numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/BLAS/SRC/ctrsm.f | 15231B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
*> \brief \b CTRSM * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) * * .. Scalar Arguments .. * COMPLEX ALPHA * INTEGER LDA,LDB,M,N * CHARACTER DIAG,SIDE,TRANSA,UPLO * .. * .. Array Arguments .. * COMPLEX A(LDA,*),B(LDB,*) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CTRSM solves one of the matrix equations *> *> op( A )*X = alpha*B, or X*op( A ) = alpha*B, *> *> where alpha is a scalar, X and B are m by n matrices, A is a unit, or *> non-unit, upper or lower triangular matrix and op( A ) is one of *> *> op( A ) = A or op( A ) = A**T or op( A ) = A**H. *> *> The matrix X is overwritten on B. *> \endverbatim * * Arguments: * ========== * *> \param[in] SIDE *> \verbatim *> SIDE is CHARACTER*1 *> On entry, SIDE specifies whether op( A ) appears on the left *> or right of X as follows: *> *> SIDE = 'L' or 'l' op( A )*X = alpha*B. *> *> SIDE = 'R' or 'r' X*op( A ) = alpha*B. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> On entry, UPLO specifies whether the matrix A is an upper or *> lower triangular matrix as follows: *> *> UPLO = 'U' or 'u' A is an upper triangular matrix. *> *> UPLO = 'L' or 'l' A is a lower triangular matrix. *> \endverbatim *> *> \param[in] TRANSA *> \verbatim *> TRANSA is CHARACTER*1 *> On entry, TRANSA specifies the form of op( A ) to be used in *> the matrix multiplication as follows: *> *> TRANSA = 'N' or 'n' op( A ) = A. *> *> TRANSA = 'T' or 't' op( A ) = A**T. *> *> TRANSA = 'C' or 'c' op( A ) = A**H. *> \endverbatim *> *> \param[in] DIAG *> \verbatim *> DIAG is CHARACTER*1 *> On entry, DIAG specifies whether or not A is unit triangular *> as follows: *> *> DIAG = 'U' or 'u' A is assumed to be unit triangular. *> *> DIAG = 'N' or 'n' A is not assumed to be unit *> triangular. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> On entry, M specifies the number of rows of B. M must be at *> least zero. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> On entry, N specifies the number of columns of B. N must be *> at least zero. *> \endverbatim *> *> \param[in] ALPHA *> \verbatim *> ALPHA is COMPLEX *> On entry, ALPHA specifies the scalar alpha. When alpha is *> zero then A is not referenced and B need not be set before *> entry. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension ( LDA, k ), *> where k is m when SIDE = 'L' or 'l' *> and k is n when SIDE = 'R' or 'r'. *> Before entry with UPLO = 'U' or 'u', the leading k by k *> upper triangular part of the array A must contain the upper *> triangular matrix and the strictly lower triangular part of *> A is not referenced. *> Before entry with UPLO = 'L' or 'l', the leading k by k *> lower triangular part of the array A must contain the lower *> triangular matrix and the strictly upper triangular part of *> A is not referenced. *> Note that when DIAG = 'U' or 'u', the diagonal elements of *> A are not referenced either, but are assumed to be unity. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> On entry, LDA specifies the first dimension of A as declared *> in the calling (sub) program. When SIDE = 'L' or 'l' then *> LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' *> then LDA must be at least max( 1, n ). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX array, dimension ( LDB, N ) *> Before entry, the leading m by n part of the array B must *> contain the right-hand side matrix B, and on exit is *> overwritten by the solution matrix X. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> On entry, LDB specifies the first dimension of B as declared *> in the calling (sub) program. LDB must be at least *> max( 1, m ). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup trsm * *> \par Further Details: * ===================== *> *> \verbatim *> *> Level 3 Blas routine. *> *> -- Written on 8-February-1989. *> Jack Dongarra, Argonne National Laboratory. *> Iain Duff, AERE Harwell. *> Jeremy Du Croz, Numerical Algorithms Group Ltd. *> Sven Hammarling, Numerical Algorithms Group Ltd. *> \endverbatim *> * ===================================================================== SUBROUTINE CTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) * * -- Reference BLAS level3 routine -- * -- Reference BLAS is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. COMPLEX ALPHA INTEGER LDA,LDB,M,N CHARACTER DIAG,SIDE,TRANSA,UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),B(LDB,*) * .. