q_iff_r with hqr hrq, split, intro p, apply hqr, apply hpq, exact p, intro r, apply hqp, apply hrq, exact r, end example (P Q : Prop) : Q → (P ∨ Q) := begin intro q, right, exact q, end lemma or_symm (P Q : Prop) : P ∨ Q → Q ∨ P := begin intro h, cases h with p q, right, exact p, left, exact q, end lemma and_or_distrib_left (P Q R : Prop) : P ∧ (Q ∨ R) ↔ (P ∧ Q) ∨ (P ∧ R) := begin split, intro h, have p := h.1, cases h.2 with q r, left, split, exact p, exact q, right, split, exact p, exact r, intro h, cases h with p_and_q p_and_r, cases p_and_q with p q, split, exact p, left, exact q, cases p_and_r with p r, split, exact p, right, exact r, end lemma contra (P Q : Prop) : (P ∧ ¬ P) → Q := begin intro h, rw not_iff_imp_false at h, exfalso, apply h.2, exact h.1, end lemma contrapositive2 (P Q : Prop) : (¬ Q → ¬ P) → (P → Q) := begin by_cases p : P; by_cases q : Q, intros _ _, exact q, intro h, have not_p := h q, exfalso, rw not_iff_imp_false at not_p, apply not_p, exact p, intros _ _, exact q, intros h p, have not_p := h q, rw not_iff_imp_false at not_p, exfalso, apply not_p, exact p, end