numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/cbbcsd.f 39328B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
*> \brief \b CBBCSD
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CBBCSD + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cbbcsd.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cbbcsd.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cbbcsd.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
*                          THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
*                          V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
*                          B22D, B22E, RWORK, LRWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
*       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q
*       ..
*       .. Array Arguments ..
*       REAL               B11D( * ), B11E( * ), B12D( * ), B12E( * ),
*      $                   B21D( * ), B21E( * ), B22D( * ), B22E( * ),
*      $                   PHI( * ), THETA( * ), RWORK( * )
*       COMPLEX            U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
*      $                   V2T( LDV2T, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CBBCSD computes the CS decomposition of a unitary matrix in
*> bidiagonal-block form,
*>
*>
*>     [ B11 | B12 0  0 ]
*>     [  0  |  0 -I  0 ]
*> X = [----------------]
*>     [ B21 | B22 0  0 ]
*>     [  0  |  0  0  I ]
*>
*>                               [  C | -S  0  0 ]
*>                   [ U1 |    ] [  0 |  0 -I  0 ] [ V1 |    ]**H
*>                 = [---------] [---------------] [---------]   .
*>                   [    | U2 ] [  S |  C  0  0 ] [    | V2 ]
*>                               [  0 |  0  0  I ]
*>
*> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
*> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
*> transposed and/or permuted. This can be done in constant time using
*> the TRANS and SIGNS options. See CUNCSD for details.)
*>
*> The bidiagonal matrices B11, B12, B21, and B22 are represented
*> implicitly by angles THETA(1:Q) and PHI(1:Q-1).
*>
*> The unitary matrices U1, U2, V1T, and V2T are input/output.
*> The input matrices are pre- or post-multiplied by the appropriate
*> singular vector matrices.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBU1
*> \verbatim
*>          JOBU1 is CHARACTER
*>          = 'Y':      U1 is updated;
*>          otherwise:  U1 is not updated.
*> \endverbatim
*>
*> \param[in] JOBU2
*> \verbatim
*>          JOBU2 is CHARACTER
*>          = 'Y':      U2 is updated;
*>          otherwise:  U2 is not updated.
*> \endverbatim
*>
*> \param[in] JOBV1T
*> \verbatim
*>          JOBV1T is CHARACTER
*>          = 'Y':      V1T is updated;
*>          otherwise:  V1T is not updated.
*> \endverbatim
*>
*> \param[in] JOBV2T
*> \verbatim
*>          JOBV2T is CHARACTER
*>          = 'Y':      V2T is updated;
*>          otherwise:  V2T is not updated.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER
*>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
*>                      order;
*>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
*>                      major order.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows and columns in X, the unitary matrix in
*>          bidiagonal-block form.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*>          P is INTEGER
*>          The number of rows in the top-left block of X. 0 <= P <= M.
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*>          Q is INTEGER
*>          The number of columns in the top-left block of X.
*>          0 <= Q <= MIN(P,M-P,M-Q).
*> \endverbatim
*>
*> \param[in,out] THETA
*> \verbatim
*>          THETA is REAL array, dimension (Q)
*>          On entry, the angles THETA(1),...,THETA(Q) that, along with
*>          PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
*>          form. On exit, the angles whose cosines and sines define the
*>          diagonal blocks in the CS decomposition.
*> \endverbatim
*>
*> \param[in,out] PHI
*> \verbatim
*>          PHI is REAL array, dimension (Q-1)
*>          The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
*>          THETA(Q), define the matrix in bidiagonal-block form.
*> \endverbatim
*>
*> \param[in,out] U1
*> \verbatim
*>          U1 is COMPLEX array, dimension (LDU1,P)
*>          On entry, a P-by-P matrix. On exit, U1 is postmultiplied
*>          by the left singular vector matrix common to [ B11 ; 0 ] and
*>          [ B12 0 0 ; 0 -I 0 0 ].
*> \endverbatim
*>
*> \param[in] LDU1
*> \verbatim
*>          LDU1 is INTEGER
*>          The leading dimension of the array U1, LDU1 >= MAX(1,P).
*> \endverbatim
*>
*> \param[in,out] U2
*> \verbatim
*>          U2 is COMPLEX array, dimension (LDU2,M-P)
*>          On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is
*>          postmultiplied by the left singular vector matrix common to
*>          [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
*> \endverbatim
*>
*> \param[in] LDU2
*> \verbatim
*>          LDU2 is INTEGER
*>          The leading dimension of the array U2, LDU2 >= MAX(1,M-P).
*> \endverbatim
*>
*> \param[in,out] V1T
*> \verbatim
*>          V1T is COMPLEX array, dimension (LDV1T,Q)
*>          On entry, a Q-by-Q matrix. On exit, V1T is premultiplied
*>          by the conjugate transpose of the right singular vector
*>          matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
*> \endverbatim
*>
*> \param[in] LDV1T
*> \verbatim
*>          LDV1T is INTEGER
*>          The leading dimension of the array V1T, LDV1T >= MAX(1,Q).
*> \endverbatim
*>
*> \param[in,out] V2T
*> \verbatim
*>          V2T is COMPLEX array, dimension (LDV2T,M-Q)
*>          On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is
*>          premultiplied by the conjugate transpose of the right
*>          singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
*>          [ B22 0 0 ; 0 0 I ].
*> \endverbatim
*>
*> \param[in] LDV2T
*> \verbatim
*>          LDV2T is INTEGER
*>          The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q).