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,J,K,NROWA LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER * .. * .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * * Test the input parameters. * LSIDE = LSAME(SIDE,'L') IF (LSIDE) THEN NROWA = M ELSE NROWA = N END IF NOCONJ = LSAME(TRANSA,'T') NOUNIT = LSAME(DIAG,'N') UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. + (.NOT.LSAME(TRANSA,'T')) .AND. + (.NOT.LSAME(TRANSA,'C'))) THEN INFO = 3 ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. + (.NOT.LSAME(DIAG,'N'))) THEN INFO = 4 ELSE IF (M.LT.0) THEN INFO = 5 ELSE IF (N.LT.0) THEN INFO = 6 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('CTRSM ',INFO) RETURN END IF * * Quick return if possible. * IF (M.EQ.0 .OR. N.EQ.0) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M B(I,J) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF (LSIDE) THEN IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*inv( A )*B. * IF (UPPER) THEN DO 60 J = 1,N IF (ALPHA.NE.ONE) THEN DO 30 I = 1,M B(I,J) = ALPHA*B(I,J) 30 CONTINUE END IF DO 50 K = M,1,-1 IF (B(K,J).NE.ZERO) THEN IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) DO 40 I = 1,K - 1 B(I,J) = B(I,J) - B(K,J)*A(I,K) 40 CONTINUE END IF 50 CONTINUE 60 CONTINUE ELSE DO 100 J = 1,N IF (ALPHA.NE.ONE) THEN DO 70 I = 1,M B(I,J) = ALPHA*B(I,J) 70 CONTINUE END IF DO 90 K = 1,M IF (B(K,J).NE.ZERO) THEN IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) DO 80 I = K + 1,M B(I,J) = B(I,J) - B(K,J)*A(I,K) 80 CONTINUE END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form B := alpha*inv( A**T )*B * or B := alpha*inv( A**H )*B. * IF (UPPER) THEN DO 140 J = 1,N DO 130 I = 1,M TEMP = ALPHA*B(I,J) IF (NOCONJ) THEN DO 110 K = 1,I - 1 TEMP = TEMP - A(K,I)*B(K,J) 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(I,I) ELSE DO 120 K = 1,I - 1 TEMP = TEMP - CONJG(A(K,I))*B(K,J) 120 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(A(I,I)) END IF B(I,J) = TEMP 130 CONTINUE 140 CONTINUE ELSE DO 180 J = 1,N DO 170 I = M,1,-1 TEMP = ALPHA*B(I,J) IF (NOCONJ) THEN DO 150 K = I + 1,M TEMP = TEMP - A(K,I)*B(K,J) 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(I,I) ELSE DO 160 K = I + 1,M TEMP = TEMP - CONJG(A(K,I))*B(K,J) 160 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(A(I,I)) END IF B(I,J) = TEMP 170 CONTINUE 180 CONTINUE END IF END IF ELSE IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*B*inv( A ). * IF (UPPER) THEN DO 230 J = 1,N IF (ALPHA.NE.ONE) THEN DO 190 I = 1,M B(I,J) = ALPHA*B(I,J) 190 CONTINUE END IF DO 210 K = 1,J - 1 IF (A(K,J).NE.ZERO) THEN DO 200 I = 1,M B(I,J) = B(I,J) - A(K,J)*B(I,K) 200 CONTINUE END IF 210 CONTINUE IF (NOUNIT) THEN TEMP = ONE/A(J,J) DO 220 I = 1,M B(I,J) = TEMP*B(I,J) 220 CONTINUE END IF 230 CONTINUE ELSE DO 280 J = N,1,-1 IF (ALPHA.NE.ONE) THEN DO 240 I = 1,M B(I,J) = ALPHA*B(I,J) 240 CONTINUE END IF DO 260 K = J + 1,N IF (A(K,J).NE.ZERO) THEN DO 250 I = 1,M B(I,J) = B(I,J) - A(K,J)*B(I,K) 250 CONTINUE END IF 260 CONTINUE IF (NOUNIT) THEN TEMP = ONE/A(J,J) DO 270 I = 1,M B(I,J) = TEMP*B(I,J) 270 CONTINUE END IF 280 CONTINUE END IF ELSE * * Form B := alpha*B*inv( A**T ) * or B := alpha*B*inv( A**H ). * IF (UPPER) THEN DO 330 K = N,1,-1 IF (NOUNIT) THEN IF (NOCONJ) THEN TEMP = ONE/A(K,K) ELSE TEMP = ONE/CONJG(A(K,K)) END IF DO 290 I = 1,M B(I,K) = TEMP*B(I,K) 290 CONTINUE END IF DO 310 J = 1,K - 1 IF (A(J,K).NE.ZERO) THEN IF (NOCONJ) THEN TEMP = A(J,K) ELSE TEMP = CONJG(A(J,K)) END IF DO 300 I = 1,M B(I,J) = B(I,J) - TEMP*B(I,K) 300 CONTINUE END IF 310 CONTINUE IF (ALPHA.NE.ONE) THEN DO 320 I = 1,M B(I,K) = ALPHA*B(I,K) 320 CONTINUE END IF 330 CONTINUE ELSE DO 380 K = 1,N IF (NOUNIT) THEN IF (NOCONJ) THEN TEMP = ONE/A(K,K) ELSE TEMP = ONE/CONJG(A(K,K)) END IF DO 340 I = 1,M B(I,K) = TEMP*B(I,K) 340 CONTINUE END IF DO 360 J = K + 1,N IF (A(J,K).NE.ZERO) THEN IF (NOCONJ) THEN TEMP = A(J,K) ELSE TEMP = CONJG(A(J,K)) END IF DO 350 I = 1,M B(I,J) = B(I,J) - TEMP*B(I,K) 350 CONTINUE END IF 360 CONTINUE IF (ALPHA.NE.ONE) THEN DO 370 I = 1,M B(I,K) = ALPHA*B(I,K) 370 CONTINUE END IF 380 CONTINUE END IF END IF END IF * RETURN * * End of CTRSM * END