numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/LAPACKE/example/example_DGESV_colmajor_64.c | 3975B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
/* LAPACKE_dgesv Example ===================== The program computes the solution to the system of linear equations with a square matrix A and multiple right-hand sides B, where A is the coefficient matrix and b is the right-hand side matrix: Description =========== The routine solves for X the system of linear equations A*X = B, where A is an n-by-n matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions. The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P*L*U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A*X = B. LAPACKE Interface ================= LAPACKE_dgesv (col-major, high-level) Example Program Results -- LAPACKE Example routine -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* Includes */ #include <stdlib.h> #include <stdio.h> #include <string.h> #include "lapacke_64.h" #include "lapacke_example_aux.h" /* Main program */ int main(int argc, char **argv) { /* Locals */ int64_t n, nrhs, lda, ldb, info; int i, j; /* Local arrays */ double *A, *b; int64_t *ipiv; /* Default Value */ n = 5; nrhs = 1; /* Arguments */ for( i = 1; i < argc; i++ ) { if( strcmp( argv[i], "-n" ) == 0 ) { n = atoi(argv[i+1]); i++; } if( strcmp( argv[i], "-nrhs" ) == 0 ) { nrhs = atoi(argv[i+1]); i++; } } /* Initialization */ lda=n, ldb=n; A = (double *)malloc(n*n*sizeof(double)) ; if (A==NULL){ printf("error of memory allocation\n"); exit(0); } b = (double *)malloc(n*nrhs*sizeof(double)) ; if (b==NULL){ printf("error of memory allocation\n"); free(A); exit(0); } ipiv = (int64_t *)malloc(n*sizeof(int64_t)) ; if (ipiv==NULL){ printf("error of memory allocation\n"); free(A); free(b); exit(0); } for( i = 0; i < n; i++ ) { for( j = 0; j < n; j++ ) A[i+j*lda] = ((double) rand()) / ((double) RAND_MAX) - 0.5; } for(i=0;i<n*nrhs;i++) b[i] = ((double) rand()) / ((double) RAND_MAX) - 0.5; /* Print Entry Matrix */ print_matrix_colmajor_64( "Entry Matrix A", n, n, A, lda ); /* Print Right Rand Side */ print_matrix_colmajor_64( "Right Rand Side b", n, nrhs, b, ldb ); printf( "\n" ); /* Executable statements */ printf( "LAPACKE_dgesv_64 (row-major, high-level) Example Program Results\n" ); /* Solve the equations A*X = B */ info = LAPACKE_dgesv_64( LAPACK_COL_MAJOR, n, nrhs, A, lda, ipiv, b, ldb ); /* Check for the exact singularity */ if( info > 0 ) { printf( "The diagonal element of the triangular factor of A,\n" ); printf( "U(%" LAPACK_IFMT ",%" LAPACK_IFMT ") is zero, so that A is singular;\n", info, info ); printf( "the solution could not be computed.\n" ); free(A); free(b); free(ipiv); exit( 1 ); } if (info <0) { free(A); free(b); free(ipiv); exit( 1 ); } /* Print solution */ print_matrix_colmajor_64( "Solution", n, nrhs, b, ldb ); /* Print details of LU factorization */ print_matrix_colmajor_64( "Details of LU factorization", n, n, A, lda ); /* Print pivot indices */ print_vector_64( "Pivot indices", n, ipiv ); free(A); free(b); free(ipiv); exit( 0 ); } /* End of LAPACKE_dgesv Example */