numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/BLAS/SRC/dnrm2.f90 5089B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
!> \brief \b DNRM2
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       DOUBLE PRECISION FUNCTION DNRM2(N,X,INCX)
!
!       .. Scalar Arguments ..
!       INTEGER INCX,N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION X(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DNRM2 returns the euclidean norm of a vector via the function
!> name, so that
!>
!>    DNRM2 := sqrt( x'*x )
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         number of elements in input vector(s)
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER, storage spacing between elements of X
!>          If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n
!>          If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n
!>          If INCX = 0, x isn't a vector so there is no need to call
!>          this subroutine.  If you call it anyway, it will count x(1)
!>          in the vector norm N times.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Edward Anderson, Lockheed Martin
!
!> \date August 2016
!
!> \ingroup nrm2
!
!> \par Contributors:
!  ==================
!>
!> Weslley Pereira, University of Colorado Denver, USA
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Anderson E. (2017)
!>  Algorithm 978: Safe Scaling in the Level 1 BLAS
!>  ACM Trans Math Softw 44:1--28
!>  https://doi.org/10.1145/3061665
!>
!>  Blue, James L. (1978)
!>  A Portable Fortran Program to Find the Euclidean Norm of a Vector
!>  ACM Trans Math Softw 4:15--23
!>  https://doi.org/10.1145/355769.355771
!>
!> \endverbatim
!>
!  =====================================================================
function DNRM2( n, x, incx ) 
   integer, parameter :: wp = kind(1.d0)
   real(wp) :: DNRM2
!
!  -- Reference BLAS level1 routine (version 3.9.1) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     March 2021
!
!  .. Constants ..
   real(wp), parameter :: zero = 0.0_wp
   real(wp), parameter :: one  = 1.0_wp
   real(wp), parameter :: maxN = huge(0.0_wp)
!  ..
!  .. Blue's scaling constants ..
   real(wp), parameter :: tsml = real(radix(0._wp), wp)**ceiling( &
       (minexponent(0._wp) - 1) * 0.5_wp)
   real(wp), parameter :: tbig = real(radix(0._wp), wp)**floor( &
       (maxexponent(0._wp) - digits(0._wp) + 1) * 0.5_wp)
   real(wp), parameter :: ssml = real(radix(0._wp), wp)**( - floor( &
       (minexponent(0._wp) - digits(0._wp)) * 0.5_wp))
   real(wp), parameter :: sbig = real(radix(0._wp), wp)**( - ceiling( &
       (maxexponent(0._wp) + digits(0._wp) - 1) * 0.5_wp))
!  ..
!  .. Scalar Arguments ..
   integer :: incx, n
!  ..
!  .. Array Arguments ..
   real(wp) :: x(*)
!  ..
!  .. Local Scalars ..
   integer :: i, ix
   logical :: notbig
   real(wp) :: abig, amed, asml, ax, scl, sumsq, ymax, ymin
!
!  Quick return if possible
!
   DNRM2 = zero
   if( n <= 0 ) return
!
   scl = one
   sumsq = zero
!
!  Compute the sum of squares in 3 accumulators:
!     abig -- sums of squares scaled down to avoid overflow
!     asml -- sums of squares scaled up to avoid underflow
!     amed -- sums of squares that do not require scaling
!  The thresholds and multipliers are
!     tbig -- values bigger than this are scaled down by sbig
!     tsml -- values smaller than this are scaled up by ssml
!
   notbig = .true.
   asml = zero
   amed = zero
   abig = zero
   ix = 1
   if( incx < 0 ) ix = 1 - (n-1)*incx
   do i = 1, n
      ax = abs(x(ix))
      if (ax > tbig) then
         abig = abig + (ax*sbig)**2
         notbig = .false.
      else if (ax < tsml) then
         if (notbig) asml = asml + (ax*ssml)**2
      else
         amed = amed + ax**2
      end if
      ix = ix + incx
   end do
!
!  Combine abig and amed or amed and asml if more than one
!  accumulator was used.
!
   if (abig > zero) then
!
!     Combine abig and amed if abig > 0.
!
      if ( (amed > zero) .or. (amed > maxN) .or. (amed /= amed) ) then
         abig = abig + (amed*sbig)*sbig
      end if
      scl = one / sbig
      sumsq = abig
   else if (asml > zero) then
!
!     Combine amed and asml if asml > 0.
!
      if ( (amed > zero) .or. (amed > maxN) .or. (amed /= amed) ) then
         amed = sqrt(amed)
         asml = sqrt(asml) / ssml
         if (asml > amed) then
            ymin = amed
            ymax = asml
         else
            ymin = asml
            ymax = amed
         end if
         scl = one
         sumsq = ymax**2*( one + (ymin/ymax)**2 )
      else
         scl = one / ssml
         sumsq = asml
      end if
   else
!
!     Otherwise all values are mid-range
!
      scl = one
      sumsq = amed
   end if
   DNRM2 = scl*sqrt( sumsq )
   return
end function