*> \brief \b CLARF1L applies an elementary reflector to a general rectangular
* matrix assuming v(lastv) = 1, where lastv is the last non-zero
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLARF1L + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLARF1L( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
*
* .. Scalar Arguments ..
* CHARACTER SIDE
* INTEGER INCV, LDC, M, N
* COMPLEX TAU
* ..
* .. Array Arguments ..
* COMPLEX C( LDC, * ), V( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLARF1L applies a complex elementary reflector H to a complex m by n matrix
*> C, from either the left or the right. H is represented in the form
*>
*> H = I - tau * v * v**H
*>
*> where tau is a real scalar and v is a real vector assuming v(lastv) = 1,
*> where lastv is the last non-zero element.
*>
*> If tau = 0, then H is taken to be the unit matrix.
*>
*> To apply H**H (the conjugate transpose of H), supply conjg(tau) instead
*> tau.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': form H * C
*> = 'R': form C * H
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix C.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is COMPLEX array, dimension
*> (1 + (M-1)*abs(INCV)) if SIDE = 'L'
*> or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
*> The vector v in the representation of H. V is not used if
*> TAU = 0.
*> \endverbatim
*>
*> \param[in] INCV
*> \verbatim
*> INCV is INTEGER
*> The increment between elements of v. INCV > 0.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is COMPLEX
*> The value tau in the representation of H.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX array, dimension (LDC,N)
*> On entry, the m by n matrix C.
*> On exit, C is overwritten by the matrix H * C if SIDE = 'L',
*> or C * H if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension
*> (N) if SIDE = 'L'
*> or (M) if SIDE = 'R'
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup larf1f
*
* =====================================================================
SUBROUTINE CLARF1L( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER SIDE
INTEGER INCV, LDC, M, N
COMPLEX TAU
* ..
* .. Array Arguments ..
COMPLEX C( LDC, * ), V( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE, ZERO
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
$ ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL APPLYLEFT
INTEGER I, J, LASTV, LASTC, FIRSTV
* ..
* .. External Subroutines ..
EXTERNAL CGEMV, CGERC, CSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILACLR, ILACLC
EXTERNAL LSAME, ILACLR, ILACLC
* ..
* .. Executable Statements ..
*
APPLYLEFT = LSAME( SIDE, 'L' )
FIRSTV = 1
LASTC = 0
IF( TAU.NE.ZERO ) THEN
! Set up variables for scanning V. LASTV begins pointing to the end
! of V up to V(1).
IF( APPLYLEFT ) THEN
LASTV = M
ELSE
LASTV = N
END IF
I = 1
! Look for the last non-zero row in V.
DO WHILE( LASTV.GT.FIRSTV .AND. V( I ).EQ.ZERO )
FIRSTV = FIRSTV + 1
I = I + INCV
END DO
IF( APPLYLEFT ) THEN
! Scan for the last non-zero column in C(1:lastv,:).
LASTC = ILACLC(LASTV, N, C, LDC)
ELSE
! Scan for the last non-zero row in C(:,1:lastv).
LASTC = ILACLR(M, LASTV, C, LDC)
END IF
END IF
IF( LASTC.EQ.0 ) THEN
RETURN
END IF
IF( APPLYLEFT ) THEN
*
* Form H * C
*
IF( LASTV.EQ.FIRSTV ) THEN
*
* C(lastv,1:lastc) := ( 1 - tau ) * C(lastv,1:lastc)
*
CALL CSCAL( LASTC, ONE - TAU, C( LASTV, 1 ), LDC )
ELSE
*
* w(1:lastc,1) := C(firstv:lastv-1,1:lastc)**T * v(firstv:lastv-1,1)
*
CALL CGEMV( 'Conjugate transpose', LASTV - FIRSTV, LASTC,
$ ONE, C( FIRSTV, 1 ), LDC, V( I ), INCV, ZERO,
$ WORK, 1 )
*
* w(1:lastc,1) += C(lastv,1:lastc)**H * v(lastv,1)
*
DO J = 1, LASTC
WORK( J ) = WORK( J ) + CONJG( C( LASTV, J ) )
END DO
*
* C(lastv,1:lastc) += - tau * v(lastv,1) * w(1:lastc,1)**H
*
DO J = 1, LASTC
C( LASTV, J ) = C( LASTV, J )
$ - TAU * CONJG( WORK( J ) )
END DO
*
* C(firstv:lastv-1,1:lastc) += - tau * v(firstv:lastv-1,1) * w(1:lastc,1)**H
*
CALL CGERC( LASTV - FIRSTV, LASTC, -TAU, V( I ), INCV,
$ WORK, 1, C( FIRSTV, 1 ), LDC)
END IF
ELSE
*
* Form C * H
*
IF( LASTV.EQ.FIRSTV ) THEN
*
* C(1:lastc,lastv) := ( 1 - tau ) * C(1:lastc,lastv)
*
CALL CSCAL( LASTC, ONE - TAU, C( 1, LASTV ), 1 )
ELSE
*
* w(1:lastc,1) := C(1:lastc,firstv:lastv-1) * v(firstv:lastv-1,1)
*
CALL CGEMV( 'No transpose', LASTC, LASTV - FIRSTV, ONE,
$ C( 1, FIRSTV ), LDC, V( I ), INCV, ZERO,
$ WORK, 1 )
*
* w(1:lastc,1) += C(1:lastc,lastv) * v(lastv,1)
*
CALL CAXPY( LASTC, ONE, C( 1, LASTV ), 1, WORK, 1 )
*
* C(1:lastc,lastv) += - tau * v(lastv,1) * w(1:lastc,1)
*
CALL CAXPY( LASTC, -TAU, WORK, 1, C( 1, LASTV ), 1 )
*
* C(1:lastc,firstv:lastv-1) += - tau * w(1:lastc,1) * v(firstv:lastv-1)**H
*
CALL CGERC( LASTC, LASTV - FIRSTV, -TAU, WORK, 1, V( I ),
$ INCV, C( 1, FIRSTV ), LDC )
END IF
END IF
RETURN
*
* End of CLARF1L
*
END