numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/VARIANTS/qr/LL/cgeqrf.f 12078B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
C> \brief \b CGEQRF VARIANT: left-looking Level 3 BLAS version of the algorithm.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CGEQRF ( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
*       ..
*
*  Purpose
*  =======
*
C>\details \b Purpose:
C>\verbatim
C>
C> CGEQRF computes a QR factorization of a complex M-by-N matrix A:
C> A = Q * R.
C>
C> This is the left-looking Level 3 BLAS version of the algorithm.
C>
C>\endverbatim
*
*  Arguments:
*  ==========
*
C> \param[in] M
C> \verbatim
C>          M is INTEGER
C>          The number of rows of the matrix A.  M >= 0.
C> \endverbatim
C>
C> \param[in] N
C> \verbatim
C>          N is INTEGER
C>          The number of columns of the matrix A.  N >= 0.
C> \endverbatim
C>
C> \param[in,out] A
C> \verbatim
C>          A is COMPLEX array, dimension (LDA,N)
C>          On entry, the M-by-N matrix A.
C>          On exit, the elements on and above the diagonal of the array
C>          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
C>          upper triangular if m >= n); the elements below the diagonal,
C>          with the array TAU, represent the orthogonal matrix Q as a
C>          product of min(m,n) elementary reflectors (see Further
C>          Details).
C> \endverbatim
C>
C> \param[in] LDA
C> \verbatim
C>          LDA is INTEGER
C>          The leading dimension of the array A.  LDA >= max(1,M).
C> \endverbatim
C>
C> \param[out] TAU
C> \verbatim
C>          TAU is COMPLEX array, dimension (min(M,N))
C>          The scalar factors of the elementary reflectors (see Further
C>          Details).
C> \endverbatim
C>
C> \param[out] WORK
C> \verbatim
C>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
C>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
C> \endverbatim
C>
C> \param[in] LWORK
C> \verbatim
C>          LWORK is INTEGER
C> \endverbatim
C> \verbatim
C>          The dimension of the array WORK. LWORK >= 1 if MIN(M,N) = 0,
C>          otherwise the dimension can be divided into three parts.
C> \endverbatim
C> \verbatim
C>          1) The part for the triangular factor T. If the very last T is not bigger
C>             than any of the rest, then this part is NB x ceiling(K/NB), otherwise,
C>             NB x (K-NT), where K = min(M,N) and NT is the dimension of the very last T
C> \endverbatim
C> \verbatim
C>          2) The part for the very last T when T is bigger than any of the rest T.
C>             The size of this part is NT x NT, where NT = K - ceiling ((K-NX)/NB) x NB,
C>             where K = min(M,N), NX is calculated by
C>                   NX = MAX( 0, ILAENV( 3, 'CGEQRF', ' ', M, N, -1, -1 ) )
C> \endverbatim
C> \verbatim
C>          3) The part for dlarfb is of size max((N-M)*K, (N-M)*NB, K*NB, NB*NB)
C> \endverbatim
C> \verbatim
C>          So LWORK = part1 + part2 + part3
C> \endverbatim
C> \verbatim
C>          If LWORK = -1, then a workspace query is assumed; the routine
C>          only calculates the optimal size of the WORK array, returns
C>          this value as the first entry of the WORK array, and no error
C>          message related to LWORK is issued by XERBLA.
C> \endverbatim
C>
C> \param[out] INFO
C> \verbatim
C>          INFO is INTEGER
C>          = 0:  successful exit
C>          < 0:  if INFO = -i, the i-th argument had an illegal value
C> \endverbatim
C>
*
*  Authors:
*  ========
*
C> \author Univ. of Tennessee
C> \author Univ. of California Berkeley
C> \author Univ. of Colorado Denver
C> \author NAG Ltd.
*
C> \date December 2016
*
C> \ingroup variantsGEcomputational
*
*  Further Details
*  ===============
C>\details \b Further \b Details
C> \verbatim
C>
C>  The matrix Q is represented as a product of elementary reflectors
C>
C>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
C>
C>  Each H(i) has the form
C>
C>     H(i) = I - tau * v * v'
C>
C>  where tau is a real scalar, and v is a real vector with
C>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
C>  and tau in TAU(i).
C>
C> \endverbatim
C>
*  =====================================================================
      SUBROUTINE CGEQRF ( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, IB, IINFO, IWS, J, K, LWKOPT, NB,
     $                   NBMIN, NX, LBWORK, NT, LLWORK
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEQR2, CLARFB, CLARFT, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CEILING, MAX, MIN, REAL
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      REAL               SROUNDUP_LWORK
      EXTERNAL           ILAENV, SROUNDUP_LWORK
*     ..
*     .. Executable Statements ..

