
THE LAPACKE C INTERFACE TO LAPACK

Contents

1. Introduction 1
1.1. Naming Schemes 1
1.2. Complex Types 2
1.3. Array Arguments 2
1.4. Aliasing of Arguments 2
1.5. INFO Parameters 2
1.6. NaN Checking 3
1.7. Integers 3
1.8. Logicals 3
1.9. Memory Management 3
1.10. New Error Codes 3
2. Function List 3
2.1. Real Functions 4
2.2. Complex Functions 4
2.3. Mixed Precision Functions 5
3. Examples 5
3.1. Calling DGEQRF 5
3.2. Calling CUNGQR 5
3.3. Calling DGELS 6
3.4. Calling CGEQRF and the CBLAS 7

1. Introduction

This document describes a two-level C interface to LAPACK, consisting
of a high-level interface and a middle-level interface. The high-level interface
handles all workspace memory allocation internally, while the middle-level
interface requires the user to provide workspace arrays as in the original
FORTRAN interface. Both interfaces provide support for both column-
major and row-major matrices. The prototypes for both interfaces, associ-
ated macros and type definitions are contained in the header file lapacke.h.

1.1. Naming Schemes. The naming scheme for the high-level interface is
to take the FORTRAN LAPACK routine name, make it lower case, and
add the prefix LAPACKE . For example, the LAPACK subroutine DGETRF
becomes LAPACKE dgetrf.

Date: September 30, 2011.

1

2 THE LAPACKE C INTERFACE TO LAPACK

The naming scheme for the middle-level interface is to take the FORTRAN
LAPACK routine name, make it lower case, then add the prefix LAPACKE
and the suffix work. For example, the LAPACK subroutine DGETRF be-
comes LAPACKE dgetrf work.

1.2. Complex Types. Complex data types are defined by the macros
lapack complex float and lapack complex double, which represent single pre-
cision and double precision complex data types respectively. It is assumed
throughout that the real and imaginary components are stored contiguously
in memory, with the real component first. The lapack complex float and
lapack complex double macros can be either C99 Complex types, a C struct
defined type, C++ STL complex types, or a custom complex type. See
lapacke.h for more details.

1.3. Array Arguments. Arrays are passed as pointers, not as a pointer to
pointers. All the LAPACKE routines that take one or more 2D arrays as a
pointer receive a single extra parameter of type int. This argument must be
equal to either LAPACK ROW MAJOR or LAPACK COL MAJOR which are
defined in lapacke.h, specifying whether the arrays are stored in row-major
or column-major order. If a routine has multiple array inputs, they must all
use the same ordering.

Note that using row-major ordering may require more memory and time
than column-major ordering, because the routine must transpose the row-
major order to the column-major order required by the underlying LAPACK
routine.

Each 2D array argument in a FORTRAN LAPACK routine has an ad-
ditional argument that specifies its leading dimension. For row-major 2D
arrays, elements within a row are assumed to be contiguous and elements
from one row to the next are assumed to be a leading dimension apart.
For column-major 2D arrays, elements within a column are assumed to be
contiguous and elements from one column to the next are assumed to be a
leading dimension apart.

1.4. Aliasing of Arguments. Unless specified otherwise, only input argu-
ments (that is, scalars passed by values and arrays specified with the const
qualifier) may be legally aliased on a call to C interface to LAPACK.

1.5. INFO Parameters. The LAPACKE interface functions set their
lapack int return value to the value of the INFO parameter, which contains
information such as error and exit conditions. This differs from LAPACK
routines, which return this information as a FORTRAN integer parameter.

In LAPACKE, INFO is used exactly as it is in LAPACK. If INFO returns
the row or column number of a matrix using 1-based indexing in FORTRAN,
the value is not adjusted for zero-based indexing.

THE LAPACKE C INTERFACE TO LAPACK 3

1.6. NaN Checking. The high-level interface includes an optional, on by
default, NaN check on all matrix inputs before calling any LAPACK routine.
This option affects all routines. If the inputs contain any NaNs, the input
parameter corresponding matrix will be flagged with an INFO parameter
error. For example, if the fifth parameter is found to contain a NaN, the
function will return with the value -5.

