numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/BLAS/SRC/sgemmtr.f 12449B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
*> \brief \b SGEMMTR
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGEMMTR(UPLO,TRANSA,TRANSB,N,K,ALPHA,A,LDA,B,LDB,BETA,
*                         C,LDC)
*
*       .. Scalar Arguments ..
*       REAL ALPHA,BETA
*       INTEGER K,LDA,LDB,LDC,N
*       CHARACTER TRANSA,TRANSB, UPLO
*       ..
*       .. Array Arguments ..
*       REAL A(LDA,*),B(LDB,*),C(LDC,*)
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SGEMMTR  performs one of the matrix-matrix operations
*>
*>    C := alpha*op( A )*op( B ) + beta*C,
*>
*> where  op( X ) is one of
*>
*>    op( X ) = X   or   op( X ) = X**T,
*>
*> alpha and beta are scalars, and A, B and C are matrices, with op( A )
*> an n by k matrix,  op( B )  a  k by n matrix and  C an n by n matrix.
*> Thereby, the routine only accesses and updates the upper or lower
*> triangular part of the result matrix C. This behaviour can be used if
*> the resulting matrix C is known to be symmetric.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>           On entry, UPLO specifies whether the lower or the upper
*>           triangular part of C is access and updated.
*>
*>              UPLO = 'L' or 'l', the lower tringular part of C is used.
*>
*>              UPLO = 'U' or 'u', the upper tringular part of C is used.
*> \endverbatim
*
*> \param[in] TRANSA
*> \verbatim
*>          TRANSA is CHARACTER*1
*>           On entry, TRANSA specifies the form of op( A ) to be used in
*>           the matrix multiplication as follows:
*>
*>              TRANSA = 'N' or 'n',  op( A ) = A.
*>
*>              TRANSA = 'T' or 't',  op( A ) = A**T.
*>
*>              TRANSA = 'C' or 'c',  op( A ) = A**T.
*> \endverbatim
*>
*> \param[in] TRANSB
*> \verbatim
*>          TRANSB is CHARACTER*1
*>           On entry, TRANSB specifies the form of op( B ) to be used in
*>           the matrix multiplication as follows:
*>
*>              TRANSB = 'N' or 'n',  op( B ) = B.
*>
*>              TRANSB = 'T' or 't',  op( B ) = B**T.
*>
*>              TRANSB = 'C' or 'c',  op( B ) = B**T.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry,  N specifies the number of rows and columns of
*>           the matrix C, the number of columns of op(B) and the number
*>           of rows of op(A).  N must be at least zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>           On entry,  K  specifies  the number of columns of the matrix
*>           op( A ) and the number of rows of the matrix op( B ). K must
*>           be at least  zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is REAL.
*>           On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is REAL array, dimension ( LDA, ka ), where ka is
*>           k  when  TRANSA = 'N' or 'n',  and is  n  otherwise.
*>           Before entry with  TRANSA = 'N' or 'n',  the leading  n by k
*>           part of the array  A  must contain the matrix  A,  otherwise
*>           the leading  k by m  part of the array  A  must contain  the
*>           matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           On entry, LDA specifies the first dimension of A as declared
*>           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
*>           LDA must be at least  max( 1, n ), otherwise  LDA must be at
*>           least  max( 1, k ).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is REAL array, dimension ( LDB, kb ), where kb is
*>           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
*>           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
*>           part of the array  B  must contain the matrix  B,  otherwise
*>           the leading  n by k  part of the array  B  must contain  the
*>           matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>           On entry, LDB specifies the first dimension of B as declared
*>           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
*>           LDB must be at least  max( 1, k ), otherwise  LDB must be at
*>           least  max( 1, n ).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*>          BETA is REAL.
*>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*>           supplied as zero then C need not be set on input.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is REAL array, dimension ( LDC, N )
*>           Before entry, the leading  n by n  part of the array  C must
*>           contain the matrix  C,  except when  beta  is zero, in which
*>           case C need not be set on entry.
*>           On exit, the upper or lower trinangular part of the matrix
*>           C  is overwritten by the n by n matrix
*>           ( alpha*op( A )*op( B ) + beta*C ).
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>           On entry, LDC specifies the first dimension of C as declared
*>           in  the  calling  (sub)  program.   LDC  must  be  at  least
*>           max( 1, n ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Martin Koehler
*
*> \ingroup gemmtr
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Level 3 Blas routine.
*>
*>  -- Written on 19-July-2023.
*>     Martin Koehler, MPI Magdeburg
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SGEMMTR(UPLO,TRANSA,TRANSB,N,K,ALPHA,A,LDA,B,LDB,
     +         BETA,C,LDC)
      IMPLICIT NONE
*
*  -- Reference BLAS level3 routine --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      REAL ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,N
      CHARACTER TRANSA,TRANSB,UPLO
*     ..
*     .. Array Arguments ..
      REAL A(LDA,*),B(LDB,*),C(LDC,*)
*     ..
*
*  =====================================================================
*
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC MAX
*     ..
*     .. Local Scalars ..
      REAL TEMP
      INTEGER I,INFO,J,L,NROWA,NROWB, ISTART, ISTOP
      LOGICAL NOTA,NOTB, UPPER
*     ..
*     .. Parameters ..
      REAL ONE,ZERO
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
*     ..
*
*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
*     transposed and set  NROWA and NROWB  as the number of rows of  A
*     and  B  respectively.
*
      NOTA = LSAME(TRANSA,'N')
      NOTB = LSAME(TRANSB,'N')
      IF (NOTA) THEN
          NROWA = N
      ELSE
          NROWA = K
      END IF
      IF (NOTB) THEN
          NROWB = K
      ELSE
          NROWB = N
      END IF
      UPPER = LSAME(UPLO, 'U')
*
*     Test the input parameters.
*
      INFO = 0
      IF ((.NOT. UPPER) .AND. (.NOT. LSAME(UPLO, 'L'))) THEN
          INFO = 1
      ELSE IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANSA,'C')) .AND.
     +    (.NOT.LSAME(TRANSA,'T'))) THEN
          INFO = 2
      ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANSB,'C')) .AND.
     +         (.NOT.LSAME(TRANSB,'T'))) THEN
          INFO = 3
      ELSE IF (N.LT.0) THEN
          INFO = 4
      ELSE IF (K.LT.0) THEN
          INFO = 5
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
          INFO = 8
      ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
          INFO = 10
      ELSE IF (LDC.LT.MAX(1,N)) THEN
          INFO = 13
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('SGEMMTR',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF (N.EQ.0) RETURN
*
*     And if  alpha.eq.zero.
*
      IF (ALPHA.EQ.ZERO) THEN
          IF (BETA.EQ.ZERO) THEN
              DO 20 J = 1,N
                  IF (UPPER) THEN
                      ISTART = 1
                      ISTOP  = J
                  ELSE
                      ISTART = J
                      ISTOP  = N
                  END IF