      INFO = 0
      NBMIN = 2
      NX = 0
      IWS = N
      K = MIN( M, N )
      NB = ILAENV( 1, 'CGEQRF', ' ', M, N, -1, -1 )

      IF( NB.GT.1 .AND. NB.LT.K ) THEN
*
*        Determine when to cross over from blocked to unblocked code.
*
         NX = MAX( 0, ILAENV( 3, 'CGEQRF', ' ', M, N, -1, -1 ) )
      END IF
*
*     Get NT, the size of the very last T, which is the left-over from in-between K-NX and K to K, eg.:
*
*            NB=3     2NB=6       K=10
*            |        |           |
*      1--2--3--4--5--6--7--8--9--10
*                  |     \________/
*               K-NX=5      NT=4
*
*     So here 4 x 4 is the last T stored in the workspace
*
      NT = K-CEILING(REAL(K-NX)/REAL(NB))*NB

*
*     optimal workspace = space for dlarfb + space for normal T's + space for the last T
*
      LLWORK = MAX (MAX((N-M)*K, (N-M)*NB), MAX(K*NB, NB*NB))
      LLWORK = CEILING(REAL(LLWORK)/REAL(NB))

      IF( K.EQ.0 ) THEN

         LBWORK = 0
         LWKOPT = 1
         WORK( 1 ) = LWKOPT

      ELSE IF ( NT.GT.NB ) THEN

          LBWORK = K-NT
*
*         Optimal workspace for dlarfb = MAX(1,N)*NT
*
          LWKOPT = (LBWORK+LLWORK)*NB
          WORK( 1 ) = SROUNDUP_LWORK(LWKOPT+NT*NT)

      ELSE

          LBWORK = CEILING(REAL(K)/REAL(NB))*NB
          LWKOPT = (LBWORK+LLWORK-NB)*NB
          WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)

      END IF

*
*     Test the input arguments
*
      LQUERY = ( LWORK.EQ.-1 )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      ELSE IF ( .NOT.LQUERY ) THEN
         IF( LWORK.LE.0 .OR. ( M.GT.0 .AND. LWORK.LT.MAX( 1, N ) ) )
     $      INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGEQRF', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( K.EQ.0 ) THEN
         RETURN
      END IF
*
      IF( NB.GT.1 .AND. NB.LT.K ) THEN

         IF( NX.LT.K ) THEN
*
*           Determine if workspace is large enough for blocked code.
*
            IF ( NT.LE.NB ) THEN
                IWS = (LBWORK+LLWORK-NB)*NB
            ELSE
                IWS = (LBWORK+LLWORK)*NB+NT*NT
            END IF

            IF( LWORK.LT.IWS ) THEN
*
*              Not enough workspace to use optimal NB:  reduce NB and
*              determine the minimum value of NB.
*
               IF ( NT.LE.NB ) THEN
                    NB = LWORK / (LLWORK+(LBWORK-NB))
               ELSE
                    NB = (LWORK-NT*NT)/(LBWORK+LLWORK)
               END IF