The NaN check, as well as other parameters, can be disabled by defin-
ing LAPACK DISABLE NAN CHECK macro in lapacke.h. The middle-level
interface does not contain the NaN check.

1.7. Integers. Variables with the FORTRAN type integer are converted to
lapack int in LAPACKE. This conforms with modifiable integer type size,
especially given ILP64 programming model: re-defining lapack int as long
int (8 bytes) will be enough to support this model, as lapack int is defined
as int (4 bytes) by default, supporting LP64 programming model.

1.8. Logicals. FORTRAN logicals are converted to lapack logical, which is
defined as lapack int.

1.9. Memory Management. All memory management is handled by the
functions LAPACKE malloc and LAPACKE free. This allows users to easily
use their own memory manager instead of the default by modifying their
definitions in lapacke.h.

This interface should be thread-safe to the extent that these memory
management routines and the underlying LAPACK routines are thread-safe.

1.10. New Error Codes. Since the high level interface does not use work
arrays, error notification is needed in the event of a user running out of
memory.

If a work array cannot be allocated, LAPACK WORK MEMORY ERROR
is returned by the function; if there was insufficient memory to complete a
transposition, LAPACK TRANSPOSE MEMORY ERROR is returned.

2. Function List

This section list the currently available LAPACK subroutines that are
available in the LAPACKE C interface. The LAPACK base names are given
below; the corresponding LAPACKE function name is LAPACKE xbase or
LAPACKE xbase work where x is the type: s or d for single or double preci-
sion real, c or z for single or double precision complex, with base representing
the base name. Function prototypes are given in the file lapacke.h. See the
LAPACK documentation for detailed information about the routines and
their parameters.

4 THE LAPACKE C INTERFACE TO LAPACK

2.1. Real Functions. The following LAPACK subroutine base names are
supported for single precision (s) and double precision (d), in both the high-
level and middle-level interfaces:

bdsdc bdsqr disna gbbrd gbcon gbequ gbequb gbrfs gbrfsx gbsv gbsvx gbsvxx
gbtrf gbtrs gebak gebal gebrd gecon geequ geequb gees geesx geev geevx gehrd
gejsv gelqf gels gelsd gelss gelsy geqlf geqp3 geqpf geqrf geqrfp gerfs gerfsx
gerqf gesdd gesv gesvd gesvj gesvx gesvxx getrf getri getrs ggbak ggbal gges
ggesx ggev ggevx ggglm gghrd gglse ggqrf ggrqf ggsvd ggsvp gtcon gtrfs gtsv
gtsvx gttrf gttrs hgeqz hsein hseqr opgtr opmtr orgbr orghr orglq orgql orgqr
orgrq orgtr ormbr ormhr ormlq ormql ormqr ormrq ormrz ormtr pbcon pbequ
pbrfs pbstf pbsv pbsvx pbtrf pbtrs pftrf pftri pftrs pocon poequ poequb porfs
porfsx posv posvx posvxx potrf potri potrs ppcon ppequ pprfs ppsv ppsvx pptrf
pptri pptrs pstrf ptcon pteqr ptrfs ptsv ptsvx pttrf pttrs sbev sbevd sbevx sbgst
sbgv sbgvd sbgvx sbtrd sfrk spcon spev spevd spevx spgst spgv spgvd spgvx
sprfs spsv spsvx sptrd sptrf sptri sptrs stebz stedc stegr stein stemr steqr sterf
stev stevd stevr stevx sycon syequb syev syevd syevr syevx sygst sygv sygvd
sygvx syrfs syrfsx sysv sysvx sysvxx sytrd sytrf sytri sytrs tbcon tbrfs tbtrs tfsm
tftri tfttp tfttr tgevc tgexc tgsen tgsja tgsna tgsyl tpcon tprfs tptri tptrs tpttf
tpttr trcon trevc trexc trrfs trsen trsna trsyl trtri trtrs trttf trttp tzrzf