*> \endverbatim
*>
*> \param[out] B11D
*> \verbatim
*>          B11D is REAL array, dimension (Q)
*>          When CBBCSD converges, B11D contains the cosines of THETA(1),
*>          ..., THETA(Q). If CBBCSD fails to converge, then B11D
*>          contains the diagonal of the partially reduced top-left
*>          block.
*> \endverbatim
*>
*> \param[out] B11E
*> \verbatim
*>          B11E is REAL array, dimension (Q-1)
*>          When CBBCSD converges, B11E contains zeros. If CBBCSD fails
*>          to converge, then B11E contains the superdiagonal of the
*>          partially reduced top-left block.
*> \endverbatim
*>
*> \param[out] B12D
*> \verbatim
*>          B12D is REAL array, dimension (Q)
*>          When CBBCSD converges, B12D contains the negative sines of
*>          THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
*>          B12D contains the diagonal of the partially reduced top-right
*>          block.
*> \endverbatim
*>
*> \param[out] B12E
*> \verbatim
*>          B12E is REAL array, dimension (Q-1)
*>          When CBBCSD converges, B12E contains zeros. If CBBCSD fails
*>          to converge, then B12E contains the subdiagonal of the
*>          partially reduced top-right block.
*> \endverbatim
*>
*> \param[out] B21D
*> \verbatim
*>          B21D is REAL array, dimension (Q)
*>          When CBBCSD converges, B21D contains the negative sines of
*>          THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
*>          B21D contains the diagonal of the partially reduced bottom-left
*>          block.
*> \endverbatim
*>
*> \param[out] B21E
*> \verbatim
*>          B21E is REAL array, dimension (Q-1)
*>          When CBBCSD converges, B21E contains zeros. If CBBCSD fails
*>          to converge, then B21E contains the subdiagonal of the
*>          partially reduced bottom-left block.
*> \endverbatim
*>
*> \param[out] B22D
*> \verbatim
*>          B22D is REAL array, dimension (Q)
*>          When CBBCSD converges, B22D contains the negative sines of
*>          THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
*>          B22D contains the diagonal of the partially reduced bottom-right
*>          block.
*> \endverbatim
*>
*> \param[out] B22E
*> \verbatim
*>          B22E is REAL array, dimension (Q-1)
*>          When CBBCSD converges, B22E contains zeros. If CBBCSD fails
*>          to converge, then B22E contains the subdiagonal of the
*>          partially reduced bottom-right block.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (MAX(1,LRWORK))
*>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
*> \endverbatim
*>
*> \param[in] LRWORK
*> \verbatim
*>          LRWORK is INTEGER
*>          The dimension of the array RWORK. LRWORK >= MAX(1,8*Q).
*>
*>          If LRWORK = -1, then a workspace query is assumed; the
*>          routine only calculates the optimal size of the RWORK array,
*>          returns this value as the first entry of the work array, and
*>          no error message related to LRWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          > 0:  if CBBCSD did not converge, INFO specifies the number
*>                of nonzero entries in PHI, and B11D, B11E, etc.,
*>                contain the partially reduced matrix.
*> \endverbatim
*
*> \par Internal Parameters:
*  =========================
*>
*> \verbatim
*>  TOLMUL  REAL, default = MAX(10,MIN(100,EPS**(-1/8)))
*>          TOLMUL controls the convergence criterion of the QR loop.
*>          Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
*>          are within TOLMUL*EPS of either bound.
*> \endverbatim
*
*> \par References:
*  ================
*>
*>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*>      Algorithms, 50(1):33-65, 2009.
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup bbcsd
*
*  =====================================================================
      SUBROUTINE CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P,
     $                   Q,
     $                   THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
     $                   V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
     $                   B22D, B22E, RWORK, LRWORK, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
      INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q
*     ..
*     .. Array Arguments ..
      REAL               B11D( * ), B11E( * ), B12D( * ), B12E( * ),
     $                   B21D( * ), B21E( * ), B22D( * ), B22E( * ),
     $                   PHI( * ), THETA( * ), RWORK( * )
      COMPLEX            U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
     $                   V2T( LDV2T, * )
*     ..
*
*  ===================================================================
*
*     .. Parameters ..
      INTEGER            MAXITR
      PARAMETER          ( MAXITR = 6 )
      REAL               HUNDRED, MEIGHTH, ONE, TEN, ZERO
      PARAMETER          ( HUNDRED = 100.0E0, MEIGHTH = -0.125E0,
     $                     ONE = 1.0E0, TEN = 10.0E0, ZERO = 0.0E0 )
      COMPLEX            NEGONECOMPLEX
      PARAMETER          ( NEGONECOMPLEX = (-1.0E0,0.0E0) )
      REAL               PIOVER2
      PARAMETER ( PIOVER2 = 1.57079632679489661923132169163975144210E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            COLMAJOR, LQUERY, RESTART11, RESTART12,
     $                   RESTART21, RESTART22, WANTU1, WANTU2, WANTV1T,
     $                   WANTV2T
      INTEGER            I, IMIN, IMAX, ITER, IU1CS, IU1SN, IU2CS,
     $                   IU2SN, IV1TCS, IV1TSN, IV2TCS, IV2TSN, J,
     $                   LRWORKMIN, LRWORKOPT, MAXIT, MINI
      REAL               B11BULGE, B12BULGE, B21BULGE, B22BULGE, DUMMY,
     $                   EPS, MU, NU, R, SIGMA11, SIGMA21,
     $                   TEMP, THETAMAX, THETAMIN, THRESH, TOL, TOLMUL,
     $                   UNFL, X1, X2, Y1, Y2
*
*     .. External Subroutines ..
