numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/BLAS/SRC/srotm.f | 5154B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
*> \brief \b SROTM * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SROTM(N,SX,INCX,SY,INCY,SPARAM) * * .. Scalar Arguments .. * INTEGER INCX,INCY,N * .. * .. Array Arguments .. * REAL SPARAM(5),SX(*),SY(*) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX *> *> (SX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF SX ARE IN *> (SX**T) *> *> SX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE *> LX = (-INCX)*N, AND SIMILARLY FOR SY USING USING LY AND INCY. *> WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. *> *> SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 *> *> (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) *> H=( ) ( ) ( ) ( ) *> (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). *> SEE SROTMG FOR A DESCRIPTION OF DATA STORAGE IN SPARAM. *> *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> number of elements in input vector(s) *> \endverbatim *> *> \param[in,out] SX *> \verbatim *> SX is REAL array, dimension ( 1 + ( N - 1 )*abs( INCX ) ) *> \endverbatim *> *> \param[in] INCX *> \verbatim *> INCX is INTEGER *> storage spacing between elements of SX *> \endverbatim *> *> \param[in,out] SY *> \verbatim *> SY is REAL array, dimension ( 1 + ( N - 1 )*abs( INCY ) ) *> \endverbatim *> *> \param[in] INCY *> \verbatim *> INCY is INTEGER *> storage spacing between elements of SY *> \endverbatim *> *> \param[in] SPARAM *> \verbatim *> SPARAM is REAL array, dimension (5) *> SPARAM(1)=SFLAG *> SPARAM(2)=SH11 *> SPARAM(3)=SH21 *> SPARAM(4)=SH12 *> SPARAM(5)=SH22 *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup rotm * * ===================================================================== SUBROUTINE SROTM(N,SX,INCX,SY,INCY,SPARAM) * * -- Reference BLAS level1 routine -- * -- Reference BLAS is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. REAL SPARAM(5),SX(*),SY(*) * .. * * ===================================================================== * * .. Local Scalars .. REAL SFLAG,SH11,SH12,SH21,SH22,TWO,W,Z,ZERO INTEGER I,KX,KY,NSTEPS * .. * .. Data statements .. DATA ZERO,TWO/0.E0,2.E0/ * .. * SFLAG = SPARAM(1) IF (N.LE.0 .OR. (SFLAG+TWO.EQ.ZERO)) RETURN IF (INCX.EQ.INCY.AND.INCX.GT.0) THEN * NSTEPS = N*INCX IF (SFLAG.LT.ZERO) THEN SH11 = SPARAM(2) SH12 = SPARAM(4) SH21 = SPARAM(3) SH22 = SPARAM(5) DO I = 1,NSTEPS,INCX W = SX(I) Z = SY(I) SX(I) = W*SH11 + Z*SH12 SY(I) = W*SH21 + Z*SH22 END DO ELSE IF (SFLAG.EQ.ZERO) THEN SH12 = SPARAM(4) SH21 = SPARAM(3) DO I = 1,NSTEPS,INCX W = SX(I) Z = SY(I) SX(I) = W + Z*SH12 SY(I) = W*SH21 + Z END DO ELSE SH11 = SPARAM(2) SH22 = SPARAM(5) DO I = 1,NSTEPS,INCX W = SX(I) Z = SY(I) SX(I) = W*SH11 + Z SY(I) = -W + SH22*Z END DO END IF ELSE KX = 1 KY = 1 IF (INCX.LT.0) KX = 1 + (1-N)*INCX IF (INCY.LT.0) KY = 1 + (1-N)*INCY * IF (SFLAG.LT.ZERO) THEN SH11 = SPARAM(2) SH12 = SPARAM(4) SH21 = SPARAM(3) SH22 = SPARAM(5) DO I = 1,N W = SX(KX) Z = SY(KY) SX(KX) = W*SH11 + Z*SH12 SY(KY) = W*SH21 + Z*SH22 KX = KX + INCX KY = KY + INCY END DO ELSE IF (SFLAG.EQ.ZERO) THEN SH12 = SPARAM(4) SH21 = SPARAM(3) DO I = 1,N W = SX(KX) Z = SY(KY) SX(KX) = W + Z*SH12 SY(KY) = W*SH21 + Z KX = KX + INCX KY = KY + INCY END DO ELSE SH11 = SPARAM(2) SH22 = SPARAM(5) DO I = 1,N W = SX(KX) Z = SY(KY) SX(KX) = W*SH11 + Z SY(KY) = -W + SH22*Z KX = KX + INCX KY = KY + INCY END DO END IF END IF RETURN * * End of SROTM * END