numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/BLAS/SRC/srotmg.f | 6569B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
*> \brief \b SROTMG * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SROTMG(SD1,SD2,SX1,SY1,SPARAM) * * .. Scalar Arguments .. * REAL SD1,SD2,SX1,SY1 * .. * .. Array Arguments .. * REAL SPARAM(5) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS *> THE SECOND COMPONENT OF THE 2-VECTOR (SQRT(SD1)*SX1,SQRT(SD2)*> SY2)**T. *> WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. *> *> SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 *> *> (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) *> H=( ) ( ) ( ) ( ) *> (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). *> LOCATIONS 2-4 OF SPARAM CONTAIN SH11,SH21,SH12, AND SH22 *> RESPECTIVELY. (VALUES OF 1.E0, -1.E0, OR 0.E0 IMPLIED BY THE *> VALUE OF SPARAM(1) ARE NOT STORED IN SPARAM.) *> *> THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE *> INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE *> OF SD1 AND SD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. *> *> \endverbatim * * Arguments: * ========== * *> \param[in,out] SD1 *> \verbatim *> SD1 is REAL *> \endverbatim *> *> \param[in,out] SD2 *> \verbatim *> SD2 is REAL *> \endverbatim *> *> \param[in,out] SX1 *> \verbatim *> SX1 is REAL *> \endverbatim *> *> \param[in] SY1 *> \verbatim *> SY1 is REAL *> \endverbatim *> *> \param[out] SPARAM *> \verbatim *> SPARAM is REAL array, dimension (5) *> SPARAM(1)=SFLAG *> SPARAM(2)=SH11 *> SPARAM(3)=SH21 *> SPARAM(4)=SH12 *> SPARAM(5)=SH22 *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup rotmg * * ===================================================================== SUBROUTINE SROTMG(SD1,SD2,SX1,SY1,SPARAM) * * -- Reference BLAS level1 routine -- * -- Reference BLAS is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. REAL SD1,SD2,SX1,SY1 * .. * .. Array Arguments .. REAL SPARAM(5) * .. * * ===================================================================== * * .. Local Scalars .. REAL GAM,GAMSQ,ONE,RGAMSQ,SFLAG,SH11,SH12,SH21,SH22,SP1,SP2,SQ1, $ SQ2,STEMP,SU,TWO,ZERO * .. * .. Intrinsic Functions .. INTRINSIC ABS * .. * .. Data statements .. * DATA ZERO,ONE,TWO/0.E0,1.E0,2.E0/ DATA GAM,GAMSQ,RGAMSQ/4096.E0,1.67772E7,5.96046E-8/ * .. IF (SD1.LT.ZERO) THEN * GO ZERO-H-D-AND-SX1.. SFLAG = -ONE SH11 = ZERO SH12 = ZERO SH21 = ZERO SH22 = ZERO * SD1 = ZERO SD2 = ZERO SX1 = ZERO ELSE * CASE-SD1-NONNEGATIVE SP2 = SD2*SY1 IF (SP2.EQ.ZERO) THEN SFLAG = -TWO SPARAM(1) = SFLAG RETURN END IF * REGULAR-CASE.. SP1 = SD1*SX1 SQ2 = SP2*SY1 SQ1 = SP1*SX1 * IF (ABS(SQ1).GT.ABS(SQ2)) THEN SH21 = -SY1/SX1 SH12 = SP2/SP1 * SU = ONE - SH12*SH21 * IF (SU.GT.ZERO) THEN SFLAG = ZERO SD1 = SD1/SU SD2 = SD2/SU SX1 = SX1*SU ELSE * This code path if here for safety. We do not expect this * condition to ever hold except in edge cases with rounding * errors. See DOI: 10.1145/355841.355847 SFLAG = -ONE SH11 = ZERO SH12 = ZERO SH21 = ZERO SH22 = ZERO * SD1 = ZERO SD2 = ZERO SX1 = ZERO END IF ELSE IF (SQ2.LT.ZERO) THEN * GO ZERO-H-D-AND-SX1.. SFLAG = -ONE SH11 = ZERO SH12 = ZERO SH21 = ZERO SH22 = ZERO * SD1 = ZERO SD2 = ZERO SX1 = ZERO ELSE SFLAG = ONE SH11 = SP1/SP2 SH22 = SX1/SY1 SU = ONE + SH11*SH22 STEMP = SD2/SU SD2 = SD1/SU SD1 = STEMP SX1 = SY1*SU END IF END IF * PROCEDURE..SCALE-CHECK IF (SD1.NE.ZERO) THEN DO WHILE ((SD1.LE.RGAMSQ) .OR. (SD1.GE.GAMSQ)) IF (SFLAG.EQ.ZERO) THEN SH11 = ONE SH22 = ONE SFLAG = -ONE ELSE SH21 = -ONE SH12 = ONE SFLAG = -ONE END IF IF (SD1.LE.RGAMSQ) THEN SD1 = SD1*GAM**2 SX1 = SX1/GAM SH11 = SH11/GAM SH12 = SH12/GAM ELSE SD1 = SD1/GAM**2 SX1 = SX1*GAM SH11 = SH11*GAM SH12 = SH12*GAM END IF ENDDO END IF IF (SD2.NE.ZERO) THEN DO WHILE ( (ABS(SD2).LE.RGAMSQ) .OR. (ABS(SD2).GE.GAMSQ) ) IF (SFLAG.EQ.ZERO) THEN SH11 = ONE SH22 = ONE SFLAG = -ONE ELSE SH21 = -ONE SH12 = ONE SFLAG = -ONE END IF IF (ABS(SD2).LE.RGAMSQ) THEN SD2 = SD2*GAM**2 SH21 = SH21/GAM SH22 = SH22/GAM ELSE SD2 = SD2/GAM**2 SH21 = SH21*GAM SH22 = SH22*GAM END IF END DO END IF END IF IF (SFLAG.LT.ZERO) THEN SPARAM(2) = SH11 SPARAM(3) = SH21 SPARAM(4) = SH12 SPARAM(5) = SH22 ELSE IF (SFLAG.EQ.ZERO) THEN SPARAM(3) = SH21 SPARAM(4) = SH12 ELSE SPARAM(2) = SH11 SPARAM(5) = SH22 END IF SPARAM(1) = SFLAG RETURN * * End of SROTMG * END