2.2. Complex Functions. The following LAPACK subroutine base names
are supported for complex single precision (c) and complex double precision
(z), in both the high-level and middle-level interfaces:

bdsqr gbbrd gbcon gbequ gbequb gbrfs gbrfsx gbsv gbsvx gbsvxx gbtrf gbtrs
gebak gebal gebrd gecon geequ geequb gees geesx geev geevx gehrd gelqf gels
gelsd gelss gelsy geqlf geqp3 geqpf geqrf geqrfp gerfs gerfsx gerqf gesdd gesv
gesvd gesvx gesvxx getrf getri getrs ggbak ggbal gges ggesx ggev ggevx ggglm
gghrd gglse ggqrf ggrqf ggsvd ggsvp gtcon gtrfs gtsv gtsvx gttrf gttrs hbev
hbevd hbevx hbgst hbgv hbgvd hbgvx hbtrd hecon heequb heev heevd heevr
heevx hegst hegv hegvd hegvx herfs herfsx hesv hesvx hesvxx hetrd hetrf hetri
hetrs hfrk hgeqz hpcon hpev hpevd hpevx hpgst hpgv hpgvd hpgvx hprfs hpsv
hpsvx hptrd hptrf hptri hptrs hsein hseqr pbcon pbequ pbrfs pbstf pbsv pbsvx
pbtrf pbtrs pftrf pftri pftrs pocon poequ poequb porfs porfsx posv posvx posvxx
potrf potri potrs ppcon ppequ pprfs ppsv ppsvx pptrf pptri pptrs pstrf ptcon
pteqr ptrfs ptsv ptsvx pttrf pttrs spcon sprfs spsv spsvx sptrf sptri sptrs stedc
stegr stein stemr steqr sycon syequb syrfs syrfsx sysv sysvx sysvxx sytrf sytri
sytrs tbcon tbrfs tbtrs tfsm tftri tfttp tfttr tgevc tgexc tgsen tgsja tgsna tgsyl
tpcon tprfs tptri tptrs tpttf tpttr trcon trevc trexc trrfs trsen trsna trsyl trtri
trtrs trttf trttp tzrzf ungbr unghr unglq ungql ungqr ungrq ungtr unmbr unmhr
unmlq unmql unmqr unmrq unmrz unmtr upgtr upmtr

THE LAPACKE C INTERFACE TO LAPACK 5

2.3. Mixed Precision Functions. The following LAPACK subroutine
base names are supported only for double precision (d) and complex double
precision (z):

sgesv sposv

3. Examples

This section contains examples of calling LAPACKE functions from a C
program.

3.1. Calling DGEQRF. Suppose you wish to call the function DGEQRF,
which computes the QR factorization of a double precision real rectangular
matrix in LAPACK, and you wish to have the LAPACKE interface handle
the necessary work space memory allocation for you.

The base name for this function is geqrf, which is included in the list of
real functions above. The LAPACKE function name is then constructed by
prepending LAPACK followed by d to the base name: LAPACKE dgeqrf.

We will assume that our matrix is stored in column-major order in the m×
n array a, which has a leading dimension of lda. The variable declarations
should be as follows:

lapack int m, n, lda, info;
double *a, *tau;

The LAPACKE function call is then:

info = LAPACKE dgeqrf(LAPACK COL MAJOR, m, n, a, lda, tau);

3.2. Calling CUNGQR. Suppose you wish to call the function CUNGQR,
which generates Q from the results of a QR factorization of a single pre-
cision complex rectangular matrix, and you wish to provide the required
workspace.

The base name for this function is ungqr, which is included in the list of
complex functions above. The LAPACKE function name is then constructed
by prepending LAPACK followed by c to the base name, with the suffix work
to indicate that the user will supply the work space: LAPACKE cungqr work.

