numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/cbbcsd.f | 39328B | -rw-r--r-- |
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
*> \brief \b CBBCSD * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CBBCSD + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cbbcsd.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cbbcsd.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cbbcsd.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, * THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, * V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E, * B22D, B22E, RWORK, LRWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS * INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q * .. * .. Array Arguments .. * REAL B11D( * ), B11E( * ), B12D( * ), B12E( * ), * $ B21D( * ), B21E( * ), B22D( * ), B22E( * ), * $ PHI( * ), THETA( * ), RWORK( * ) * COMPLEX U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), * $ V2T( LDV2T, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CBBCSD computes the CS decomposition of a unitary matrix in *> bidiagonal-block form, *> *> *> [ B11 | B12 0 0 ] *> [ 0 | 0 -I 0 ] *> X = [----------------] *> [ B21 | B22 0 0 ] *> [ 0 | 0 0 I ] *> *> [ C | -S 0 0 ] *> [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**H *> = [---------] [---------------] [---------] . *> [ | U2 ] [ S | C 0 0 ] [ | V2 ] *> [ 0 | 0 0 I ] *> *> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger *> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be *> transposed and/or permuted. This can be done in constant time using *> the TRANS and SIGNS options. See CUNCSD for details.) *> *> The bidiagonal matrices B11, B12, B21, and B22 are represented *> implicitly by angles THETA(1:Q) and PHI(1:Q-1). *> *> The unitary matrices U1, U2, V1T, and V2T are input/output. *> The input matrices are pre- or post-multiplied by the appropriate *> singular vector matrices. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBU1 *> \verbatim *> JOBU1 is CHARACTER *> = 'Y': U1 is updated; *> otherwise: U1 is not updated. *> \endverbatim *> *> \param[in] JOBU2 *> \verbatim *> JOBU2 is CHARACTER *> = 'Y': U2 is updated; *> otherwise: U2 is not updated. *> \endverbatim *> *> \param[in] JOBV1T *> \verbatim *> JOBV1T is CHARACTER *> = 'Y': V1T is updated; *> otherwise: V1T is not updated. *> \endverbatim *> *> \param[in] JOBV2T *> \verbatim *> JOBV2T is CHARACTER *> = 'Y': V2T is updated; *> otherwise: V2T is not updated. *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER *> = 'T': X, U1, U2, V1T, and V2T are stored in row-major *> order; *> otherwise: X, U1, U2, V1T, and V2T are stored in column- *> major order. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows and columns in X, the unitary matrix in *> bidiagonal-block form. *> \endverbatim *> *> \param[in] P *> \verbatim *> P is INTEGER *> The number of rows in the top-left block of X. 0 <= P <= M. *> \endverbatim *> *> \param[in] Q *> \verbatim *> Q is INTEGER *> The number of columns in the top-left block of X. *> 0 <= Q <= MIN(P,M-P,M-Q). *> \endverbatim *> *> \param[in,out] THETA *> \verbatim *> THETA is REAL array, dimension (Q) *> On entry, the angles THETA(1),...,THETA(Q) that, along with *> PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block *> form. On exit, the angles whose cosines and sines define the *> diagonal blocks in the CS decomposition. *> \endverbatim *> *> \param[in,out] PHI *> \verbatim *> PHI is REAL array, dimension (Q-1) *> The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),..., *> THETA(Q), define the matrix in bidiagonal-block form. *> \endverbatim *> *> \param[in,out] U1 *> \verbatim *> U1 is COMPLEX array, dimension (LDU1,P) *> On entry, a P-by-P matrix. On exit, U1 is postmultiplied *> by the left singular vector matrix common to [ B11 ; 0 ] and *> [ B12 0 0 ; 0 -I 0 0 ]. *> \endverbatim *> *> \param[in] LDU1 *> \verbatim *> LDU1 is INTEGER *> The leading dimension of the array U1, LDU1 >= MAX(1,P). *> \endverbatim *> *> \param[in,out] U2 *> \verbatim *> U2 is COMPLEX array, dimension (LDU2,M-P) *> On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is *> postmultiplied by the left singular vector matrix common to *> [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ]. *> \endverbatim *> *> \param[in] LDU2 *> \verbatim *> LDU2 is INTEGER *> The leading dimension of the array U2, LDU2 >= MAX(1,M-P). *> \endverbatim *> *> \param[in,out] V1T *> \verbatim *> V1T is COMPLEX array, dimension (LDV1T,Q) *> On entry, a Q-by-Q matrix. On exit, V1T is premultiplied *> by the conjugate transpose of the right singular vector *> matrix common to [ B11 ; 0 ] and [ B21 ; 0 ]. *> \endverbatim *> *> \param[in] LDV1T *> \verbatim *> LDV1T is INTEGER *> The leading dimension of the array V1T, LDV1T >= MAX(1,Q). *> \endverbatim *> *> \param[in,out] V2T *> \verbatim *> V2T is COMPLEX array, dimension (LDV2T,M-Q) *> On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is *> premultiplied by the conjugate transpose of the right *> singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and *> [ B22 0 0 ; 0 0 I ]. *> \endverbatim *> *> \param[in] LDV2T *> \verbatim *> LDV2T is INTEGER *> The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q). *> \endverbatim *> *> \param[out] B11D *> \verbatim *> B11D is REAL array, dimension (Q) *> When CBBCSD converges, B11D contains the cosines of THETA(1), *> ..., THETA(Q). If CBBCSD fails to converge, then B11D *> contains the diagonal of the partially reduced top-left *> block. *> \endverbatim *> *> \param[out] B11E *> \verbatim *> B11E is REAL array, dimension (Q-1) *> When CBBCSD converges, B11E contains zeros. If CBBCSD fails *> to converge, then B11E contains the superdiagonal of the *> partially reduced top-left block. *> \endverbatim *> *> \param[out] B12D *> \verbatim *> B12D is REAL array, dimension (Q) *> When CBBCSD converges, B12D contains the negative sines of *> THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then *> B12D contains the diagonal of the partially reduced top-right *> block. *> \endverbatim *> *> \param[out] B12E *> \verbatim *> B12E is REAL array, dimension (Q-1) *> When CBBCSD converges, B12E contains zeros. If CBBCSD fails *> to converge, then B12E contains the subdiagonal of the *> partially reduced top-right block. *> \endverbatim *> *> \param[out] B21D *> \verbatim *> B21D is REAL array, dimension (Q) *> When CBBCSD converges, B21D contains the negative sines of *> THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then *> B21D contains