numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/DEPRECATED/ztzrqf.f | 6971B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
*> \brief \b ZTZRQF * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZTZRQF + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztzrqf.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztzrqf.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztzrqf.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. * COMPLEX*16 A( LDA, * ), TAU( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> This routine is deprecated and has been replaced by routine ZTZRZF. *> *> ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A *> to upper triangular form by means of unitary transformations. *> *> The upper trapezoidal matrix A is factored as *> *> A = ( R 0 ) * Z, *> *> where Z is an N-by-N unitary matrix and R is an M-by-M upper *> triangular matrix. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. N >= M. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> On entry, the leading M-by-N upper trapezoidal part of the *> array A must contain the matrix to be factorized. *> On exit, the leading M-by-M upper triangular part of A *> contains the upper triangular matrix R, and elements M+1 to *> N of the first M rows of A, with the array TAU, represent the *> unitary matrix Z as a product of M elementary reflectors. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[out] TAU *> \verbatim *> TAU is COMPLEX*16 array, dimension (M) *> The scalar factors of the elementary reflectors. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup tzrqf * *> \par Further Details: * ===================== *> *> \verbatim *> *> The factorization is obtained by Householder's method. The kth *> transformation matrix, Z( k ), whose conjugate transpose is used to *> introduce zeros into the (m - k + 1)th row of A, is given in the form *> *> Z( k ) = ( I 0 ), *> ( 0 T( k ) ) *> *> where *> *> T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ), *> ( 0 ) *> ( z( k ) ) *> *> tau is a scalar and z( k ) is an ( n - m ) element vector. *> tau and z( k ) are chosen to annihilate the elements of the kth row *> of X. *> *> The scalar tau is returned in the kth element of TAU and the vector *> u( k ) in the kth row of A, such that the elements of z( k ) are *> in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in *> the upper triangular part of A. *> *> Z is given by *> *> Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). *> \endverbatim *> * ===================================================================== SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), TAU( * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX*16 CONE, CZERO PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ), $ CZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER I, K, M1 COMPLEX*16 ALPHA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG, MAX, MIN * .. * .. External Subroutines .. EXTERNAL XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGERC, ZLACGV, $ ZLARFG * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.M ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZTZRQF', -INFO ) RETURN END IF * * Perform the factorization. * IF( M.EQ.0 ) $ RETURN IF( M.EQ.N ) THEN DO 10 I = 1, N TAU( I ) = CZERO 10 CONTINUE ELSE M1 = MIN( M+1, N ) DO 20 K = M, 1, -1 * * Use a Householder reflection to zero the kth row of A. * First set up the reflection. * A( K, K ) = DCONJG( A( K, K ) ) CALL ZLACGV( N-M, A( K, M1 ), LDA ) ALPHA = A( K, K ) CALL ZLARFG( N-M+1, ALPHA, A( K, M1 ), LDA, TAU( K ) ) A( K, K ) = ALPHA TAU( K ) = DCONJG( TAU( K ) ) * IF( TAU( K ).NE.CZERO .AND. K.GT.1 ) THEN * * We now perform the operation A := A*P( k )**H. * * Use the first ( k - 1 ) elements of TAU to store a( k ), * where a( k ) consists of the first ( k - 1 ) elements of * the kth column of A. Also let B denote the first * ( k - 1 ) rows of the last ( n - m ) columns of A. * CALL ZCOPY( K-1, A( 1, K ), 1, TAU, 1 ) * * Form w = a( k ) + B*z( k ) in TAU. * CALL ZGEMV( 'No transpose', K-1, N-M, CONE, A( 1, M1 ), $ LDA, A( K, M1 ), LDA, CONE, TAU, 1 ) * * Now form a( k ) := a( k ) - conjg(tau)*w * and B := B - conjg(tau)*w*z( k )**H. * CALL ZAXPY( K-1, -DCONJG( TAU( K ) ), TAU, 1, A( 1, K ), $ 1 ) CALL ZGERC( K-1, N-M, -DCONJG( TAU( K ) ), TAU, 1, $ A( K, M1 ), LDA, A( 1, M1 ), LDA ) END IF 20 CONTINUE END IF * RETURN * * End of ZTZRQF * END