      EXTERNAL           CLASR, CSCAL, CSWAP, SLARTGP, SLARTGS,
     $                   SLAS2,
     $                   XERBLA
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      LOGICAL            LSAME
      EXTERNAL           LSAME, SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, ATAN2, COS, MAX, MIN, SIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test input arguments
*
      INFO = 0
      LQUERY = LRWORK .EQ. -1
      WANTU1 = LSAME( JOBU1, 'Y' )
      WANTU2 = LSAME( JOBU2, 'Y' )
      WANTV1T = LSAME( JOBV1T, 'Y' )
      WANTV2T = LSAME( JOBV2T, 'Y' )
      COLMAJOR = .NOT. LSAME( TRANS, 'T' )
*
      IF( M .LT. 0 ) THEN
         INFO = -6
      ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
         INFO = -7
      ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
         INFO = -8
      ELSE IF( Q .GT. P .OR. Q .GT. M-P .OR. Q .GT. M-Q ) THEN
         INFO = -8
      ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
         INFO = -12
      ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
         INFO = -14
      ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
         INFO = -16
      ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
         INFO = -18
      END IF
*
*     Quick return if Q = 0
*
      IF( INFO .EQ. 0 .AND. Q .EQ. 0 ) THEN
         LRWORKMIN = 1
         RWORK(1) = REAL( LRWORKMIN )
         RETURN
      END IF
*
*     Compute workspace
*
      IF( INFO .EQ. 0 ) THEN
         IU1CS = 1
         IU1SN = IU1CS + Q
         IU2CS = IU1SN + Q
         IU2SN = IU2CS + Q
         IV1TCS = IU2SN + Q
         IV1TSN = IV1TCS + Q
         IV2TCS = IV1TSN + Q
         IV2TSN = IV2TCS + Q
         LRWORKOPT = IV2TSN + Q - 1
         LRWORKMIN = LRWORKOPT
         RWORK(1) = REAL( LRWORKOPT )
         IF( LRWORK .LT. LRWORKMIN .AND. .NOT. LQUERY ) THEN
            INFO = -28
         END IF
      END IF
*
      IF( INFO .NE. 0 ) THEN
         CALL XERBLA( 'CBBCSD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Get machine constants
*
      EPS = SLAMCH( 'Epsilon' )
      UNFL = SLAMCH( 'Safe minimum' )
      TOLMUL = MAX( TEN, MIN( HUNDRED, EPS**MEIGHTH ) )
      TOL = TOLMUL*EPS
      THRESH = MAX( TOL, REAL( MAXITR*Q*Q )*UNFL )
*
*     Test for negligible sines or cosines
*
      DO I = 1, Q
         IF( THETA(I) .LT. THRESH ) THEN
            THETA(I) = ZERO
         ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
            THETA(I) = PIOVER2
         END IF
      END DO
      DO I = 1, Q-1
         IF( PHI(I) .LT. THRESH ) THEN
            PHI(I) = ZERO
         ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
            PHI(I) = PIOVER2
         END IF
      END DO
*
*     Initial deflation
*
      IMAX = Q
      DO WHILE( IMAX .GT. 1 )
         IF( PHI(IMAX-1) .NE. ZERO ) THEN
            EXIT
         END IF
         IMAX = IMAX - 1
      END DO
      IMIN = IMAX - 1
      IF  ( IMIN .GT. 1 ) THEN
         DO WHILE( PHI(IMIN-1) .NE. ZERO )
            IMIN = IMIN - 1
            IF  ( IMIN .LE. 1 ) EXIT
         END DO
      END IF
*
*     Initialize iteration counter
*
      MAXIT = MAXITR*Q*Q
      ITER = 0
*
*     Begin main iteration loop
*
      DO WHILE( IMAX .GT. 1 )
*
*        Compute the matrix entries
*
         B11D(IMIN) = COS( THETA(IMIN) )
         B21D(IMIN) = -SIN( THETA(IMIN) )
         DO I = IMIN, IMAX - 1
            B11E(I) = -SIN( THETA(I) ) * SIN( PHI(I) )
            B11D(I+1) = COS( THETA(I+1) ) * COS( PHI(I) )
            B12D(I) = SIN( THETA(I) ) * COS( PHI(I) )
            B12E(I) = COS( THETA(I+1) ) * SIN( PHI(I) )
            B21E(I) = -COS( THETA(I) ) * SIN( PHI(I) )
            B21D(I+1) = -SIN( THETA(I+1) ) * COS( PHI(I) )
            B22D(I) = COS( THETA(I) ) * COS( PHI(I) )
            B22E(I) = -SIN( THETA(I+1) ) * SIN( PHI(I) )
         END DO
         B12D(IMAX) = SIN( THETA(IMAX) )
         B22D(IMAX) = COS( THETA(IMAX) )
*
*        Abort if not converging; otherwise, increment ITER
*
         IF( ITER .GT. MAXIT ) THEN
            INFO = 0
            DO I = 1, Q
               IF( PHI(I) .NE. ZERO )
     $            INFO = INFO + 1
            END DO
            RETURN
         END IF
*
         ITER = ITER + IMAX - IMIN
*
*        Compute shifts
*
         THETAMAX = THETA(IMIN)
         THETAMIN = THETA(IMIN)
         DO I = IMIN+1, IMAX
            IF( THETA(I) > THETAMAX )
     $         THETAMAX = THETA(I)
            IF( THETA(I) < THETAMIN )
