natural-number-game

Solututions to the Natural Number Game

NameSizeMode
..
inequality.lean 3159B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
lemma one_add_le_self (x : ℕ) : x ≤ 1 + x :=
begin
  rw le_iff_exists_add,
  use 1,
  rw add_comm,
end

lemma le_refl (x : ℕ) : x ≤ x :=
begin
  use 0,
  rw add_zero,
  refl,
end

theorem le_succ (a b : ℕ) : a ≤ b → a ≤ (succ b) :=
begin
  intro h,
  cases h with c hc,
  use c + 1,
  rw add_one_eq_succ,
  rw add_succ,
  rw hc,
  refl,
end

lemma zero_le (a : ℕ) : 0 ≤ a :=
begin
  use a,
  rw zero_add,
  refl,
end

theorem le_trans (a b c : ℕ) (hab : a ≤ b) (hbc : b ≤ c) : a ≤ c :=
begin
  cases hab with b' hb',
  cases hbc with c' hc',
  use b' + c',
  rw ← add_assoc,
  rw ← hb',
  exact hc',
end

theorem le_antisymm (a b : ℕ) (hab : a ≤ b) (hba : b ≤ a) : a = b :=
begin
  cases hab with c hc,
  cases hba with d hd,
  rw hd at hc,
  rw add_assoc at hc,
  symmetry at hc,
  have p := eq_zero_of_add_right_eq_self hc,
  have q := add_right_eq_zero p,
  rw hd,
  rw q,
  rw add_zero,
  refl,
end

lemma le_zero (a : ℕ) (h : a ≤ 0) : a = 0 := le_antisymm _ _ h (zero_le _)

lemma succ_le_succ (a b : ℕ) (h : a ≤ b) : succ a ≤ succ b :=
begin
  cases h with c hc,
  use c,
  rw succ_add,
  rw hc,
  refl,
end

theorem le_total (a b : ℕ) : a ≤ b ∨ b ≤ a :=
begin
  induction b with c,
  right,
  exact zero_le a,
  cases b_ih with hac hca,
  left,
  apply le_succ,
  exact hac,
  cases hca with d hd,
  cases d with e,
  rw add_zero at hd,
  left,
  rw hd,
  rw succ_eq_add_one,
  use 1,
  refl,
  right,
  use e,
  rw succ_add,
  rw ← add_succ,
  exact hd,
end

lemma le_succ_self (a : ℕ) : a ≤ succ a :=
begin
  use 1,
  exact succ_eq_add_one a,
end

theorem add_le_add_right {a b : ℕ} : a ≤ b → ∀ t, (a + t) ≤ (b + t) :=
begin
  intros h t,
  cases h with c hc,
  use c,
  rw add_assoc,
  rw ← add_comm c,
  rw ← add_assoc,
  rw hc,
  refl,
end

theorem le_of_succ_le_succ (a b : ℕ) : succ a ≤ succ b → a ≤ b :=
begin
  intro h,
  cases h with c hc,
  use c,
  rw succ_add at hc,
  apply succ_inj,
  exact hc,
end

theorem not_succ_le_self (a : ℕ) : ¬ (succ a ≤ a) :=
begin
  intro h,
  cases h with c hc,
  rw succ_add at hc,
  rw ← add_succ at hc,
  symmetry at hc,
  apply succ_ne_zero,
  apply eq_zero_of_add_right_eq_self,
  exact hc,
end

theorem add_le_add_left {a b : ℕ} (h : a ≤ b) (t : ℕ) : t + a ≤ t + b :=
begin
  repeat {rw add_comm t},
  exact add_le_add_right h t,
end

lemma lt_aux_one (a b : ℕ) : a ≤ b ∧ ¬ (b ≤ a) → succ a ≤ b :=
begin
  intro h,
  have p := le_total (succ a) b,
  cases p with hab hba,
  exact hab,
  cases hba with c hc,
  cases c with d,
  use 0,
  rw add_zero,
  rw add_zero at hc,
  symmetry at hc,
  exact hc,
  exfalso,
  apply h.2,
  use d,
  apply succ_inj,
  rw add_succ at hc,
  exact hc,
end

lemma lt_aux_two (a b : ℕ) : succ a ≤ b → a ≤ b ∧ ¬ (b ≤ a) :=
begin
  intro h,
  split,
  exact le_trans _ _ _ (le_succ_self a) h,
  intro p,
  apply not_succ_le_self b,
  exact le_trans _ _ _ (succ_le_succ _ _ p) h,
end

lemma lt_iff_succ_le (a b : ℕ) : a < b ↔ succ a ≤ b :=
begin
  split,
  intro h,
  apply lt_aux_one,
  exact h,
  intro h,
  apply lt_aux_two,
  exact h,
end