                  DO 10 I = ISTART, ISTOP
                      C(I,J) = ZERO
   10             CONTINUE
   20         CONTINUE
          ELSE
              DO 40 J = 1,N
                  IF (UPPER) THEN
                      ISTART = 1
                      ISTOP  = J
                  ELSE
                      ISTART = J
                      ISTOP  = N
                  END IF

                  DO 30 I = ISTART, ISTOP
                      C(I,J) = BETA*C(I,J)
   30             CONTINUE
   40         CONTINUE
          END IF
          RETURN
      END IF
*
*     Start the operations.
*
      IF (NOTB) THEN
          IF (NOTA) THEN
*
*           Form  C := alpha*A*B + beta*C.
*
              DO 90 J = 1,N
                  IF (UPPER) THEN
                      ISTART = 1
                      ISTOP  = J
                  ELSE
                      ISTART = J
                      ISTOP  = N
                  END IF
                  IF (BETA.EQ.ZERO) THEN
                      DO 50 I = ISTART, ISTOP
                          C(I,J) = ZERO
   50                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 60 I = ISTART, ISTOP
                          C(I,J) = BETA*C(I,J)
   60                 CONTINUE
                  END IF
                  DO 80 L = 1,K
                      TEMP = ALPHA*B(L,J)
                      DO 70 I = ISTART, ISTOP
                          C(I,J) = C(I,J) + TEMP*A(I,L)
   70                 CONTINUE
   80             CONTINUE
   90         CONTINUE
          ELSE
*
*           Form  C := alpha*A**T*B + beta*C
*
              DO 120 J = 1,N
                  IF (UPPER) THEN
                      ISTART = 1
                      ISTOP  = J
                  ELSE
                      ISTART = J
                      ISTOP  = N
                  END IF

                  DO 110 I = ISTART, ISTOP
                      TEMP = ZERO
                      DO 100 L = 1,K
                          TEMP = TEMP + A(L,I)*B(L,J)
  100                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  110             CONTINUE
  120         CONTINUE
          END IF
      ELSE
          IF (NOTA) THEN
*
*           Form  C := alpha*A*B**T + beta*C
*
              DO 170 J = 1,N
                  IF (UPPER) THEN
                      ISTART = 1
                      ISTOP  = J
                  ELSE
                      ISTART = J
                      ISTOP  = N
                  END IF

                  IF (BETA.EQ.ZERO) THEN
                      DO 130 I = ISTART,ISTOP
                          C(I,J) = ZERO
  130                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 140 I = ISTART,ISTOP
                          C(I,J) = BETA*C(I,J)
  140                 CONTINUE
                  END IF
                  DO 160 L = 1,K
                      TEMP = ALPHA*B(J,L)
                      DO 150 I = ISTART,ISTOP
                          C(I,J) = C(I,J) + TEMP*A(I,L)
  150                 CONTINUE
  160             CONTINUE
  170         CONTINUE
          ELSE
*
*           Form  C := alpha*A**T*B**T + beta*C
*
              DO 200 J = 1,N
                  IF (UPPER) THEN
                      ISTART = 1
                      ISTOP  = J
                  ELSE
                      ISTART = J
                      ISTOP  = N
                  END IF

                  DO 190 I = ISTART, ISTOP
                      TEMP = ZERO
                      DO 180 L = 1,K
                          TEMP = TEMP + A(L,I)*B(J,L)
  180                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  190             CONTINUE
  200         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of SGEMMTR
*
      END