     $         THETAMIN = THETA(I)
         END DO
*
         IF( THETAMAX .GT. PIOVER2 - THRESH ) THEN
*
*           Zero on diagonals of B11 and B22; induce deflation with a
*           zero shift
*
            MU = ZERO
            NU = ONE
*
         ELSE IF( THETAMIN .LT. THRESH ) THEN
*
*           Zero on diagonals of B12 and B22; induce deflation with a
*           zero shift
*
            MU = ONE
            NU = ZERO
*
         ELSE
*
*           Compute shifts for B11 and B21 and use the lesser
*
            CALL SLAS2( B11D(IMAX-1), B11E(IMAX-1), B11D(IMAX),
     $                  SIGMA11,
     $                  DUMMY )
            CALL SLAS2( B21D(IMAX-1), B21E(IMAX-1), B21D(IMAX),
     $                  SIGMA21,
     $                  DUMMY )
*
            IF( SIGMA11 .LE. SIGMA21 ) THEN
               MU = SIGMA11
               NU = SQRT( ONE - MU**2 )
               IF( MU .LT. THRESH ) THEN
                  MU = ZERO
                  NU = ONE
               END IF
            ELSE
               NU = SIGMA21
               MU = SQRT( 1.0 - NU**2 )
               IF( NU .LT. THRESH ) THEN
                  MU = ONE
                  NU = ZERO
               END IF
            END IF
         END IF
*
*        Rotate to produce bulges in B11 and B21
*
         IF( MU .LE. NU ) THEN
            CALL SLARTGS( B11D(IMIN), B11E(IMIN), MU,
     $                    RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) )
         ELSE
            CALL SLARTGS( B21D(IMIN), B21E(IMIN), NU,
     $                    RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) )
         END IF
*
         TEMP = RWORK(IV1TCS+IMIN-1)*B11D(IMIN) +
     $          RWORK(IV1TSN+IMIN-1)*B11E(IMIN)
         B11E(IMIN) = RWORK(IV1TCS+IMIN-1)*B11E(IMIN) -
     $                RWORK(IV1TSN+IMIN-1)*B11D(IMIN)
         B11D(IMIN) = TEMP
         B11BULGE = RWORK(IV1TSN+IMIN-1)*B11D(IMIN+1)
         B11D(IMIN+1) = RWORK(IV1TCS+IMIN-1)*B11D(IMIN+1)
         TEMP = RWORK(IV1TCS+IMIN-1)*B21D(IMIN) +
     $          RWORK(IV1TSN+IMIN-1)*B21E(IMIN)
         B21E(IMIN) = RWORK(IV1TCS+IMIN-1)*B21E(IMIN) -
     $                RWORK(IV1TSN+IMIN-1)*B21D(IMIN)
         B21D(IMIN) = TEMP
         B21BULGE = RWORK(IV1TSN+IMIN-1)*B21D(IMIN+1)
         B21D(IMIN+1) = RWORK(IV1TCS+IMIN-1)*B21D(IMIN+1)
*
*        Compute THETA(IMIN)
*
         THETA( IMIN ) = ATAN2( SQRT( B21D(IMIN)**2+B21BULGE**2 ),
     $                   SQRT( B11D(IMIN)**2+B11BULGE**2 ) )
*
*        Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN)
*
         IF( B11D(IMIN)**2+B11BULGE**2 .GT. THRESH**2 ) THEN
            CALL SLARTGP( B11BULGE, B11D(IMIN), RWORK(IU1SN+IMIN-1),
     $                    RWORK(IU1CS+IMIN-1), R )
         ELSE IF( MU .LE. NU ) THEN
            CALL SLARTGS( B11E( IMIN ), B11D( IMIN + 1 ), MU,
     $                    RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) )
         ELSE
            CALL SLARTGS( B12D( IMIN ), B12E( IMIN ), NU,
     $                    RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) )
         END IF
         IF( B21D(IMIN)**2+B21BULGE**2 .GT. THRESH**2 ) THEN
            CALL SLARTGP( B21BULGE, B21D(IMIN), RWORK(IU2SN+IMIN-1),
     $                    RWORK(IU2CS+IMIN-1), R )
         ELSE IF( NU .LT. MU ) THEN
            CALL SLARTGS( B21E( IMIN ), B21D( IMIN + 1 ), NU,
     $                    RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) )
         ELSE
            CALL SLARTGS( B22D(IMIN), B22E(IMIN), MU,
     $                    RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) )
         END IF
         RWORK(IU2CS+IMIN-1) = -RWORK(IU2CS+IMIN-1)
         RWORK(IU2SN+IMIN-1) = -RWORK(IU2SN+IMIN-1)
*
         TEMP = RWORK(IU1CS+IMIN-1)*B11E(IMIN) +
     $          RWORK(IU1SN+IMIN-1)*B11D(IMIN+1)
         B11D(IMIN+1) = RWORK(IU1CS+IMIN-1)*B11D(IMIN+1) -
     $                  RWORK(IU1SN+IMIN-1)*B11E(IMIN)
         B11E(IMIN) = TEMP
         IF( IMAX .GT. IMIN+1 ) THEN
            B11BULGE = RWORK(IU1SN+IMIN-1)*B11E(IMIN+1)
            B11E(IMIN+1) = RWORK(IU1CS+IMIN-1)*B11E(IMIN+1)
         END IF
         TEMP = RWORK(IU1CS+IMIN-1)*B12D(IMIN) +
     $          RWORK(IU1SN+IMIN-1)*B12E(IMIN)
         B12E(IMIN) = RWORK(IU1CS+IMIN-1)*B12E(IMIN) -
     $                RWORK(IU1SN+IMIN-1)*B12D(IMIN)
         B12D(IMIN) = TEMP
         B12BULGE = RWORK(IU1SN+IMIN-1)*B12D(IMIN+1)
