numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/DEPRECATED/cgegs.f | 16469B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
*> \brief <b> CGEGS computes the eigenvalues, Schur form, and, optionally, the left and or/right Schur vectors of a complex matrix pair (A,B)</b> * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CGEGS + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgegs.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgegs.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgegs.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, * VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK, * INFO ) * * .. Scalar Arguments .. * CHARACTER JOBVSL, JOBVSR * INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N * .. * .. Array Arguments .. * REAL RWORK( * ) * COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ), * $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ), * $ WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> This routine is deprecated and has been replaced by routine CGGES. *> *> CGEGS computes the eigenvalues, Schur form, and, optionally, the *> left and or/right Schur vectors of a complex matrix pair (A,B). *> Given two square matrices A and B, the generalized Schur *> factorization has the form *> *> A = Q*S*Z**H, B = Q*T*Z**H *> *> where Q and Z are unitary matrices and S and T are upper triangular. *> The columns of Q are the left Schur vectors *> and the columns of Z are the right Schur vectors. *> *> If only the eigenvalues of (A,B) are needed, the driver routine *> CGEGV should be used instead. See CGEGV for a description of the *> eigenvalues of the generalized nonsymmetric eigenvalue problem *> (GNEP). *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBVSL *> \verbatim *> JOBVSL is CHARACTER*1 *> = 'N': do not compute the left Schur vectors; *> = 'V': compute the left Schur vectors (returned in VSL). *> \endverbatim *> *> \param[in] JOBVSR *> \verbatim *> JOBVSR is CHARACTER*1 *> = 'N': do not compute the right Schur vectors; *> = 'V': compute the right Schur vectors (returned in VSR). *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A, B, VSL, and VSR. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension (LDA, N) *> On entry, the matrix A. *> On exit, the upper triangular matrix S from the generalized *> Schur factorization. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A. LDA >= max(1,N). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX array, dimension (LDB, N) *> On entry, the matrix B. *> On exit, the upper triangular matrix T from the generalized *> Schur factorization. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] ALPHA *> \verbatim *> ALPHA is COMPLEX array, dimension (N) *> The complex scalars alpha that define the eigenvalues of *> GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur *> form of A. *> \endverbatim *> *> \param[out] BETA *> \verbatim *> BETA is COMPLEX array, dimension (N) *> The non-negative real scalars beta that define the *> eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element *> of the triangular factor T. *> *> Together, the quantities alpha = ALPHA(j) and beta = BETA(j) *> represent the j-th eigenvalue of the matrix pair (A,B), in *> one of the forms lambda = alpha/beta or mu = beta/alpha. *> Since either lambda or mu may overflow, they should not, *> in general, be computed. *> \endverbatim *> *> \param[out] VSL *> \verbatim *> VSL is COMPLEX array, dimension (LDVSL,N) *> If JOBVSL = 'V', the matrix of left Schur vectors Q. *> Not referenced if JOBVSL = 'N'. *> \endverbatim *> *> \param[in] LDVSL *> \verbatim *> LDVSL is INTEGER *> The leading dimension of the matrix VSL. LDVSL >= 1, and *> if JOBVSL = 'V', LDVSL >= N. *> \endverbatim *> *> \param[out] VSR *> \verbatim *> VSR is COMPLEX array, dimension (LDVSR,N) *> If JOBVSR = 'V', the matrix of right Schur vectors Z. *> Not referenced if JOBVSR = 'N'. *> \endverbatim *> *> \param[in] LDVSR *> \verbatim *> LDVSR is INTEGER *> The leading dimension of the matrix VSR. LDVSR >= 1, and *> if JOBVSR = 'V', LDVSR >= N. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= max(1,2*N). *> For good performance, LWORK must generally be larger. *> To compute the optimal value of LWORK, call ILAENV to get *> blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute: *> NB -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR; *> the optimal LWORK is N*(NB+1). *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (3*N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value. *> =1,...,N: *> The QZ iteration failed. (A,B) are not in Schur *> form, but ALPHA(j) and BETA(j) should be correct for *> j=INFO+1,...,N. *> > N: errors that usually indicate LAPACK problems: *> =N+1: error return from CGGBAL *> =N+2: error return from CGEQRF *> =N+3: error return from CUNMQR *> =N+4: error return from CUNGQR *> =N+5: error return from CGGHRD *> =N+6: error return from CHGEQZ (other than failed *> iteration) *> =N+7: error return from CGGBAK (computing VSL) *> =N+8: error return from CGGBAK (computing VSR) *> =N+9: error return from CLASCL (various places) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complexGEeigen * * ===================================================================== SUBROUTINE CGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, $ VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK, $ INFO ) * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER JOBVSL, JOBVSR INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N * .. * .. Array Arguments .. REAL RWORK( * ) COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ), $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ), $ WORK( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ), $ CONE = ( 1.0E0, 0.0E0 ) ) * .. * .. Local Scalars .. LOGICAL ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, $ ILO, IRIGHT, IROWS, IRWORK, ITAU, IWORK, $ LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3 REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, $ SAFMIN, SMLNUM * .. * .. External Subroutines .. EXTERNAL CGEQRF, CGGBAK, CGGBAL, CGGHRD, CHGEQZ, CLACPY, $ CLASCL, CLASET, CUNGQR, CUNMQR, XERBLA * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV REAL CLANGE, SLAMCH EXTERNAL ILAENV, LSAME, CLANGE, SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC INT, MAX * .. * .. Executable Statements .. * * Decode the input arguments * IF( LSAME( JOBVSL, 'N' ) ) THEN IJOBVL = 1 ILVSL = .FALSE. ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN IJOBVL = 2 ILVSL = .TRUE. ELSE IJOBVL = -1 ILVSL = .FALSE. END IF * IF( LSAME( JOBVSR, 'N' ) ) THEN IJOBVR = 1 ILVSR = .FALSE. ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN IJOBVR = 2 ILVSR = .TRUE. ELSE IJOBVR = -1 ILVSR = .FALSE. END IF * * Test the input arguments * LWKMIN = MAX( 2*N, 1 ) LWKOPT = LWKMIN WORK( 1 ) = LWKOPT LQUERY = ( LWORK.EQ.-1 ) INFO = 0 IF( IJOBVL.LE.0 ) THEN INFO = -1 ELSE IF( IJOBVR.LE.0 ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN INFO = -11 ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN INFO = -13 ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -15 END IF * IF( INFO.EQ.0 ) THEN NB1 = ILAENV( 1, 'CGEQRF', ' ', N, N, -1, -1 ) NB2 = ILAENV( 1, 'CUNMQR', ' ', N, N, N, -1 ) NB3 = ILAENV( 1, 'CUNGQR', ' ', N, N, N, -1 ) NB = MAX( NB1, NB2, NB3 ) LOPT = N*(NB+1) WORK( 1 ) = LOPT END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGEGS ', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Get machine constants * EPS = SLAMCH( 'E' )*SLAMCH( 'B' ) SAFMIN = SLAMCH( 'S' ) SMLNUM = N*SAFMIN / EPS BIGNUM = ONE / SMLNUM * * Scale A if max element outside range [SMLNUM,BIGNUM] * ANRM = CLANGE( 'M', N, N, A, LDA, RWORK ) ILASCL = .FALSE. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN ANRMTO = SMLNUM ILASCL = .TRUE. ELSE IF( ANRM.GT.BIGNUM ) THEN ANRMTO = BIGNUM ILASCL = .TRUE. END IF * IF( ILASCL ) THEN CALL CLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 9 RETURN END IF END IF * * Scale B if max element outside range [SMLNUM,BIGNUM] * BNRM = CLANGE( 'M', N, N, B, LDB, RWORK ) ILBSCL = .FALSE. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN BNRMTO = SMLNUM ILBSCL = .TRUE. ELSE IF( BNRM.GT.BIGNUM ) THEN BNRMTO = BIGNUM ILBSCL = .TRUE. END IF * IF( ILBSCL ) THEN CALL CLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 9 RETURN END IF END IF * * Permute the matrix to make it more nearly triangular * ILEFT = 1 IRIGHT = N + 1 IRWORK = IRIGHT + N IWORK = 1 CALL CGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ), $ RWORK( IRIGHT ), RWORK( IRWORK ), IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 1 GO TO 10 END IF * * Reduce B to triangular form, and initialize VSL and/or VSR * IROWS = IHI + 1 - ILO ICOLS = N + 1 - ILO ITAU = IWORK IWORK = ITAU + IROWS CALL CGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ), $ WORK( IWORK ), LWORK+1-IWORK, IINFO ) IF( IINFO.GE.0 ) $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) IF( IINFO.NE.0 ) THEN INFO = N + 2 GO TO 10 END IF * CALL CUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB, $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ), $ LWORK+1-IWORK, IINFO ) IF( IINFO.GE.0 ) $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) IF( IINFO.NE.0 ) THEN INFO = N + 3 GO TO 10 END IF * IF( ILVSL ) THEN CALL CLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL ) CALL CLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB, $ VSL( ILO+1, ILO ), LDVSL ) CALL CUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL, $ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK, $ IINFO ) IF( IINFO.GE.0 ) $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) IF( IINFO.NE.0 ) THEN INFO = N + 4 GO TO 10 END IF END IF * IF( ILVSR ) $ CALL CLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR ) * * Reduce to generalized Hessenberg form * CALL CGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL, $ LDVSL, VSR, LDVSR, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 5 GO TO 10 END IF * * Perform QZ algorithm, computing Schur vectors if desired * IWORK = ITAU CALL CHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, $ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWORK ), $ LWORK+1-IWORK, RWORK( IRWORK ), IINFO ) IF( IINFO.GE.0 ) $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) IF( IINFO.NE.0 ) THEN IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN INFO = IINFO ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN INFO = IINFO - N ELSE INFO = N + 6 END IF GO TO 10 END IF * * Apply permutation to VSL and VSR * IF( ILVSL ) THEN CALL CGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ), $ RWORK( IRIGHT ), N, VSL, LDVSL, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 7 GO TO 10 END IF END IF IF( ILVSR ) THEN CALL CGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ), $ RWORK( IRIGHT ), N, VSR, LDVSR, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 8 GO TO 10 END IF END IF * * Undo scaling * IF( ILASCL ) THEN CALL CLASCL( 'U', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 9 RETURN END IF CALL CLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHA, N, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 9 RETURN END IF END IF * IF( ILBSCL ) THEN CALL CLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 9 RETURN END IF CALL CLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO ) IF( IINFO.NE.0 ) THEN INFO = N + 9 RETURN END IF END IF * 10 CONTINUE WORK( 1 ) = LWKOPT * RETURN * * End of CGEGS * END