numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/VARIANTS/lu/LL/sgetrf.f | 6647B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
C> \brief \b SGETRF VARIANT: left-looking Level 3 BLAS version of the algorithm. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SGETRF ( M, N, A, LDA, IPIV, INFO) * * .. Scalar Arguments .. * INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. * INTEGER IPIV( * ) * REAL A( LDA, * ) * .. * * Purpose * ======= * C>\details \b Purpose: C>\verbatim C> C> SGETRF computes an LU factorization of a general M-by-N matrix A C> using partial pivoting with row interchanges. C> C> The factorization has the form C> A = P * L * U C> where P is a permutation matrix, L is lower triangular with unit C> diagonal elements (lower trapezoidal if m > n), and U is upper C> triangular (upper trapezoidal if m < n). C> C> This is the left-looking Level 3 BLAS version of the algorithm. C> C>\endverbatim * * Arguments: * ========== * C> \param[in] M C> \verbatim C> M is INTEGER C> The number of rows of the matrix A. M >= 0. C> \endverbatim C> C> \param[in] N C> \verbatim C> N is INTEGER C> The number of columns of the matrix A. N >= 0. C> \endverbatim C> C> \param[in,out] A C> \verbatim C> A is REAL array, dimension (LDA,N) C> On entry, the M-by-N matrix to be factored. C> On exit, the factors L and U from the factorization C> A = P*L*U; the unit diagonal elements of L are not stored. C> \endverbatim C> C> \param[in] LDA C> \verbatim C> LDA is INTEGER C> The leading dimension of the array A. LDA >= max(1,M). C> \endverbatim C> C> \param[out] IPIV C> \verbatim C> IPIV is INTEGER array, dimension (min(M,N)) C> The pivot indices; for 1 <= i <= min(M,N), row i of the C> matrix was interchanged with row IPIV(i). C> \endverbatim C> C> \param[out] INFO C> \verbatim C> INFO is INTEGER C> = 0: successful exit C> < 0: if INFO = -i, the i-th argument had an illegal value C> > 0: if INFO = i, U(i,i) is exactly zero. The factorization C> has been completed, but the factor U is exactly C> singular, and division by zero will occur if it is used C> to solve a system of equations. C> \endverbatim C> * * Authors: * ======== * C> \author Univ. of Tennessee C> \author Univ. of California Berkeley C> \author Univ. of Colorado Denver C> \author NAG Ltd. * C> \date December 2016 * C> \ingroup variantsGEcomputational * * ===================================================================== SUBROUTINE SGETRF ( M, N, A, LDA, IPIV, INFO) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. INTEGER IPIV( * ) REAL A( LDA, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, IINFO, J, JB, K, NB * .. * .. External Subroutines .. EXTERNAL SGEMM, SGETF2, SLASWP, STRSM, XERBLA * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGETRF', -INFO ) RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 ) $ RETURN * * Determine the block size for this environment. * NB = ILAENV( 1, 'SGETRF', ' ', M, N, -1, -1 ) IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN * * Use unblocked code. * CALL SGETF2( M, N, A, LDA, IPIV, INFO ) ELSE * * Use blocked code. * DO 20 J = 1, MIN( M, N ), NB JB = MIN( MIN( M, N )-J+1, NB ) * * * Update before factoring the current panel * DO 30 K = 1, J-NB, NB * * Apply interchanges to rows K:K+NB-1. * CALL SLASWP( JB, A(1, J), LDA, K, K+NB-1, IPIV, 1 ) * * Compute block row of U. * CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit', $ NB, JB, ONE, A( K, K ), LDA, $ A( K, J ), LDA ) * * Update trailing submatrix. * CALL SGEMM( 'No transpose', 'No transpose', $ M-K-NB+1, JB, NB, -ONE, $ A( K+NB, K ), LDA, A( K, J ), LDA, ONE, $ A( K+NB, J ), LDA ) 30 CONTINUE * * Factor diagonal and subdiagonal blocks and test for exact * singularity. * CALL SGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO ) * * Adjust INFO and the pivot indices. * IF( INFO.EQ.0 .AND. IINFO.GT.0 ) $ INFO = IINFO + J - 1 DO 10 I = J, MIN( M, J+JB-1 ) IPIV( I ) = J - 1 + IPIV( I ) 10 CONTINUE * 20 CONTINUE * * Apply interchanges to the left-overs * DO 40 K = 1, MIN( M, N ), NB CALL SLASWP( K-1, A( 1, 1 ), LDA, K, $ MIN (K+NB-1, MIN ( M, N )), IPIV, 1 ) 40 CONTINUE * * Apply update to the M+1:N columns when N > M * IF ( N.GT.M ) THEN CALL SLASWP( N-M, A(1, M+1), LDA, 1, M, IPIV, 1 ) DO 50 K = 1, M, NB JB = MIN( M-K+1, NB ) * CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit', $ JB, N-M, ONE, A( K, K ), LDA, $ A( K, M+1 ), LDA ) * IF ( K+NB.LE.M ) THEN CALL SGEMM( 'No transpose', 'No transpose', $ M-K-NB+1, N-M, NB, -ONE, $ A( K+NB, K ), LDA, A( K, M+1 ), LDA, ONE, $ A( K+NB, M+1 ), LDA ) END IF 50 CONTINUE END IF * END IF RETURN * * End of SGETRF * END