*> \brief \b ZLARF1F applies an elementary reflector to a general rectangular
* matrix assuming v(1) = 1.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLARF1F + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLARF1F( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
*
* .. Scalar Arguments ..
* CHARACTER SIDE
* INTEGER INCV, LDC, M, N
* COMPLEX*16 TAU
* ..
* .. Array Arguments ..
* COMPLEX*16 C( LDC, * ), V( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLARF1F applies a complex elementary reflector H to a real m by n matrix
*> C, from either the left or the right. H is represented in the form
*>
*> H = I - tau * v * v**H
*>
*> where tau is a complex scalar and v is a complex vector.
*>
*> If tau = 0, then H is taken to be the unit matrix.
*>
*> To apply H**H, supply conjg(tau) instead
*> tau.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': form H * C
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix C.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is COMPLEX*16 array, dimension
*> (1 + (M-1)*abs(INCV)) if SIDE = 'L'
*> or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
*> The vector v in the representation of H. V is not used if
*> TAU = 0. V(1) is not referenced or modified.
*> \endverbatim
*>
*> \param[in] INCV
*> \verbatim
*> INCV is INTEGER
*> The increment between elements of v. INCV <> 0.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is COMPLEX*16
*> The value tau in the representation of H.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX*16 array, dimension (LDC,N)
*> On entry, the m by n matrix C.
*> On exit, C is overwritten by the matrix H * C if SIDE = 'L',
*> or C * H if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension
*> (N) if SIDE = 'L'
*> or (M) if SIDE = 'R'
*> \endverbatim
* To take advantage of the fact that v(1) = 1, we do the following
* v = [ 1 v_2 ]**T
* If SIDE='L'
* |-----|
* | C_1 |
* C =| C_2 |
* |-----|
* C_1\in\mathbb{C}^{1\times n}, C_2\in\mathbb{C}^{m-1\times n}
* So we compute:
* C = HC = (I - \tau vv**T)C
* = C - \tau vv**T C
* w = C**T v = [ C_1**T C_2**T ] [ 1 v_2 ]**T
* = C_1**T + C_2**T v ( ZGEMM then ZAXPYC-like )
* C = C - \tau vv**T C
* = C - \tau vw**T
* Giving us C_1 = C_1 - \tau w**T ( ZAXPYC-like )
* and
* C_2 = C_2 - \tau v_2w**T ( ZGERC )
* If SIDE='R'
*
* C = [ C_1 C_2 ]
* C_1\in\mathbb{C}^{m\times 1}, C_2\in\mathbb{C}^{m\times n-1}
* So we compute:
* C = CH = C(I - \tau vv**T)
* = C - \tau Cvv**T
*
* w = Cv = [ C_1 C_2 ] [ 1 v_2 ]**T
* = C_1 + C_2v_2 ( ZGEMM then ZAXPYC-like )
* C = C - \tau Cvv**T
* = C - \tau wv**T
* Giving us C_1 = C_1 - \tau w ( ZAXPYC-like )
* and
* C_2 = C_2 - \tau wv_2**T ( ZGERC )
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup larf
*
* =====================================================================
SUBROUTINE ZLARF1F( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER SIDE
INTEGER INCV, LDC, M, N
COMPLEX*16 TAU
* ..
* .. Array Arguments ..
COMPLEX*16 C( LDC, * ), V( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE, ZERO
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
$ ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL APPLYLEFT
INTEGER I, LASTV, LASTC, J
* ..
* .. External Subroutines ..
EXTERNAL ZGEMV, ZGERC, ZSCAL
* .. Intrinsic Functions ..
INTRINSIC DCONJG
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAZLR, ILAZLC
EXTERNAL LSAME, ILAZLR, ILAZLC
* ..
* .. Executable Statements ..
*
APPLYLEFT = LSAME( SIDE, 'L' )
LASTV = 1
LASTC = 0
IF( TAU.NE.ZERO ) THEN
! Set up variables for scanning V. LASTV begins pointing to the end
! of V.
IF( APPLYLEFT ) THEN
LASTV = M
ELSE
LASTV = N
END IF
IF( INCV.GT.0 ) THEN
I = 1 + (LASTV-1) * INCV
ELSE
I = 1
END IF
! Look for the last non-zero row in V.