               NBMIN = MAX( 2, ILAENV( 2, 'CGEQRF', ' ', M, N, -1,
     $                 -1 ) )
            END IF
         END IF
      END IF
*
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
*
*        Use blocked code initially
*
         DO 10 I = 1, K - NX, NB
            IB = MIN( K-I+1, NB )
*
*           Update the current column using old T's
*
            DO 20 J = 1, I - NB, NB
*
*              Apply H' to A(J:M,I:I+IB-1) from the left
*
               CALL CLARFB( 'Left', 'Transpose', 'Forward',
     $                      'Columnwise', M-J+1, IB, NB,
     $                      A( J, J ), LDA, WORK(J), LBWORK,
     $                      A( J, I ), LDA, WORK(LBWORK*NB+NT*NT+1),
     $                      IB)

20          CONTINUE
*
*           Compute the QR factorization of the current block
*           A(I:M,I:I+IB-1)
*
            CALL CGEQR2( M-I+1, IB, A( I, I ), LDA, TAU( I ),
     $                        WORK(LBWORK*NB+NT*NT+1), IINFO )

            IF( I+IB.LE.N ) THEN
*
*              Form the triangular factor of the block reflector
*              H = H(i) H(i+1) . . . H(i+ib-1)
*
               CALL CLARFT( 'Forward', 'Columnwise', M-I+1, IB,
     $                      A( I, I ), LDA, TAU( I ),
     $                      WORK(I), LBWORK )
*
            END IF
   10    CONTINUE
      ELSE
         I = 1
      END IF
*
*     Use unblocked code to factor the last or only block.
*
      IF( I.LE.K ) THEN

         IF ( I .NE. 1 )   THEN

             DO 30 J = 1, I - NB, NB
*
*                Apply H' to A(J:M,I:K) from the left
*
                 CALL CLARFB( 'Left', 'Transpose', 'Forward',
     $                       'Columnwise', M-J+1, K-I+1, NB,
     $                       A( J, J ), LDA, WORK(J), LBWORK,
     $                       A( J, I ), LDA, WORK(LBWORK*NB+NT*NT+1),
     $                       K-I+1)
30           CONTINUE

             CALL CGEQR2( M-I+1, K-I+1, A( I, I ), LDA, TAU( I ),
     $                   WORK(LBWORK*NB+NT*NT+1),IINFO )

         ELSE
*
*        Use unblocked code to factor the last or only block.
*
         CALL CGEQR2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ),
     $               WORK,IINFO )

         END IF
      END IF


*
*     Apply update to the column M+1:N when N > M
*
      IF ( M.LT.N .AND. I.NE.1) THEN
*
*         Form the last triangular factor of the block reflector
*         H = H(i) H(i+1) . . . H(i+ib-1)
*
          IF ( NT .LE. NB ) THEN
               CALL CLARFT( 'Forward', 'Columnwise', M-I+1, K-I+1,
     $                     A( I, I ), LDA, TAU( I ), WORK(I), LBWORK )
          ELSE
               CALL CLARFT( 'Forward', 'Columnwise', M-I+1, K-I+1,
     $                     A( I, I ), LDA, TAU( I ),
     $                     WORK(LBWORK*NB+1), NT )
          END IF

*
*         Apply H' to A(1:M,M+1:N) from the left
*
          DO 40 J = 1, K-NX, NB

               IB = MIN( K-J+1, NB )

               CALL CLARFB( 'Left', 'Transpose', 'Forward',
     $                     'Columnwise', M-J+1, N-M, IB,
     $                     A( J, J ), LDA, WORK(J), LBWORK,
     $                     A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
     $                     N-M)

40       CONTINUE

         IF ( NT.LE.NB ) THEN
             CALL CLARFB( 'Left', 'Transpose', 'Forward',
     $                   'Columnwise', M-J+1, N-M, K-J+1,
     $                   A( J, J ), LDA, WORK(J), LBWORK,
     $                   A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
     $                   N-M)
         ELSE
             CALL CLARFB( 'Left', 'Transpose', 'Forward',
     $                   'Columnwise', M-J+1, N-M, K-J+1,
     $                   A( J, J ), LDA,
     $                   WORK(LBWORK*NB+1),
     $                   NT, A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
     $                   N-M)
         END IF

      END IF

      WORK( 1 ) = SROUNDUP_LWORK(IWS)
      RETURN
*
*     End of CGEQRF
*
      END