         B12D(IMIN+1) = RWORK(IU1CS+IMIN-1)*B12D(IMIN+1)
         TEMP = RWORK(IU2CS+IMIN-1)*B21E(IMIN) +
     $          RWORK(IU2SN+IMIN-1)*B21D(IMIN+1)
         B21D(IMIN+1) = RWORK(IU2CS+IMIN-1)*B21D(IMIN+1) -
     $                  RWORK(IU2SN+IMIN-1)*B21E(IMIN)
         B21E(IMIN) = TEMP
         IF( IMAX .GT. IMIN+1 ) THEN
            B21BULGE = RWORK(IU2SN+IMIN-1)*B21E(IMIN+1)
            B21E(IMIN+1) = RWORK(IU2CS+IMIN-1)*B21E(IMIN+1)
         END IF
         TEMP = RWORK(IU2CS+IMIN-1)*B22D(IMIN) +
     $          RWORK(IU2SN+IMIN-1)*B22E(IMIN)
         B22E(IMIN) = RWORK(IU2CS+IMIN-1)*B22E(IMIN) -
     $                RWORK(IU2SN+IMIN-1)*B22D(IMIN)
         B22D(IMIN) = TEMP
         B22BULGE = RWORK(IU2SN+IMIN-1)*B22D(IMIN+1)
         B22D(IMIN+1) = RWORK(IU2CS+IMIN-1)*B22D(IMIN+1)
*
*        Inner loop: chase bulges from B11(IMIN,IMIN+2),
*        B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to
*        bottom-right
*
         DO I = IMIN+1, IMAX-1
*
*           Compute PHI(I-1)
*
            X1 = SIN(THETA(I-1))*B11E(I-1) + COS(THETA(I-1))*B21E(I-1)
            X2 = SIN(THETA(I-1))*B11BULGE + COS(THETA(I-1))*B21BULGE
            Y1 = SIN(THETA(I-1))*B12D(I-1) + COS(THETA(I-1))*B22D(I-1)
            Y2 = SIN(THETA(I-1))*B12BULGE + COS(THETA(I-1))*B22BULGE
*
            PHI(I-1) = ATAN2( SQRT(X1**2+X2**2), SQRT(Y1**2+Y2**2) )
*
*           Determine if there are bulges to chase or if a new direct
*           summand has been reached
*
            RESTART11 = B11E(I-1)**2 + B11BULGE**2 .LE. THRESH**2
            RESTART21 = B21E(I-1)**2 + B21BULGE**2 .LE. THRESH**2
            RESTART12 = B12D(I-1)**2 + B12BULGE**2 .LE. THRESH**2
            RESTART22 = B22D(I-1)**2 + B22BULGE**2 .LE. THRESH**2
*
*           If possible, chase bulges from B11(I-1,I+1), B12(I-1,I),
*           B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge-
*           chasing by applying the original shift again.
*
            IF( .NOT. RESTART11 .AND. .NOT. RESTART21 ) THEN
               CALL SLARTGP( X2, X1, RWORK(IV1TSN+I-1),
     $                       RWORK(IV1TCS+I-1), R )
            ELSE IF( .NOT. RESTART11 .AND. RESTART21 ) THEN
               CALL SLARTGP( B11BULGE, B11E(I-1), RWORK(IV1TSN+I-1),
     $                       RWORK(IV1TCS+I-1), R )
            ELSE IF( RESTART11 .AND. .NOT. RESTART21 ) THEN
               CALL SLARTGP( B21BULGE, B21E(I-1), RWORK(IV1TSN+I-1),
     $                       RWORK(IV1TCS+I-1), R )
            ELSE IF( MU .LE. NU ) THEN
               CALL SLARTGS( B11D(I), B11E(I), MU, RWORK(IV1TCS+I-1),
     $                       RWORK(IV1TSN+I-1) )
            ELSE
               CALL SLARTGS( B21D(I), B21E(I), NU, RWORK(IV1TCS+I-1),
     $                       RWORK(IV1TSN+I-1) )
            END IF
            RWORK(IV1TCS+I-1) = -RWORK(IV1TCS+I-1)
            RWORK(IV1TSN+I-1) = -RWORK(IV1TSN+I-1)
            IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
               CALL SLARTGP( Y2, Y1, RWORK(IV2TSN+I-1-1),
     $                       RWORK(IV2TCS+I-1-1), R )
            ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
               CALL SLARTGP( B12BULGE, B12D(I-1),
     $                       RWORK(IV2TSN+I-1-1),
     $                       RWORK(IV2TCS+I-1-1), R )
            ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
               CALL SLARTGP( B22BULGE, B22D(I-1),
     $                       RWORK(IV2TSN+I-1-1),
     $                       RWORK(IV2TCS+I-1-1), R )
            ELSE IF( NU .LT. MU ) THEN
               CALL SLARTGS( B12E(I-1), B12D(I), NU,
     $                       RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) )
            ELSE
               CALL SLARTGS( B22E(I-1), B22D(I), MU,
     $                       RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) )
            END IF
*
            TEMP = RWORK(IV1TCS+I-1)*B11D(I) + RWORK(IV1TSN+I-1)*B11E(I)
            B11E(I) = RWORK(IV1TCS+I-1)*B11E(I) -
     $                RWORK(IV1TSN+I-1)*B11D(I)
            B11D(I) = TEMP
            B11BULGE = RWORK(IV1TSN+I-1)*B11D(I+1)
            B11D(I+1) = RWORK(IV1TCS+I-1)*B11D(I+1)
            TEMP = RWORK(IV1TCS+I-1)*B21D(I) + RWORK(IV1TSN+I-1)*B21E(I)
            B21E(I) = RWORK(IV1TCS+I-1)*B21E(I) -
     $                RWORK(IV1TSN+I-1)*B21D(I)
            B21D(I) = TEMP
            B21BULGE = RWORK(IV1TSN+I-1)*B21D(I+1)
            B21D(I+1) = RWORK(IV1TCS+I-1)*B21D(I+1)
