numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
getrf/benchmarks/src/main.c 6714B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include <stdio.h>
#include <stdlib.h>

#define __USE_GNU
#include <sched.h>
#include <pthread.h>

#include <stdint.h>
#include <stdbool.h>

#include <string.h>
#include <errno.h>

#include "progress-bar.h"
#include "perf.h"
#include "config.h"

#define HISTOGRAM_SIZE              (MAX_N/STEP)
#define LOGISTICS_INITIAL_CONDITION (-800.)

uint64_t histograms[PERF_EVENT_COUNT][HISTOGRAM_SIZE];
void (*getrf)(int *m, int *n, double *A, int *lda, int *ipiv, int *info);

ProgressBar progress = {
  .total = HISTOGRAM_SIZE,
  .count = 0,
  .mutex = PTHREAD_MUTEX_INITIALIZER,
};

// .data is a pointer because it should be allocated in the heap
// (.data DOES NOT fit in the stack 🤡)
typedef struct {
  double       *ref_data;

  // input parameters for dgetrf
  double       *data;
  int32_t      ipiv[MAX_N];
  int          n, m, lda, info;

  size_t       id;
  PerfRecorder recorder;
} Thread;

typedef struct {
  Thread threads[N_THREADS];
} Benchmarker;

/*
 * LAPACK functions
 */
extern void dgetrf_(int *m, int *n, double *A, int *lda, int *ipiv, int *info);
extern void dgetrfnaive_(int *m, int *n, double *A, int *lda, int *ipiv, int *info);
extern void dgetrf2_(int *m, int *n, double *A, int *lda, int *ipiv, int *info);

PerfResult thread_run_benchmark(Thread *thread, size_t n)
{
  // reinitializes the values in the .data array: this avoids progressively
  // moving larger values to the beginning of the array, which would decrease
  // the number of row interchanges required for computations
  memcpy(thread->data, thread->ref_data, sizeof(double)*n*n);
  thread->n = n; thread->m = n; thread->lda = n;

  perf_start_recording(&thread->recorder, thread->id);
  getrf(&thread->n, &thread->m, thread->data, &thread->lda,
        thread->ipiv, &thread->info);
  return perf_stop_recording(&thread->recorder);
}

void *thread_benchmark(void *arg)
{
  Thread *thread = (Thread*) arg;

  // we need to lock the running thread to some CPU so that we can mask
  // perf_event_open with this specific CPU
  cpu_set_t set;
  CPU_ZERO(&set);
  CPU_SET(thread->id, &set);
  if (sched_setaffinity(0, sizeof(set), &set) == -1) {
    fprintf(stderr, "ERROR: Could not lock CPU affinity for thread %lu\n",
            thread->id);
  }

  // computations are distributed evenly across threads
  for (size_t n = 1 + thread->id*STEP; n < MAX_N; n += STEP*N_THREADS) {
    PerfResult result = thread_run_benchmark(thread, n);
    size_t i = (n - 1)/STEP;

    static_assert(PERF_EVENT_COUNT == 3,
                  "We need to update the assignements "
                  "if we add more perf events");
    histograms[CACHE_LOADS][i]  = result.cache_loads;
    histograms[CACHE_MISSES][i] = result.cache_misses;
    histograms[CPU_CYCLES][i]   = result.cpu_cycles;

    progress_bar_inc(&progress);
  }

  return NULL;
}

Benchmarker benchmarker_new(double *ref_data)
{
  Benchmarker bench = {0};

  // this array will live for the entire duration of the program,
  // so we might as well leak it 🤡
  double *data = malloc(sizeof(double)*MAX_N*MAX_N*N_THREADS);
  if (data == NULL) {
    fprintf(stderr, "ERROR: Buy more RAM!\n");
    exit(EXIT_FAILURE);
  }

  for (size_t i = 0; i < N_THREADS; i++) {
    bench.threads[i].data     = data + i*MAX_N*MAX_N;
    bench.threads[i].ref_data = ref_data;
    bench.threads[i].id       = i;
  }