We will assume again that our matrix is stored in column-major order in
the m×n array a, which has a leading dimension of lda. From the LAPACK
documentation, the work space array work must have a length of at least n;
the length of work is given in lwork. The variable declarations should be as
follows:

lapack int m, n, k, lda, lwork, info;
lapack complex float *a, *tau, *work;

The LAPACKE function call is then:

6 THE LAPACKE C INTERFACE TO LAPACK

info = LAPACKE cungqr work(LAPACK COL MAJOR, m, n, k, a, lda, tau,
work, lwork);

3.3. Calling DGELS. In this example, we wish solve the least squares prob-
lem

min
x
||B −Ax||

for two right-hand sides using the LAPACK routine DGELS. For input we
will use the 5× 3 matrix

A =

1 1 1
2 3 4
3 5 2
4 2 5
5 4 3

and the 5× 2 matrix

B =

−10 −3

12 14
14 12
16 16
18 16

 .

We will first store the input matrix as a static C two-dimensional array,
which is stored in row-major order, and let LAPACKE handle the work
space array allocation. The LAPACK base name for this function is gels,
and we will use double precision (d), so the LAPACKE function name is
LAPACKE dgels.

Note that the leading dimensions of the arrays are in this case the number
of columns, thus lda= 3 and ldb= 2. The output for each right hand side is
stored in b as consecutive vectors of length 3. The correct answer for this
problem is the 3× 2 matrix 2 1

1 1
1 2

 .

A complete C program for this example is given in Figure 1. Note that when
the arrays are passed to the LAPACK routine, they must be dereferenced,
since LAPACK is expecting arrays of type double *, not double **.

Alternatively, we can use column-major ordering for the matrices in this
example, as shown in Figure 2. Here, the matrices are stored as static one-
dimensional C arrays. These arrays have a leading dimension that is equal
to the number of rows.

THE LAPACKE C INTERFACE TO LAPACK 7

#include <stdio.h>

#include <lapacke.h>

int main (int argc, const char * argv[])

{

double a[5][3] = {1,1,1,2,3,4,3,5,2,4,2,5,5,4,3};

double b[5][2] = {-10,-3,12,14,14,12,16,16,18,16};

lapack_int info,m,n,lda,ldb,nrhs;

int i,j;

m = 5;

n = 3;

nrhs = 2;

lda = 3;

ldb = 2;

info = LAPACKE_dgels(LAPACK_ROW_MAJOR,’N’,m,n,nrhs,*a,lda,*b,ldb);

for(i=0;i<n;i++)

{

for(j=0;j<nrhs;j++)

{

printf("%lf ",b[i][j]);

}

printf("\n");

}

return(info);

}

Figure 1. Calling DGELS using row-major order.

3.4. Calling CGEQRF and the CBLAS. In this example, we will call the
LAPACK routine CGEQRF to compute the QR factorization of a matrix.
We then call CUNGQR to construct the Q matrix and then use the CBLAS
routine CGEMM to compute QHQ − I to check that Q is Hermitian. The
error ||QHQ− I|| is printed at the end of the program.

In the first version, given below in Figure 3, we let LAPACKE handle
the memory allocation for the workspace internally. The second version,
shown in Figure 4, uses the workspace query facility for both CGEQRF and
CUNGQR to obtain the optimal size for the parameter lwork, which we use
to allocate our own workspace in the array work.

8 THE LAPACKE C INTERFACE TO LAPACK

#include <stdio.h>

#include <lapacke.h>

int main (int argc, const char * argv[])

{

double a[5*3] = {1,2,3,4,5,1,3,5,2,4,1,4,2,5,3};

double b[5*2] = {-10,12,14,16,18,-3,14,12,16,16};

lapack_int info,m,n,lda,ldb,nrhs;

int i,j;

m = 5;

n = 3;

nrhs = 2;

lda = 5;

ldb = 5;

info = LAPACKE_dgels(LAPACK_COL_MAJOR,’N’,m,n,nrhs,a,lda,b,ldb);

for(i=0;i<n;i++)

{

for(j=0;j<nrhs;j++)

{

printf("%lf ",b[i+ldb*j]);

}

printf("\n");

}

return(info);

}

Figure 2. Calling DGELS using column-major order.