! Since we are assuming that V(1) = 1, and it is not stored, so we
! shouldn't access it.
DO WHILE( LASTV.GT.1 .AND. V( I ).EQ.ZERO )
LASTV = LASTV - 1
I = I - INCV
END DO
IF( APPLYLEFT ) THEN
! Scan for the last non-zero column in C(1:lastv,:).
LASTC = ILAZLC(LASTV, N, C, LDC)
ELSE
! Scan for the last non-zero row in C(:,1:lastv).
LASTC = ILAZLR(M, LASTV, C, LDC)
END IF
END IF
IF( LASTC.EQ.0 ) THEN
RETURN
END IF
IF( APPLYLEFT ) THEN
*
* Form H * C
*
! Check if m = 1. This means v = 1, So we just need to compute
! C := HC = (1-\tau)C.
IF( LASTV.EQ.1 ) THEN
CALL ZSCAL(LASTC, ONE - TAU, C, LDC)
ELSE
*
* w(1:lastc,1) := C(1:lastv,1:lastc)**H * v(1:lastv,1)
*
! (I - tvv**H)C = C - tvv**H C
! First compute w**H = v**H c -> w = C**H v
! C = [ C_1 C_2 ]**T, v = [1 v_2]**T
! w = C_1**H + C_2**Hv_2
! w = C_2**Hv_2
CALL ZGEMV( 'Conjugate transpose', LASTV - 1,
$ LASTC, ONE, C( 1+1, 1 ), LDC, V( 1 + INCV ),
$ INCV, ZERO, WORK, 1 )
*
* w(1:lastc,1) += v(1,1) * C(1,1:lastc)**H
*
DO I = 1, LASTC
WORK( I ) = WORK( I ) + DCONJG( C( 1, I ) )
END DO
*
* C(1:lastv,1:lastc) := C(...) - tau * v(1:lastv,1) * w(1:lastc,1)**H
*
! C(1, 1:lastc) := C(...) - tau * v(1,1) * w(1:lastc,1)**H
! = C(...) - tau * Conj(w(1:lastc,1))
! This is essentially a zaxpyc
DO I = 1, LASTC
C( 1, I ) = C( 1, I ) - TAU * DCONJG( WORK( I ) )
END DO
*
* C(2:lastv,1:lastc) += - tau * v(2:lastv,1) * w(1:lastc,1)**H
*
CALL ZGERC( LASTV - 1, LASTC, -TAU, V( 1 + INCV ),
$ INCV, WORK, 1, C( 1+1, 1 ), LDC )
END IF
ELSE
*
* Form C * H
*
! Check if n = 1. This means v = 1, so we just need to compute
! C := CH = C(1-\tau).
IF( LASTV.EQ.1 ) THEN
CALL ZSCAL(LASTC, ONE - TAU, C, 1)
ELSE
*
* w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1)
*
! w(1:lastc,1) := C(1:lastc,2:lastv) * v(2:lastv,1)
CALL ZGEMV( 'No transpose', LASTC, LASTV-1, ONE,
$ C(1,1+1), LDC, V(1+INCV), INCV, ZERO, WORK, 1 )
! w(1:lastc,1) += C(1:lastc,1) v(1,1) = C(1:lastc,1)
CALL ZAXPY(LASTC, ONE, C, 1, WORK, 1)
*
* C(1:lastc,1:lastv) := C(...) - tau * w(1:lastc,1) * v(1:lastv,1)**T
*
! C(1:lastc,1) := C(...) - tau * w(1:lastc,1) * v(1,1)**T
! = C(...) - tau * w(1:lastc,1)
CALL ZAXPY(LASTC, -TAU, WORK, 1, C, 1)
! C(1:lastc,2:lastv) := C(...) - tau * w(1:lastc,1) * v(2:lastv)**T
CALL ZGERC( LASTC, LASTV-1, -TAU, WORK, 1, V(1+INCV),
$ INCV, C(1,1+1), LDC )
END IF
END IF
RETURN
*
* End of ZLARF1F
*
END