numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/INSTALL/slamchf77.f | 25977B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
*> \brief \b SLAMCHF77 deprecated * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * REAL FUNCTION SLAMCH( CMACH ) * * .. Scalar Arguments .. * CHARACTER CMACH * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLAMCH determines single precision machine parameters. *> \endverbatim * * Arguments: * ========== * *> \param[in] CMACH *> \verbatim *> Specifies the value to be returned by SLAMCH: *> = 'E' or 'e', SLAMCH := eps *> = 'S' or 's , SLAMCH := sfmin *> = 'B' or 'b', SLAMCH := base *> = 'P' or 'p', SLAMCH := eps*base *> = 'N' or 'n', SLAMCH := t *> = 'R' or 'r', SLAMCH := rnd *> = 'M' or 'm', SLAMCH := emin *> = 'U' or 'u', SLAMCH := rmin *> = 'L' or 'l', SLAMCH := emax *> = 'O' or 'o', SLAMCH := rmax *> where *> eps = relative machine precision *> sfmin = safe minimum, such that 1/sfmin does not overflow *> base = base of the machine *> prec = eps*base *> t = number of (base) digits in the mantissa *> rnd = 1.0 when rounding occurs in addition, 0.0 otherwise *> emin = minimum exponent before (gradual) underflow *> rmin = underflow threshold - base**(emin-1) *> emax = largest exponent before overflow *> rmax = overflow threshold - (base**emax)*(1-eps) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup lamch * * ===================================================================== REAL FUNCTION SLAMCH( CMACH ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER CMACH * .. * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. LOGICAL FIRST, LRND INTEGER BETA, IMAX, IMIN, IT REAL BASE, EMAX, EMIN, EPS, PREC, RMACH, RMAX, RMIN, $ RND, SFMIN, SMALL, T * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL SLAMC2 * .. * .. Save statement .. SAVE FIRST, EPS, SFMIN, BASE, T, RND, EMIN, RMIN, $ EMAX, RMAX, PREC * .. * .. Data statements .. DATA FIRST / .TRUE. / * .. * .. Executable Statements .. * IF( FIRST ) THEN CALL SLAMC2( BETA, IT, LRND, EPS, IMIN, RMIN, IMAX, RMAX ) BASE = BETA T = IT IF( LRND ) THEN RND = ONE EPS = ( BASE**( 1-IT ) ) / 2 ELSE RND = ZERO EPS = BASE**( 1-IT ) END IF PREC = EPS*BASE EMIN = IMIN EMAX = IMAX SFMIN = RMIN SMALL = ONE / RMAX IF( SMALL.GE.SFMIN ) THEN * * Use SMALL plus a bit, to avoid the possibility of rounding * causing overflow when computing 1/sfmin. * SFMIN = SMALL*( ONE+EPS ) END IF END IF * IF( LSAME( CMACH, 'E' ) ) THEN RMACH = EPS ELSE IF( LSAME( CMACH, 'S' ) ) THEN RMACH = SFMIN ELSE IF( LSAME( CMACH, 'B' ) ) THEN RMACH = BASE ELSE IF( LSAME( CMACH, 'P' ) ) THEN RMACH = PREC ELSE IF( LSAME( CMACH, 'N' ) ) THEN RMACH = T ELSE IF( LSAME( CMACH, 'R' ) ) THEN RMACH = RND ELSE IF( LSAME( CMACH, 'M' ) ) THEN RMACH = EMIN ELSE IF( LSAME( CMACH, 'U' ) ) THEN RMACH = RMIN ELSE IF( LSAME( CMACH, 'L' ) ) THEN RMACH = EMAX ELSE IF( LSAME( CMACH, 'O' ) ) THEN RMACH = RMAX END IF * SLAMCH = RMACH FIRST = .FALSE. RETURN * * End of SLAMCH * END * ************************************************************************ *> \brief \b SLAMC1 *> \details *> \b Purpose: *> \verbatim *> SLAMC1 determines the machine parameters given by BETA, T, RND, and *> IEEE1. *> \endverbatim *> *> \param[out] BETA *> \verbatim *> The base of the machine. *> \endverbatim *> *> \param[out] T *> \verbatim *> The number of ( BETA ) digits in the mantissa. *> \endverbatim *> *> \param[out] RND *> \verbatim *> Specifies whether proper rounding ( RND = .TRUE. ) or *> chopping ( RND = .FALSE. ) occurs in addition. This may not *> be a reliable guide to the way in which the machine performs *> its arithmetic. *> \endverbatim *> *> \param[out] IEEE1 *> \verbatim *> Specifies whether rounding appears to be done in the IEEE *> 'round to nearest' style. *> \endverbatim *> \author LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. *> *> \ingroup lamc1 *> *> \details \b Further \b Details *> \verbatim *> *> The routine is based on the routine ENVRON by Malcolm and *> incorporates suggestions by Gentleman and Marovich. See *> *> Malcolm M. A. (1972) Algorithms to reveal properties of *> floating-point arithmetic. Comms. of the ACM, 15, 949-951. *> *> Gentleman W. M. and Marovich S. B. (1974) More on algorithms *> that reveal properties of floating point arithmetic units. *> Comms. of the ACM, 17, 276-277. *> \endverbatim *> SUBROUTINE SLAMC1( BETA, T, RND, IEEE1 ) * * -- LAPACK auxiliary routine -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * * .. Scalar Arguments .. LOGICAL IEEE1, RND INTEGER BETA, T * .. * ===================================================================== * * .. Local Scalars .. LOGICAL FIRST, LIEEE1, LRND INTEGER LBETA, LT REAL A, B, C, F, ONE, QTR, SAVEC, T1, T2 * .. * .. External Functions .. REAL SLAMC3 EXTERNAL SLAMC3 * .. * .. Save statement .. SAVE FIRST, LIEEE1, LBETA, LRND, LT * .. * .. Data statements .. DATA FIRST / .TRUE. / * .. * .. Executable Statements .. * IF( FIRST ) THEN ONE = 1 * * LBETA, LIEEE1, LT and LRND are the local values of BETA, * IEEE1, T and RND. * * Throughout this routine we use the function SLAMC3 to ensure * that relevant values are stored and not held in registers, or * are not affected by optimizers. * * Compute a = 2.0**m with the smallest positive integer m such * that * * fl( a + 1.0 ) = a. * A = 1 C = 1 * *+ WHILE( C.EQ.ONE )LOOP 10 CONTINUE IF( C.EQ.ONE ) THEN A = 2*A C = SLAMC3( A, ONE ) C = SLAMC3( C, -A ) GO TO 10 END IF *+ END WHILE * * Now compute b = 2.0**m with the smallest positive integer m * such that * * fl( a + b ) .gt. a. * B = 1 C = SLAMC3( A, B ) * *+ WHILE( C.EQ.A )LOOP 20 CONTINUE IF( C.EQ.A ) THEN B = 2*B C = SLAMC3( A, B ) GO TO 20 END IF *+ END WHILE * * Now compute the base. a and c are neighbouring floating point * numbers in the interval ( beta**t, beta**( t + 1 ) ) and so * their difference is beta. Adding 0.25 to c is to ensure that it * is truncated to beta and not ( beta - 1 ). * QTR = ONE / 4 SAVEC = C C = SLAMC3( C, -A ) LBETA = C + QTR * * Now determine whether rounding or chopping occurs, by adding a * bit less than beta/2 and a bit more than beta/2 to a. * B = LBETA F = SLAMC3( B / 2, -B / 100 ) C = SLAMC3( F, A ) IF( C.EQ.A ) THEN LRND = .TRUE. ELSE LRND = .FALSE. END IF F = SLAMC3( B / 2, B / 100 ) C = SLAMC3( F, A ) IF( ( LRND ) .AND. ( C.EQ.A ) ) $ LRND = .FALSE. * * Try and decide whether rounding is done in the IEEE 'round to * nearest' style. B/2 is half a unit in the last place of the two * numbers A and SAVEC. Furthermore, A is even, i.e. has last bit * zero, and SAVEC is odd. Thus adding B/2 to A should not change * A, but adding B/2 to SAVEC should change SAVEC. * T1 = SLAMC3( B / 2, A ) T2 = SLAMC3( B / 