THE LAPACKE C INTERFACE TO LAPACK 9

#include <stdio.h>

#include <stdlib.h>

#include <lapacke.h>

#include <cblas.h>

int main (int argc, const char * argv[])

{

lapack_complex_float *a,*tau,*r,one,zero;

lapack_int info,m,n,lda;

int i,j;

float err=0.0;

m = 10; n = 5; lda = m;

one = lapack_make_complex_float(1.0,0.0);

zero= lapack_make_complex_float(0.0,0.0);

a = calloc(m*n,sizeof(lapack_complex_float));

r = calloc(n*n,sizeof(lapack_complex_float));

tau = calloc(m,sizeof(lapack_complex_float));

for(j=0;j<n;j++)

for(i=0;i<m;i++)

a[i+j*m] = lapack_make_complex_float(i+1,j+1);

info = LAPACKE_cgeqrf(LAPACK_COL_MAJOR,m,n,a,lda,tau);

info = LAPACKE_cungqr(LAPACK_COL_MAJOR,m,n,n,a,lda,tau);

for(j=0;j<n;j++)

for(i=0;i<n;i++)

r[i+j*n]=(i==j)?-one:zero;

cblas_cgemm(CblasColMajor,CblasConjTrans,CblasNoTrans,

n,n,m,&one,a,lda,a,lda,&one,r,n);

for(i=0;i<n;i++)

for(j=0;j<n;j++)

err=MAX(err,cabs(r[i+j*n]));

printf("error=%e\n",err);

free(tau);

free(r);

free(a);

return(info);

}

Figure 3. Calling CGEQRF and CUNGQR to compute Q.

10 THE LAPACKE C INTERFACE TO LAPACK

#include <stdio.h>

#include <stdlib.h>

#include <lapacke.h>

#include <cblas.h>

int main (int argc, const char * argv[])

{

lapack_complex_float *a,*tau,*r,*work,one,zero,query;

lapack_int info,m,n,lda,lwork;

int i,j;

float err;

m = 10; n = 5; lda = m;

one = lapack_make_complex_float(1.0,0.0);

zero= lapack_make_complex_float(0.0,0.0);

a = calloc(m*n,sizeof(lapack_complex_float));

r = calloc(n*n,sizeof(lapack_complex_float));

tau = calloc(m,sizeof(lapack_complex_float));

for(j=0;j<n;j++)

for(i=0;i<m;i++)

a[i+j*m] = lapack_make_complex_float(i+1,j+1);

info = LAPACKE_cgeqrf_work(LAPACK_COL_MAJOR,m,n,a,lda,tau,&query,-1);

lwork = (lapack_int)query;

info = LAPACKE_cungqr_work(LAPACK_COL_MAJOR,m,n,n,a,lda,tau,&query,-1);

lwork = MAX(lwork,(lapack_int)query);

work = calloc(lwork,sizeof(lapack_complex_float));

info = LAPACKE_cgeqrf_work(LAPACK_COL_MAJOR,m,n,a,lda,tau,work,lwork);

info = LAPACKE_cungqr_work(LAPACK_COL_MAJOR,m,n,n,a,lda,tau,work,lwork);

for(j=0;j<n;j++)

for(i=0;i<n;i++)

r[i+j*n]=(i==j)?-one:zero;

cblas_cgemm(CblasColMajor,CblasConjTrans,CblasNoTrans,

n,n,m,&one,a,lda,a,lda,&one,r,n);

err=0.0;

for(i=0;i<n;i++)

for(j=0;j<n;j++)

err=MAX(err,cabs(r[i+j*n]));

printf("error=%e\n",err);

free(work);

free(tau);

free(r);

free(a);

return(info);

}

Figure 4. Calling CGEQRF and CUNGQR with workspace querying.