            TEMP = RWORK(IV2TCS+I-1-1)*B12E(I-1) +
     $             RWORK(IV2TSN+I-1-1)*B12D(I)
            B12D(I) = RWORK(IV2TCS+I-1-1)*B12D(I) -
     $                RWORK(IV2TSN+I-1-1)*B12E(I-1)
            B12E(I-1) = TEMP
            B12BULGE = RWORK(IV2TSN+I-1-1)*B12E(I)
            B12E(I) = RWORK(IV2TCS+I-1-1)*B12E(I)
            TEMP = RWORK(IV2TCS+I-1-1)*B22E(I-1) +
     $             RWORK(IV2TSN+I-1-1)*B22D(I)
            B22D(I) = RWORK(IV2TCS+I-1-1)*B22D(I) -
     $                RWORK(IV2TSN+I-1-1)*B22E(I-1)
            B22E(I-1) = TEMP
            B22BULGE = RWORK(IV2TSN+I-1-1)*B22E(I)
            B22E(I) = RWORK(IV2TCS+I-1-1)*B22E(I)
*
*           Compute THETA(I)
*
            X1 = COS(PHI(I-1))*B11D(I) + SIN(PHI(I-1))*B12E(I-1)
            X2 = COS(PHI(I-1))*B11BULGE + SIN(PHI(I-1))*B12BULGE
            Y1 = COS(PHI(I-1))*B21D(I) + SIN(PHI(I-1))*B22E(I-1)
            Y2 = COS(PHI(I-1))*B21BULGE + SIN(PHI(I-1))*B22BULGE
*
            THETA(I) = ATAN2( SQRT(Y1**2+Y2**2), SQRT(X1**2+X2**2) )
*
*           Determine if there are bulges to chase or if a new direct
*           summand has been reached
*
            RESTART11 =   B11D(I)**2 + B11BULGE**2 .LE. THRESH**2
            RESTART12 = B12E(I-1)**2 + B12BULGE**2 .LE. THRESH**2
            RESTART21 =   B21D(I)**2 + B21BULGE**2 .LE. THRESH**2
            RESTART22 = B22E(I-1)**2 + B22BULGE**2 .LE. THRESH**2
*
*           If possible, chase bulges from B11(I+1,I), B12(I+1,I-1),
*           B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge-
*           chasing by applying the original shift again.
*
            IF( .NOT. RESTART11 .AND. .NOT. RESTART12 ) THEN
               CALL SLARTGP( X2, X1, RWORK(IU1SN+I-1),
     $                       RWORK(IU1CS+I-1),
     $                       R )
            ELSE IF( .NOT. RESTART11 .AND. RESTART12 ) THEN
               CALL SLARTGP( B11BULGE, B11D(I), RWORK(IU1SN+I-1),
     $                       RWORK(IU1CS+I-1), R )
            ELSE IF( RESTART11 .AND. .NOT. RESTART12 ) THEN
               CALL SLARTGP( B12BULGE, B12E(I-1), RWORK(IU1SN+I-1),
     $                       RWORK(IU1CS+I-1), R )
            ELSE IF( MU .LE. NU ) THEN
               CALL SLARTGS( B11E(I), B11D(I+1), MU,
     $                       RWORK(IU1CS+I-1),
     $                       RWORK(IU1SN+I-1) )
            ELSE
               CALL SLARTGS( B12D(I), B12E(I), NU, RWORK(IU1CS+I-1),
     $                       RWORK(IU1SN+I-1) )
            END IF
            IF( .NOT. RESTART21 .AND. .NOT. RESTART22 ) THEN
               CALL SLARTGP( Y2, Y1, RWORK(IU2SN+I-1),
     $                       RWORK(IU2CS+I-1),
     $                       R )
            ELSE IF( .NOT. RESTART21 .AND. RESTART22 ) THEN
               CALL SLARTGP( B21BULGE, B21D(I), RWORK(IU2SN+I-1),
     $                       RWORK(IU2CS+I-1), R )
            ELSE IF( RESTART21 .AND. .NOT. RESTART22 ) THEN
               CALL SLARTGP( B22BULGE, B22E(I-1), RWORK(IU2SN+I-1),
     $                       RWORK(IU2CS+I-1), R )
            ELSE IF( NU .LT. MU ) THEN
               CALL SLARTGS( B21E(I), B21E(I+1), NU,
     $                       RWORK(IU2CS+I-1),
     $                       RWORK(IU2SN+I-1) )
            ELSE
               CALL SLARTGS( B22D(I), B22E(I), MU, RWORK(IU2CS+I-1),
     $                       RWORK(IU2SN+I-1) )
            END IF
            RWORK(IU2CS+I-1) = -RWORK(IU2CS+I-1)
            RWORK(IU2SN+I-1) = -RWORK(IU2SN+I-1)
*
            TEMP = RWORK(IU1CS+I-1)*B11E(I) + RWORK(IU1SN+I-1)*B11D(I+1)
            B11D(I+1) = RWORK(IU1CS+I-1)*B11D(I+1) -
     $                  RWORK(IU1SN+I-1)*B11E(I)
            B11E(I) = TEMP
            IF( I .LT. IMAX - 1 ) THEN
               B11BULGE = RWORK(IU1SN+I-1)*B11E(I+1)
               B11E(I+1) = RWORK(IU1CS+I-1)*B11E(I+1)
            END IF
            TEMP = RWORK(IU2CS+I-1)*B21E(I) + RWORK(IU2SN+I-1)*B21D(I+1)
            B21D(I+1) = RWORK(IU2CS+I-1)*B21D(I+1) -
     $                  RWORK(IU2SN+I-1)*B21E(I)
            B21E(I) = TEMP
            IF( I .LT. IMAX - 1 ) THEN
               B21BULGE = RWORK(IU2SN+I-1)*B21E(I+1)
               B21E(I+1) = RWORK(IU2CS+I-1)*B21E(I+1)
            END IF
            TEMP = RWORK(IU1CS+I-1)*B12D(I) + RWORK(IU1SN+I-1)*B12E(I)
            B12E(I) = RWORK(IU1CS+I-1)*B12E(I) -
     $                RWORK(IU1SN+I-1)*B12D(I)
            B12D(I) = TEMP
            B12BULGE = RWORK(IU1SN+I-1)*B12D(I+1)