  return bench;
}

void benchmarker_run(Benchmarker *bench)
{
  pthread_t handles[N_THREADS] = {0};
  for (size_t i = 0; i < N_THREADS; i++) {
    if (pthread_create(&handles[i], NULL,
                       thread_benchmark,
                       &bench->threads[i]) != 0) {
      fprintf(stderr, "ERROR: Failed to spawn thread %lu!\n", i);
      exit(EXIT_FAILURE);
    }
  }

  for (size_t i = 0; i < N_THREADS; i++) {
    pthread_join(handles[i], NULL);
  }
}


int main(int argc, char **argv)
{
  const char *output_paths[PERF_EVENT_COUNT];

  static_assert(PERF_EVENT_COUNT == 3,
                "We need to update argv parsing if we add more perf events");
  if (argc < 2 || strcmp(argv[1], "standard") == 0) {
    getrf = dgetrf_;
    output_paths[CACHE_LOADS]  = OUTPUT_DIR "cache-loads.bin";
    output_paths[CACHE_MISSES] = OUTPUT_DIR "cache-misses.bin";
    output_paths[CPU_CYCLES]   = OUTPUT_DIR "cpu-cycles.bin";
  } else if (strcmp(argv[1], "naive") == 0) {
    getrf = dgetrfnaive_;
    output_paths[CACHE_LOADS]  = OUTPUT_DIR "cache-loads-naive.bin";
    output_paths[CACHE_MISSES] = OUTPUT_DIR "cache-misses-naive.bin";
    output_paths[CPU_CYCLES]   = OUTPUT_DIR "cpu-cycles-naive.bin";
  } else if (strcmp(argv[1], "unblocked") == 0) {
    getrf = dgetrf2_;
    output_paths[CACHE_LOADS]  = OUTPUT_DIR "cache-loads-unblocked.bin";
    output_paths[CACHE_MISSES] = OUTPUT_DIR "cache-misses-unblocked.bin";
    output_paths[CPU_CYCLES]   = OUTPUT_DIR "cpu-cycles-unblocked.bin";
  } else {
    fprintf(stderr, "ERROR: unknown command \"%s\"\n", argv[1]);
    fprintf(stderr, "USAGE: %s [standard|naive|unblocked]\n", argv[0]);
    exit(EXIT_FAILURE);
  }

  // ========================================================================
  printf("INFO: Initializing random input data... ");

  // this array will live for the entire duration of the program,
  // so we might as well leak it 🤡
  double *ref_data = malloc(sizeof(double)*MAX_N*MAX_N);
  if (ref_data == NULL) {
    fprintf(stderr, "ERROR: Buy more RAM!\n");
    exit(EXIT_FAILURE);
  }

  // pseudorandom data given by the logistic map
  double acc = LOGISTICS_INITIAL_CONDITION;
  for (size_t i = 0; i < MAX_N*MAX_N; i++) {
    ref_data[i] = acc;
    acc = 1000. - acc*acc/500.;
  }

  printf("done!\n");

  // ========================================================================
  printf("INFO: Benchmarking the dgetrf on %ux%u matrices... (using %u threads)\n",
         MAX_N, MAX_N, N_THREADS);

  Benchmarker bench = benchmarker_new(ref_data);
  benchmarker_run(&bench);

  // ========================================================================
  printf("INFO: Done with benchmarking! Saving histograms to disk...\n");

  for (size_t i = 0; i < PERF_EVENT_COUNT; i++) {
    FILE *output = fopen(output_paths[i], "w");
    if (output == NULL) {
      fprintf(stderr,
              "ERROR: Coundn't open output file \"%s\": %s",
              output_paths[i], strerror(errno));
      return EXIT_FAILURE;
    }

    size_t written = fwrite(&histograms[i], sizeof(uint64_t), HISTOGRAM_SIZE, output);
    if (written < HISTOGRAM_SIZE) {
      fprintf(stderr,
              "ERROR: Failed to write histogram to output file \"%s\": %s\n",
              output_paths[i], strerror(errno));
      return EXIT_FAILURE;
    }
  };

  printf("INFO: Done!\n");
  return EXIT_SUCCESS;
}