2, SAVEC ) LIEEE1 = ( T1.EQ.A ) .AND. ( T2.GT.SAVEC ) .AND. LRND * * Now find the mantissa, t. It should be the integer part of * log to the base beta of a, however it is safer to determine t * by powering. So we find t as the smallest positive integer for * which * * fl( beta**t + 1.0 ) = 1.0. * LT = 0 A = 1 C = 1 * *+ WHILE( C.EQ.ONE )LOOP 30 CONTINUE IF( C.EQ.ONE ) THEN LT = LT + 1 A = A*LBETA C = SLAMC3( A, ONE ) C = SLAMC3( C, -A ) GO TO 30 END IF *+ END WHILE * END IF * BETA = LBETA T = LT RND = LRND IEEE1 = LIEEE1 FIRST = .FALSE. RETURN * * End of SLAMC1 * END * ************************************************************************ *> \brief \b SLAMC2 *> \details *> \b Purpose: *> \verbatim *> SLAMC2 determines the machine parameters specified in its argument *> list. *> \endverbatim *> \author LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. *> *> \ingroup lamc2 *> *> \param[out] BETA *> \verbatim *> The base of the machine. *> \endverbatim *> *> \param[out] T *> \verbatim *> The number of ( BETA ) digits in the mantissa. *> \endverbatim *> *> \param[out] RND *> \verbatim *> Specifies whether proper rounding ( RND = .TRUE. ) or *> chopping ( RND = .FALSE. ) occurs in addition. This may not *> be a reliable guide to the way in which the machine performs *> its arithmetic. *> \endverbatim *> *> \param[out] EPS *> \verbatim *> The smallest positive number such that *> fl( 1.0 - EPS ) .LT. 1.0, *> where fl denotes the computed value. *> \endverbatim *> *> \param[out] EMIN *> \verbatim *> The minimum exponent before (gradual) underflow occurs. *> \endverbatim *> *> \param[out] RMIN *> \verbatim *> The smallest normalized number for the machine, given by *> BASE**( EMIN - 1 ), where BASE is the floating point value *> of BETA. *> \endverbatim *> *> \param[out] EMAX *> \verbatim *> The maximum exponent before overflow occurs. *> \endverbatim *> *> \param[out] RMAX *> \verbatim *> The largest positive number for the machine, given by *> BASE**EMAX * ( 1 - EPS ), where BASE is the floating point *> value of BETA. *> \endverbatim *> *> \details \b Further \b Details *> \verbatim *> *> The computation of EPS is based on a routine PARANOIA by *> W. Kahan of the University of California at Berkeley. *> \endverbatim *> SUBROUTINE SLAMC2( BETA, T, RND, EPS, EMIN, RMIN, EMAX, RMAX ) * * -- LAPACK auxiliary routine -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * * .. Scalar Arguments .. LOGICAL RND INTEGER BETA, EMAX, EMIN, T REAL EPS, RMAX, RMIN * .. * ===================================================================== * * .. Local Scalars .. LOGICAL FIRST, IEEE, IWARN, LIEEE1, LRND INTEGER GNMIN, GPMIN, I, LBETA, LEMAX, LEMIN, LT, $ NGNMIN, NGPMIN REAL A, B, C, HALF, LEPS, LRMAX, LRMIN, ONE, RBASE, $ SIXTH, SMALL, THIRD, TWO, ZERO * .. * .. External Functions .. REAL SLAMC3 EXTERNAL SLAMC3 * .. * .. External Subroutines .. EXTERNAL SLAMC1, SLAMC4, SLAMC5 * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. * .. Save statement .. SAVE FIRST, IWARN, LBETA, LEMAX, LEMIN, LEPS, LRMAX, $ LRMIN, LT * .. * .. Data statements .. DATA FIRST / .TRUE. / , IWARN / .FALSE. / * .. * .. Executable Statements .. * IF( FIRST ) THEN ZERO = 0 ONE = 1 TWO = 2 * * LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values of * BETA, T, RND, EPS, EMIN and RMIN. * * Throughout this routine we