            B12D(I+1) = RWORK(IU1CS+I-1)*B12D(I+1)
            TEMP = RWORK(IU2CS+I-1)*B22D(I) + RWORK(IU2SN+I-1)*B22E(I)
            B22E(I) = RWORK(IU2CS+I-1)*B22E(I) -
     $                RWORK(IU2SN+I-1)*B22D(I)
            B22D(I) = TEMP
            B22BULGE = RWORK(IU2SN+I-1)*B22D(I+1)
            B22D(I+1) = RWORK(IU2CS+I-1)*B22D(I+1)
*
         END DO
*
*        Compute PHI(IMAX-1)
*
         X1 = SIN(THETA(IMAX-1))*B11E(IMAX-1) +
     $        COS(THETA(IMAX-1))*B21E(IMAX-1)
         Y1 = SIN(THETA(IMAX-1))*B12D(IMAX-1) +
     $        COS(THETA(IMAX-1))*B22D(IMAX-1)
         Y2 = SIN(THETA(IMAX-1))*B12BULGE + COS(THETA(IMAX-1))*B22BULGE
*
         PHI(IMAX-1) = ATAN2( ABS(X1), SQRT(Y1**2+Y2**2) )
*
*        Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX)
*
         RESTART12 = B12D(IMAX-1)**2 + B12BULGE**2 .LE. THRESH**2
         RESTART22 = B22D(IMAX-1)**2 + B22BULGE**2 .LE. THRESH**2
*
         IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
            CALL SLARTGP( Y2, Y1, RWORK(IV2TSN+IMAX-1-1),
     $                    RWORK(IV2TCS+IMAX-1-1), R )
         ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
            CALL SLARTGP( B12BULGE, B12D(IMAX-1),
     $                    RWORK(IV2TSN+IMAX-1-1),
     $                    RWORK(IV2TCS+IMAX-1-1), R )
         ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
            CALL SLARTGP( B22BULGE, B22D(IMAX-1),
     $                    RWORK(IV2TSN+IMAX-1-1),
     $                    RWORK(IV2TCS+IMAX-1-1), R )
         ELSE IF( NU .LT. MU ) THEN
            CALL SLARTGS( B12E(IMAX-1), B12D(IMAX), NU,
     $                    RWORK(IV2TCS+IMAX-1-1),
     $                    RWORK(IV2TSN+IMAX-1-1) )
         ELSE
            CALL SLARTGS( B22E(IMAX-1), B22D(IMAX), MU,
     $                    RWORK(IV2TCS+IMAX-1-1),
     $                    RWORK(IV2TSN+IMAX-1-1) )
         END IF
*
         TEMP = RWORK(IV2TCS+IMAX-1-1)*B12E(IMAX-1) +
     $          RWORK(IV2TSN+IMAX-1-1)*B12D(IMAX)
         B12D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B12D(IMAX) -
     $                RWORK(IV2TSN+IMAX-1-1)*B12E(IMAX-1)
         B12E(IMAX-1) = TEMP
         TEMP = RWORK(IV2TCS+IMAX-1-1)*B22E(IMAX-1) +
     $          RWORK(IV2TSN+IMAX-1-1)*B22D(IMAX)
         B22D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B22D(IMAX) -
     $                RWORK(IV2TSN+IMAX-1-1)*B22E(IMAX-1)
         B22E(IMAX-1) = TEMP
*
*        Update singular vectors
*
         IF( WANTU1 ) THEN
            IF( COLMAJOR ) THEN
               CALL CLASR( 'R', 'V', 'F', P, IMAX-IMIN+1,
     $                     RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1),
     $                     U1(1,IMIN), LDU1 )
            ELSE
               CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, P,
     $                     RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1),
     $                     U1(IMIN,1), LDU1 )
            END IF
         END IF
         IF( WANTU2 ) THEN
            IF( COLMAJOR ) THEN
               CALL CLASR( 'R', 'V', 'F', M-P, IMAX-IMIN+1,
     $                     RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1),
     $                     U2(1,IMIN), LDU2 )
            ELSE
               CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-P,
     $                     RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1),
     $                     U2(IMIN,1), LDU2 )
            END IF
         END IF
         IF( WANTV1T ) THEN
            IF( COLMAJOR ) THEN
               CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, Q,
     $                     RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1),
     $                     V1T(IMIN,1), LDV1T )
            ELSE
               CALL CLASR( 'R', 'V', 'F', Q, IMAX-IMIN+1,
     $                     RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1),
     $                     V1T(1,IMIN), LDV1T )
            END IF
         END IF
         IF( WANTV2T ) THEN
            IF( COLMAJOR ) THEN
               CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-Q,
     $                     RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1),
     $                     V2T(IMIN,1), LDV2T )
            ELSE
               CALL CLASR( 'R', 'V', 'F', M-Q, IMAX-IMIN+1,
     $                     RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1),
