numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/LAPACKE/utils/lapacke_stz_nancheck.c | 5860B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/***************************************************************************** Copyright (c) 2022, Intel Corp. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ****************************************************************************** * Contents: Native C interface to LAPACK utility function * Author: Simon Märtens *****************************************************************************/ #include "lapacke_utils.h" /***************************************************************************** Check a trapezoidal matrix for NaN entries. The shape of the trapezoidal matrix is determined by the arguments `direct` and `uplo`. `Direct` chooses the diagonal which shall be considered and `uplo` tells us whether we use the upper or lower part of the matrix with respect to the chosen diagonal. Diagonals 'F' (front / forward) and 'B' (back / backward): A = ( F ) A = ( F B ) ( F ) ( F B ) ( B F ) ( F B ) ( B ) ( B ) direct = 'F', uplo = 'L': A = ( * ) A = ( * ) ( * * ) ( * * ) ( * * * ) ( * * * ) ( * * * ) ( * * * ) direct = 'F', uplo = 'U': A = ( * * * ) A = ( * * * * * ) ( * * ) ( * * * * ) ( * ) ( * * * ) ( ) ( ) direct = 'B', uplo = 'L': A = ( ) A = ( * * * ) ( ) ( * * * * ) ( * ) ( * * * * * ) ( * * ) ( * * * ) direct = 'B', uplo = 'U': A = ( * * * ) A = ( * * * ) ( * * * ) ( * * ) ( * * * ) ( * ) ( * * ) ( * ) *****************************************************************************/ lapack_logical API_SUFFIX(LAPACKE_stz_nancheck)( int matrix_layout, char direct, char uplo, char diag, lapack_int m, lapack_int n, const float *a, lapack_int lda ) { lapack_logical colmaj, front, lower, unit; if( a == NULL ) return (lapack_logical) 0; colmaj = ( matrix_layout == LAPACK_COL_MAJOR ); front = API_SUFFIX(LAPACKE_lsame)( direct, 'f' ); lower = API_SUFFIX(LAPACKE_lsame)( uplo, 'l' ); unit = API_SUFFIX(LAPACKE_lsame)( diag, 'u' ); if( ( !colmaj && ( matrix_layout != LAPACK_ROW_MAJOR ) ) || ( !front && !API_SUFFIX(LAPACKE_lsame)( direct, 'b' ) ) || ( !lower && !API_SUFFIX(LAPACKE_lsame)( uplo, 'u' ) ) || ( !unit && !API_SUFFIX(LAPACKE_lsame)( diag, 'n' ) ) ) { /* Just exit if any of input parameters are wrong */ return (lapack_logical) 0; } /* Initial offsets and sizes of triangular and rectangular parts */ lapack_int tri_offset = 0; lapack_int tri_n = MIN(m,n); lapack_int rect_offset = -1; lapack_int rect_m = ( m > n ) ? m - n : m; lapack_int rect_n = ( n > m ) ? n - m : n; /* Fix offsets depending on the shape of the matrix */ if( front ) { if( lower && m > n ) { rect_offset = tri_n * ( !colmaj ? lda : 1 ); } else if( !lower && n > m ) { rect_offset = tri_n * ( colmaj ? lda : 1 ); } } else { if( m > n ) { tri_offset = rect_m * ( !colmaj ? lda : 1 ); if( !lower ) { rect_offset = 0; } } else if( n > m ) { tri_offset = rect_n * ( colmaj ? lda : 1 ); if( lower ) { rect_offset = 0; } } } /* Check rectangular part */ if( rect_offset >= 0 ) { if( API_SUFFIX(LAPACKE_sge_nancheck)( matrix_layout, rect_m, rect_n, &a[rect_offset], lda) ) { return (lapack_logical) 1; } } /* Check triangular part */ return API_SUFFIX(LAPACKE_str_nancheck)( matrix_layout, uplo, diag, tri_n, &a[tri_offset], lda ); }