use the function SLAMC3 to ensure * that relevant values are stored and not held in registers, or * are not affected by optimizers. * * SLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1. * CALL SLAMC1( LBETA, LT, LRND, LIEEE1 ) * * Start to find EPS. * B = LBETA A = B**( -LT ) LEPS = A * * Try some tricks to see whether or not this is the correct EPS. * B = TWO / 3 HALF = ONE / 2 SIXTH = SLAMC3( B, -HALF ) THIRD = SLAMC3( SIXTH, SIXTH ) B = SLAMC3( THIRD, -HALF ) B = SLAMC3( B, SIXTH ) B = ABS( B ) IF( B.LT.LEPS ) $ B = LEPS * LEPS = 1 * *+ WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP 10 CONTINUE IF( ( LEPS.GT.B ) .AND. ( B.GT.ZERO ) ) THEN LEPS = B C = SLAMC3( HALF*LEPS, ( TWO**5 )*( LEPS**2 ) ) C = SLAMC3( HALF, -C ) B = SLAMC3( HALF, C ) C = SLAMC3( HALF, -B ) B = SLAMC3( HALF, C ) GO TO 10 END IF *+ END WHILE * IF( A.LT.LEPS ) $ LEPS = A * * Computation of EPS complete. * * Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3)). * Keep dividing A by BETA until (gradual) underflow occurs. This * is detected when we cannot recover the previous A. * RBASE = ONE / LBETA SMALL = ONE DO 20 I = 1, 3 SMALL = SLAMC3( SMALL*RBASE, ZERO ) 20 CONTINUE A = SLAMC3( ONE, SMALL ) CALL SLAMC4( NGPMIN, ONE, LBETA ) CALL SLAMC4( NGNMIN, -ONE, LBETA ) CALL SLAMC4( GPMIN, A, LBETA ) CALL SLAMC4( GNMIN, -A, LBETA ) IEEE = .FALSE. * IF( ( NGPMIN.EQ.NGNMIN ) .AND. ( GPMIN.EQ.GNMIN ) ) THEN IF( NGPMIN.EQ.GPMIN ) THEN LEMIN = NGPMIN * ( Non twos-complement machines, no gradual underflow; * e.g., VAX ) ELSE IF( ( GPMIN-NGPMIN ).EQ.3 ) THEN LEMIN = NGPMIN - 1 + LT IEEE = .TRUE. * ( Non twos-complement machines, with gradual underflow; * e.g., IEEE standard followers ) ELSE LEMIN = MIN( NGPMIN, GPMIN ) * ( A guess; no known machine ) IWARN = .TRUE. END IF * ELSE IF( ( NGPMIN.EQ.GPMIN ) .AND. ( NGNMIN.EQ.GNMIN ) ) THEN IF( ABS( NGPMIN-NGNMIN ).EQ.1 ) THEN LEMIN = MAX( NGPMIN, NGNMIN ) * ( Twos-complement machines, no gradual underflow; * e.g., CYBER 205 ) ELSE LEMIN = MIN( NGPMIN, NGNMIN ) * ( A guess; no known machine ) IWARN = .TRUE. END IF * ELSE IF( ( ABS( NGPMIN-NGNMIN ).EQ.1 ) .AND. $ ( GPMIN.EQ.GNMIN ) ) THEN IF( ( GPMIN-MIN( NGPMIN, NGNMIN ) ).EQ.3 ) THEN LEMIN = MAX( NGPMIN, NGNMIN ) - 1 + LT * ( Twos-complement machines with gradual underflow; * no known machine ) ELSE LEMIN = MIN( NGPMIN, NGNMIN ) * ( A guess; no known machine ) IWARN = .TRUE. END IF * ELSE LEMIN = MIN( NGPMIN, NGNMIN, GPMIN, GNMIN ) * ( A guess; no known machine ) IWARN = .TRUE. END IF FIRST = .FALSE. *** * Comment out this if block if EMIN is ok IF( IWARN ) THEN FIRST = .TRUE. WRITE( 6, FMT = 9999 )LEMIN END IF *** * * Assume IEEE arithmetic if we found denormalised numbers above, * or if arithmetic seems to round in the IEEE style, determined * in routine SLAMC1. A true IEEE machine should have both things * true; however, faulty machines may have one or the other. * IEEE = IEEE .OR. LIEEE1 * * Compute RMIN by successive division by BETA. We could compute * RMIN as BASE**( EMIN - 1 ), but some machines underflow during * this computation. * LRMIN = 1 DO 30 I = 1, 1 - LEMIN LRMIN = SLAMC3( LRMIN*RBASE, ZERO ) 30 CONTINUE * * Finally, call SLAMC5 to compute EMAX and RMAX. * CALL SLAMC5( LBETA, LT, LEMIN, IEEE, LEMAX, LRMAX ) END IF * BETA = LBETA T = LT RND = LRND EPS = LEPS EMIN = LEMIN RMIN = LRMIN EMAX = LEMAX