     $                     V2T(1,IMIN), LDV2T )
            END IF
         END IF
*
*        Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX)
*
         IF( B11E(IMAX-1)+B21E(IMAX-1) .GT. 0 ) THEN
            B11D(IMAX) = -B11D(IMAX)
            B21D(IMAX) = -B21D(IMAX)
            IF( WANTV1T ) THEN
               IF( COLMAJOR ) THEN
                  CALL CSCAL( Q, NEGONECOMPLEX, V1T(IMAX,1), LDV1T )
               ELSE
                  CALL CSCAL( Q, NEGONECOMPLEX, V1T(1,IMAX), 1 )
               END IF
            END IF
         END IF
*
*        Compute THETA(IMAX)
*
         X1 = COS(PHI(IMAX-1))*B11D(IMAX) +
     $        SIN(PHI(IMAX-1))*B12E(IMAX-1)
         Y1 = COS(PHI(IMAX-1))*B21D(IMAX) +
     $        SIN(PHI(IMAX-1))*B22E(IMAX-1)
*
         THETA(IMAX) = ATAN2( ABS(Y1), ABS(X1) )
*
*        Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX),
*        and B22(IMAX,IMAX-1)
*
         IF( B11D(IMAX)+B12E(IMAX-1) .LT. 0 ) THEN
            B12D(IMAX) = -B12D(IMAX)
            IF( WANTU1 ) THEN
               IF( COLMAJOR ) THEN
                  CALL CSCAL( P, NEGONECOMPLEX, U1(1,IMAX), 1 )
               ELSE
                  CALL CSCAL( P, NEGONECOMPLEX, U1(IMAX,1), LDU1 )
               END IF
            END IF
         END IF
         IF( B21D(IMAX)+B22E(IMAX-1) .GT. 0 ) THEN
            B22D(IMAX) = -B22D(IMAX)
            IF( WANTU2 ) THEN
               IF( COLMAJOR ) THEN
                  CALL CSCAL( M-P, NEGONECOMPLEX, U2(1,IMAX), 1 )
               ELSE
                  CALL CSCAL( M-P, NEGONECOMPLEX, U2(IMAX,1), LDU2 )
               END IF
            END IF
         END IF
*
*        Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX)
*
         IF( B12D(IMAX)+B22D(IMAX) .LT. 0 ) THEN
            IF( WANTV2T ) THEN
               IF( COLMAJOR ) THEN
                  CALL CSCAL( M-Q, NEGONECOMPLEX, V2T(IMAX,1),
     $                        LDV2T )
               ELSE
                  CALL CSCAL( M-Q, NEGONECOMPLEX, V2T(1,IMAX), 1 )
               END IF
            END IF
         END IF
*
*        Test for negligible sines or cosines
*
         DO I = IMIN, IMAX
            IF( THETA(I) .LT. THRESH ) THEN
               THETA(I) = ZERO
            ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
               THETA(I) = PIOVER2
            END IF
         END DO
         DO I = IMIN, IMAX-1
            IF( PHI(I) .LT. THRESH ) THEN
               PHI(I) = ZERO
            ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
               PHI(I) = PIOVER2
            END IF
         END DO
*
*        Deflate
*
         IF (IMAX .GT. 1) THEN
            DO WHILE( PHI(IMAX-1) .EQ. ZERO )
               IMAX = IMAX - 1
               IF (IMAX .LE. 1) EXIT
            END DO
         END IF
         IF( IMIN .GT. IMAX - 1 )
     $      IMIN = IMAX - 1
         IF (IMIN .GT. 1) THEN
            DO WHILE (PHI(IMIN-1) .NE. ZERO)
                IMIN = IMIN - 1
                IF (IMIN .LE. 1) EXIT
            END DO
         END IF
*
*        Repeat main iteration loop
*
      END DO
*
*     Postprocessing: order THETA from least to greatest
*
      DO I = 1, Q
*
         MINI = I
         THETAMIN = THETA(I)
         DO J = I+1, Q
            IF( THETA(J) .LT. THETAMIN ) THEN
               MINI = J
               THETAMIN = THETA(J)
            END IF
         END DO
*
         IF( MINI .NE. I ) THEN
            THETA(MINI) = THETA(I)
            THETA(I) = THETAMIN
            IF( COLMAJOR ) THEN
               IF( WANTU1 )
     $            CALL CSWAP( P, U1(1,I), 1, U1(1,MINI), 1 )
               IF( WANTU2 )
     $            CALL CSWAP( M-P, U2(1,I), 1, U2(1,MINI), 1 )
               IF( WANTV1T )
     $            CALL CSWAP( Q, V1T(I,1), LDV1T, V1T(MINI,1),
     $                        LDV1T )
               IF( WANTV2T )
     $            CALL CSWAP( M-Q, V2T(I,1), LDV2T, V2T(MINI,1),
     $               LDV2T )
            ELSE
               IF( WANTU1 )
     $            CALL CSWAP( P, U1(I,1), LDU1, U1(MINI,1), LDU1 )
               IF( WANTU2 )
     $            CALL CSWAP( M-P, U2(I,1), LDU2, U2(MINI,1), LDU2 )
               IF( WANTV1T )
     $            CALL CSWAP( Q, V1T(1,I), 1, V1T(1,MINI), 1 )
               IF( WANTV2T )
     $            CALL CSWAP( M-Q, V2T(1,I), 1, V2T(1,MINI), 1 )
            END IF
         END IF
*
      END DO
*
      RETURN
*
*     End of CBBCSD
*
      END