RMAX = LRMAX * RETURN * 9999 FORMAT( / / ' WARNING. The value EMIN may be incorrect:-', $ ' EMIN = ', I8, / $ ' If, after inspection, the value EMIN looks', $ ' acceptable please comment out ', $ / ' the IF block as marked within the code of routine', $ ' SLAMC2,', / ' otherwise supply EMIN explicitly.', / ) * * End of SLAMC2 * END * ************************************************************************ *> \brief \b SLAMC3 *> \details *> \b Purpose: *> \verbatim *> SLAMC3 is intended to force A and B to be stored prior to doing *> the addition of A and B , for use in situations where optimizers *> might hold one of these in a register. *> \endverbatim *> *> \param[in] A *> *> \param[in] B *> \verbatim *> The values A and B. *> \endverbatim *> *> \ingroup lamc3 *> REAL FUNCTION SLAMC3( A, B ) * * -- LAPACK auxiliary routine -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * * .. Scalar Arguments .. REAL A, B * .. * ===================================================================== * * .. Executable Statements .. * SLAMC3 = A + B * RETURN * * End of SLAMC3 * END * ************************************************************************ *> \brief \b SLAMC4 *> \details *> \b Purpose: *> \verbatim *> SLAMC4 is a service routine for SLAMC2. *> \endverbatim *> *> \param[out] EMIN *> \verbatim *> The minimum exponent before (gradual) underflow, computed by *> setting A = START and dividing by BASE until the previous A *> can not be recovered. *> \endverbatim *> *> \param[in] START *> \verbatim *> The starting point for determining EMIN. *> \endverbatim *> *> \param[in] BASE *> \verbatim *> The base of the machine. *> \endverbatim *> *> \ingroup lamc4 *> SUBROUTINE SLAMC4( EMIN, START, BASE ) * * -- LAPACK auxiliary routine -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * * .. Scalar Arguments .. INTEGER BASE INTEGER EMIN REAL START * .. * ===================================================================== * * .. Local Scalars .. INTEGER I REAL A, B1, B2, C1, C2, D1, D2, ONE, RBASE, ZERO * .. * .. External Functions .. REAL SLAMC3 EXTERNAL SLAMC3 * .. * .. Executable Statements .. * A = START ONE = 1 RBASE = ONE / BASE ZERO = 0 EMIN = 1 B1 = SLAMC3( A*RBASE, ZERO ) C1 = A C2 = A D1 = A D2 = A *+ WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND. * $ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP 10 CONTINUE IF( ( C1.EQ.A ) .AND. ( C2.EQ.A ) .AND. ( D1.EQ.A ) .AND. $ ( D2.EQ.A ) ) THEN EMIN = EMIN - 1 A = B1 B1 = SLAMC3( A / BASE, ZERO ) C1 = SLAMC3( B1*BASE, ZERO ) D1 = ZERO DO 20 I = 1, BASE D1 = D1 + B1 20 CONTINUE B2 = SLAMC3( A*RBASE, ZERO ) C2 = SLAMC3( B2 / RBASE, ZERO ) D2 = ZERO DO 30 I = 1, BASE D2 = D2 + B2 30 CONTINUE GO TO 10 END IF *+ END WHILE * RETURN * * End of SLAMC4 * END * ************************************************************************ *> \brief \b SLAMC5 *> \details *> \b Purpose: *> \verbatim *> SLAMC5 attempts to compute RMAX, the largest machine floating-point *> number, without overflow. It assumes that EMAX + abs(EMIN) sum *> approximately to a power of 2. It will fail on machines where this *> assumption does not hold, for example, the Cyber 205 (EMIN = -28625, *> EMAX = 28718). It will also fail if the value supplied for EMIN is *> too large (i.e. too close to zero), probably with overflow. *> \endverbatim *> *> \param[in] BETA *> \verbatim *> The base of floating-point arithmetic. *> \endverbatim *> *> \param[in] P *> \verbatim *> The number of base BETA digits in the mantissa of a *> floating-point value. *> \endverbatim *> *> \param[in] EMIN *> \verbatim *> The minimum exponent before (gradual) underflow. *> \endverbatim *> *> \param[in] IEEE *> \verbatim *> A logical flag specifying whether or not the arithmetic *> system is thought to comply with the IEEE standard. *> \endverbatim *> *> \param[out] EMAX *> \verbatim *> The largest exponent before overflow *> \endverbatim *> *> \param[out] RMAX *> \verbatim *> The largest machine floating-point number. *> \endverbatim *> *> \ingroup lamc5 *> SUBROUTINE SLAMC5( BETA, P, EMIN, IEEE, EMAX, RMAX ) * * -- LAPACK auxiliary routine -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * * .. Scalar Arguments .. LOGICAL IEEE INTEGER BETA, EMAX, EMIN, P REAL RMAX * .. * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. INTEGER EXBITS, EXPSUM, I, LEXP, NBITS, TRY, UEXP REAL OLDY, RECBAS, Y, Z * .. * .. External Functions .. REAL SLAMC3 EXTERNAL SLAMC3 * .. * .. Intrinsic Functions .. INTRINSIC MOD * .. * .. Executable Statements .. * * First compute LEXP and UEXP, two powers of 2 that bound * abs(EMIN). We then assume that EMAX + abs(EMIN) will sum * approximately to the bound that is closest to abs(EMIN). * (EMAX is the exponent of the required number RMAX). * LEXP = 1 EXBITS = 1 10 CONTINUE TRY = LEXP*2 IF( TRY.LE.( -EMIN ) ) THEN LEXP = TRY EXBITS = EXBITS + 1 GO TO 10 END IF IF( LEXP.EQ.-EMIN ) THEN UEXP = LEXP ELSE UEXP = TRY EXBITS = EXBITS + 1 END IF * * Now -LEXP is less than or equal to EMIN, and -UEXP is greater * than or equal to EMIN. EXBITS is the number of bits needed to * store the exponent. * IF( ( UEXP+EMIN ).GT.( -LEXP-EMIN ) ) THEN EXPSUM = 2*LEXP ELSE EXPSUM = 2*UEXP END IF * * EXPSUM is the exponent range, approximately equal to * EMAX - EMIN + 1 . * EMAX = EXPSUM + EMIN - 1 NBITS = 1 + EXBITS + P * * NBITS is the total number of bits needed to store a * floating-point number. * IF( ( MOD( NBITS, 2 ).EQ.1 ) .AND. ( BETA.EQ.2 ) ) THEN * * Either there are an odd number of bits used to store a * floating-point number, which is unlikely, or some bits are * not used in the representation of numbers, which is possible, * (e.g. Cray machines) or the mantissa has an implicit bit, * (e.g. IEEE machines, Dec Vax machines), which is perhaps the * most likely. We have to assume the last alternative. * If this is true, then we need to reduce EMAX by one because * there must be some way of representing zero in an implicit-bit * system. On machines like Cray, we are reducing EMAX by one * unnecessarily. * EMAX = EMAX - 1 END IF * IF( IEEE ) THEN * * Assume we are on an IEEE machine which reserves one exponent * for infinity and NaN. * EMAX = EMAX - 1 END IF * * Now create RMAX, the largest machine number, which should * be equal to (1.0 - BETA**(-P)) * BETA**EMAX . * * First compute 1.0 - BETA**(-P), being careful that the * result is less than 1.0 . * RECBAS = ONE / BETA Z = BETA - ONE Y = ZERO DO 20 I = 1, P Z = Z*RECBAS IF( Y.LT.ONE ) $ OLDY = Y Y = SLAMC3( Y, Z ) 20 CONTINUE IF( Y.GE.ONE ) $ Y = OLDY * * Now multiply by BETA**EMAX to get RMAX. * DO 30 I = 1, EMAX Y = SLAMC3( Y*BETA, ZERO ) 30 CONTINUE * RMAX = Y RETURN * * End of SLAMC5 * END