the diagonal of the partially reduced bottom-left *> block. *> \endverbatim *> *> \param[out] B21E *> \verbatim *> B21E is REAL array, dimension (Q-1) *> When CBBCSD converges, B21E contains zeros. If CBBCSD fails *> to converge, then B21E contains the subdiagonal of the *> partially reduced bottom-left block. *> \endverbatim *> *> \param[out] B22D *> \verbatim *> B22D is REAL array, dimension (Q) *> When CBBCSD converges, B22D contains the negative sines of *> THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then *> B22D contains the diagonal of the partially reduced bottom-right *> block. *> \endverbatim *> *> \param[out] B22E *> \verbatim *> B22E is REAL array, dimension (Q-1) *> When CBBCSD converges, B22E contains zeros. If CBBCSD fails *> to converge, then B22E contains the subdiagonal of the *> partially reduced bottom-right block. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (MAX(1,LRWORK)) *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. *> \endverbatim *> *> \param[in] LRWORK *> \verbatim *> LRWORK is INTEGER *> The dimension of the array RWORK. LRWORK >= MAX(1,8*Q). *> *> If LRWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal size of the RWORK array, *> returns this value as the first entry of the work array, and *> no error message related to LRWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: if CBBCSD did not converge, INFO specifies the number *> of nonzero entries in PHI, and B11D, B11E, etc., *> contain the partially reduced matrix. *> \endverbatim * *> \par Internal Parameters: * ========================= *> *> \verbatim *> TOLMUL REAL, default = MAX(10,MIN(100,EPS**(-1/8))) *> TOLMUL controls the convergence criterion of the QR loop. *> Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they *> are within TOLMUL*EPS of either bound. *> \endverbatim * *> \par References: * ================ *> *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. *> Algorithms, 50(1):33-65, 2009. * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup bbcsd * * ===================================================================== SUBROUTINE CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, $ Q, $ THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, $ V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E, $ B22D, B22E, RWORK, LRWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q * .. * .. Array Arguments .. REAL B11D( * ), B11E( * ), B12D( * ), B12E( * ), $ B21D( * ), B21E( * ), B22D( * ), B22E( * ), $ PHI( * ), THETA( * ), RWORK( * ) COMPLEX U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), $ V2T( LDV2T, * ) * .. * * =================================================================== * * .. Parameters .. INTEGER MAXITR PARAMETER ( MAXITR = 6 ) REAL HUNDRED, MEIGHTH, ONE, TEN, ZERO PARAMETER ( HUNDRED = 100.0E0, MEIGHTH = -0.125E0, $ ONE = 1.0E0, TEN = 10.0E0, ZERO = 0.0E0 ) COMPLEX NEGONECOMPLEX PARAMETER ( NEGONECOMPLEX = (-1.0E0,0.0E0) ) REAL PIOVER2 PARAMETER ( PIOVER2 = 1.57079632679489661923132169163975144210E0 ) * .. * .. Local Scalars .. LOGICAL COLMAJOR, LQUERY, RESTART11, RESTART12, $ RESTART21, RESTART22, WANTU1, WANTU2, WANTV1T, $ WANTV2T INTEGER I, IMIN, IMAX, ITER, IU1CS, IU1SN, IU2CS, $ IU2SN, IV1TCS, IV1TSN, IV2TCS, IV2TSN, J, $ LRWORKMIN, LRWORKOPT, MAXIT, MINI REAL B11BULGE, B12BULGE, B21BULGE, B22BULGE, DUMMY, $ EPS, MU, NU, R, SIGMA11, SIGMA21, $ TEMP, THETAMAX, THETAMIN, THRESH, TOL, TOLMUL, $ UNFL, X1, X2, Y1, Y2 * * .. External Subroutines .. EXTERNAL CLASR, CSCAL, CSWAP, SLARTGP, SLARTGS, $ SLAS2, $ XERBLA * .. * .. External Functions .. REAL SLAMCH LOGICAL LSAME EXTERNAL LSAME, SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, ATAN2, COS, MAX, MIN, SIN, SQRT * .. * .. Executable Statements .. * * Test input arguments * INFO = 0 LQUERY = LRWORK .EQ. -1 WANTU1 = LSAME( JOBU1, 'Y' ) WANTU2 = LSAME( JOBU2, 'Y' ) WANTV1T = LSAME( JOBV1T, 'Y' ) WANTV2T = LSAME( JOBV2T, 'Y' ) COLMAJOR = .NOT. LSAME( TRANS, 'T' ) * IF( M .LT. 0 ) THEN INFO = -6 ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN INFO = -7 ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN INFO = -8 ELSE IF( Q .GT. P .OR. Q .GT. M-P .OR. Q .GT. M-Q ) THEN INFO = -8 ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN INFO = -12 ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN INFO = -14 ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN INFO = -16 ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN INFO = -18 END IF * * Quick return if Q = 0 * IF( INFO .EQ. 0 .AND. Q .EQ. 0 ) THEN LRWORKMIN = 1 RWORK(1) = REAL( LRWORKMIN ) RETURN END IF * * Compute workspace * IF( INFO .EQ. 0 ) THEN IU1CS = 1 IU1SN = IU1CS + Q IU2CS = IU1SN + Q IU2SN = IU2CS + Q IV1TCS = IU2SN + Q IV1TSN = IV1TCS + Q IV2TCS = IV1TSN + Q IV2TSN = IV2TCS + Q LRWORKOPT = IV2TSN + Q - 1 LRWORKMIN = LRWORKOPT RWORK(1) = REAL( LRWORKOPT ) IF( LRWORK .LT. LRWORKMIN .AND. .NOT. LQUERY ) THEN INFO = -28 END IF END IF * IF( INFO .NE. 0 ) THEN CALL XERBLA( 'CBBCSD', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Get machine constants * EPS = SLAMCH( 'Epsilon' ) UNFL = SLAMCH( 'Safe minimum' ) TOLMUL = MAX( TEN, MIN( HUNDRED, EPS**MEIGHTH ) ) TOL = TOLMUL*EPS THRESH = MAX( TOL, REAL( MAXITR*Q*Q )*UNFL ) * * Test for negligible sines or cosines * DO I = 1, Q IF( THETA(I) .LT. THRESH ) THEN THETA(I) = ZERO ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN THETA(I) = PIOVER2 END IF END DO DO I = 1, Q-1 IF( PHI(I) .LT. THRESH ) THEN PHI(I) = ZERO ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN PHI(I) = PIOVER2 END IF END DO * * Initial deflation * IMAX = Q DO WHILE( IMAX .GT. 1 ) IF( PHI(IMAX-1) .NE. ZERO ) THEN EXIT END IF IMAX = IMAX - 1 END DO IMIN = IMAX - 1 IF ( IMIN .GT. 1 ) THEN DO WHILE( PHI(IMIN-1) .NE. ZERO ) IMIN = IMIN - 1 IF ( IMIN .LE. 1 ) EXIT END DO END IF * * Initialize iteration counter * MAXIT = MAXITR*Q*Q ITER = 0 * * Begin main iteration loop * DO WHILE( IMAX .GT. 1 ) * * Compute the matrix entries * B11D(IMIN) = COS( THETA(IMIN) ) B21D(IMIN) = -SIN( THETA(IMIN) ) DO I = IMIN, IMAX - 1 B11E(I) = -SIN( THETA(I) ) * SIN( PHI(I) ) B11D(I+1) = COS( THETA(I+1) ) * COS( PHI(I) ) B12D(I) = SIN( THETA(I) ) * COS( PHI(I) ) B12E(I) = COS( THETA(I+1) ) * SIN( PHI(I) ) B21E(I) = -COS( THETA(I) ) * SIN( PHI(I) ) B21D(I+1) = -SIN( THETA(I+1) ) * COS( PHI(I) ) B22D(I) = COS( THETA(I) ) * COS( PHI(I) ) B22E(I) = -SIN( THETA(I+1) ) * SIN( PHI(I) ) END DO B12D(IMAX) = SIN( THETA(IMAX) ) B22D(IMAX) = COS( THETA(IMAX) ) * * Abort if not converging; otherwise, increment ITER * IF( ITER .GT. MAXIT ) THEN INFO = 0 DO I = 1, Q IF( PHI(I) .NE. ZERO ) $ INFO = INFO + 1 END DO RETURN END IF * ITER = ITER + IMAX - IMIN * * Compute shifts * THETAMAX = THETA(IMIN) THETAMIN = THETA(IMIN) DO I = IMIN+1, IMAX IF( THETA(I) > THETAMAX ) $ THETAMAX = THETA(I) IF( THETA(I) < THETAMIN ) $ THETAMIN = THETA(I) END DO * IF( THETAMAX .GT. PIOVER2 - THRESH ) THEN * * Zero on diagonals of B11 and B22; induce deflation with a * zero shift * MU = ZERO NU = ONE * ELSE IF( THETAMIN .LT. THRESH ) THEN * * Zero on diagonals of B12 and B22; induce deflation with a * zero shift * MU = ONE NU = ZERO * ELSE * * Compute shifts for B11 and B21 and use the lesser * CALL SLAS2( B11D(IMAX-1), B11E(IMAX-1), B11D(IMAX), $ SIGMA11, $ DUMMY ) CALL SLAS2( B21D(IMAX-1), B21E(IMAX-1), B21D(IMAX), $ SIGMA21, $ DUMMY ) * IF( SIGMA11 .LE. SIGMA21 ) THEN MU = SIGMA11 NU = SQRT( ONE - MU**2 ) IF( MU .LT. THRESH ) THEN MU = ZERO NU = ONE END IF ELSE NU = SIGMA21 MU = SQRT( 1.0 - NU**2 ) IF( NU .LT. THRESH ) THEN MU = ONE NU = ZERO END IF END IF END IF * * Rotate to produce bulges in B11 and B21 * IF( MU .LE. NU ) THEN CALL SLARTGS( B11D(IMIN), B11E(IMIN), MU, $ RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) ) ELSE CALL SLARTGS( B21D(IMIN), B21E(IMIN), NU, $ RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) ) END IF * TEMP = RWORK(IV1TCS+IMIN-1)*B11D(IMIN) + $ RWORK(IV1TSN+IMIN-1)*B11E(IMIN) B11E(IMIN) = RWORK(IV1TCS+IMIN-1)*B11E(IMIN) - $ RWORK(IV1TSN+IMIN-1)*B11D(IMIN) B11D(IMIN) = TEMP B11BULGE = RWORK(IV1TSN+IMIN-1)*B11D(IMIN+1) B11D(IMIN+1) = RWORK(IV1TCS+IMIN-1)*B11D(IMIN+1) TEMP = RWORK(IV1TCS+IMIN-1)*B21D(IMIN) + $ RWORK(IV1TSN+IMIN-1)*B21E(IMIN) B21E(IMIN) = RWORK(IV1TCS+IMIN-1)*B21E(IMIN) - $ RWORK(IV1TSN+IMIN-1)*B21D(IMIN) B21D(IMIN) = TEMP B21BULGE = RWORK(IV1TSN+IMIN-1)*B21D(IMIN+1) B21D(IMIN+1) = RWORK(IV1TCS+IMIN-1)*B21D(IMIN+1) * * Compute THETA(IMIN) * THETA( IMIN ) = ATAN2( SQRT( B21D(IMIN)**2+B21BULGE**2 ), $ SQRT( B11D(IMIN)**2+B11BULGE**2 ) ) * * Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN) * IF( B11D(IMIN)**2+B11BULGE**2 .GT. THRESH**2 ) THEN CALL SLARTGP( B11BULGE, B11D(IMIN), RWORK(IU1SN+IMIN-1), $ RWORK(IU1CS+IMIN-1), R ) ELSE IF( MU .LE. NU ) THEN CALL SLARTGS( B11E( IMIN ), B11D( IMIN + 1 ), MU, $ RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) ) ELSE CALL SLARTGS( B12D( IMIN ), B12E( IMIN ), NU, $ RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) ) END IF IF( B21D(IMIN)**2+B21BULGE**2 .GT. THRESH**2 ) THEN CALL SLARTGP( B21BULGE, B21D(IMIN), RWORK(IU2SN+IMIN-1), $ RWORK(IU2CS+IMIN-1), R ) ELSE IF( NU .LT. MU ) THEN CALL SLARTGS( B21E( IMIN ), B21D( IMIN + 1 ), NU, $ RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) ) ELSE CALL SLARTGS( B22D(IMIN), B22E(IMIN), MU, $ RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) ) END IF RWORK(IU2CS+IMIN-1) = -RWORK(IU2CS+IMIN-1) RWORK(IU2SN+IMIN-1) = -RWORK(IU2SN+IMIN-1) * TEMP = RWORK(IU1CS+IMIN-1)*B11E(IMIN) + $ RWORK(IU1SN+IMIN-1)*B11D(IMIN+1) B11D(IMIN+1) = RWORK(IU1CS+IMIN-1)*B11D(IMIN+1) - $ RWORK(IU1SN+IMIN-1)*B11E(IMIN) B11E(IMIN) = TEMP IF( IMAX .GT. IMIN+1 ) THEN B11BULGE = RWORK(IU1SN+IMIN-1)*B11E(IMIN+1) B11E(IMIN+1) = RWORK(IU1CS+IMIN-1)*B11E(IMIN+1) END IF TEMP = RWORK(IU1CS+IMIN-1)*B12D(IMIN) + $ RWORK(IU1SN+IMIN-1)*B12E(IMIN) B12E(IMIN) = RWORK(IU1CS+IMIN-1)*B12E(IMIN) - $ RWORK(IU1SN+IMIN-1)*B12D(IMIN) B12D(IMIN) = TEMP B12BULGE = RWORK(IU1SN+IMIN-1)*B12D(IMIN+1) B12D(IMIN+1) = RWORK(IU1CS+IMIN-1)*B12D(IMIN+1) TEMP = RWORK(IU2CS+IMIN-1)*B21E(IMIN) + $ RWORK(IU2SN+IMIN-1)*B21D(IMIN+1) B21D(IMIN+1) = RWORK(IU2CS+IMIN-1)*B21D(IMIN+1) - $ RWORK(IU2SN+IMIN-1)*B21E(IMIN) B21E(IMIN) = TEMP IF( IMAX .GT. IMIN+1 ) THEN B21BULGE = RWORK(IU2SN+IMIN-1)*B21E(IMIN+1) B21E(IMIN+1) = RWORK(IU2CS+IMIN-1)*B21E(IMIN+1) END IF TEMP = RWORK(IU2CS+IMIN-1)*B22D(IMIN) + $ RWORK(IU2SN+IMIN-1)*B22E(IMIN) B22E(IMIN) = RWORK(IU2CS+IMIN-1)*B22E(IMIN) - $ RWORK(IU2SN+IMIN-1)*B22D(IMIN) B22D(IMIN) = TEMP B22BULGE = RWORK(IU2SN+IMIN-1)*B22D(IMIN+1) B22D(IMIN+1) = RWORK(IU2CS+IMIN-1)*B22D(IMIN+1) * * Inner loop: chase bulges from B11(IMIN,IMIN+2), * B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to * bottom-right * DO I = IMIN+1, IMAX-1 * * Compute PHI(I-1) * X1 = SIN(THETA(I-1))*B11E(I-1) + COS(THETA(I-1))*B21E(I-1) X2 = SIN(THETA(I-1))*B11BULGE + COS(THETA(I-1))*B21BULGE Y1 = SIN(THETA(I-1))*B12D(I-1) + COS(THETA(I-1))*B22D(I-1) Y2 = SIN(THETA(I-1))*B12BULGE + COS(THETA(I-1))*B22BULGE * PHI(I-1) = ATAN2( SQRT(X1**2+X2**2), SQRT(Y1**2+Y2**2) ) * * Determine if there are bulges to chase or if a new direct * summand has been reached * RESTART11 = B11E(I-1)**2 + B11BULGE**2 .LE. THRESH**2 RESTART21 = B21E(I-1)**2 + B21BULGE**2 .LE. THRESH**2 RESTART12 = B12D(I-1)**2 + B12BULGE**2 .LE. THRESH**2 RESTART22 = B22D(I-1)**2 + B22BULGE**2 .LE. THRESH**2 * * If possible, chase bulges from B11(I-1,I+1), B12(I-1,I), * B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge- * chasing by applying the original shift again. * IF( .NOT. RESTART11 .AND. .NOT. RESTART21 ) THEN CALL SLARTGP( X2, X1, RWORK(IV1TSN+I-1), $ RWORK(IV1TCS+I-1), R ) ELSE IF( .NOT. RESTART11 .AND. RESTART21 ) THEN CALL SLARTGP( B11BULGE, B11E(I-1), RWORK(IV1TSN+I-1), $ RWORK(IV1TCS+I-1), R ) ELSE IF( RESTART11 .AND. .NOT. RESTART21 ) THEN CALL SLARTGP( B21BULGE, B21E(I-1), RWORK(IV1TSN+I-1), $ RWORK(IV1TCS+I-1), R ) ELSE IF( MU .LE. NU ) THEN CALL SLARTGS( B11D(I), B11E(I), MU, RWORK(IV1TCS+I-1), $ RWORK(IV1TSN+I-1) ) ELSE CALL SLARTGS( B21D(I), B21E(I), NU, RWORK(IV1TCS+I-1), $ RWORK(IV1TSN+I-1) ) END IF RWORK(IV1TCS+I-1) = -RWORK(IV1TCS+I-1) RWORK(IV1TSN+I-1) = -RWORK(IV1TSN+I-1) IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN CALL SLARTGP( Y2, Y1, RWORK(IV2TSN+I-1-1), $ RWORK(IV2TCS+I-1-1), R ) ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN CALL SLARTGP( B12BULGE, B12D(I-1), $ RWORK(IV2TSN+I-1-1), $ RWORK(IV2TCS+I-1-1), R ) ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN CALL SLARTGP( B22BULGE, B22D(I-1), $ RWORK(IV2TSN+I-1-1), $ RWORK(IV2TCS+I-1-1), R ) ELSE IF( NU .LT. MU ) THEN CALL SLARTGS( B12E(I-1), B12D(I), NU, $ RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) ) ELSE CALL SLARTGS( B22E(I-1), B22D(I), MU, $ RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) ) END IF * TEMP = RWORK(IV1TCS+I-1)*B11D(I) + RWORK(IV1TSN+I-1)*B11E(I) B11E(I) = RWORK(IV1TCS+I-1)*B11E(I) - $ RWORK(IV1TSN+I-1)*B11D(I) B11D(I) = TEMP B11BULGE = RWORK(IV1TSN+I-1)*B11D(I+1) B11D(I+1) = RWORK(IV1TCS+I-1)*B11D(I+1) TEMP = RWORK(IV1TCS+I-1)*B21D(I) + RWORK(IV1TSN+I-1)*B21E(I) B21E(I) = RWORK(IV1TCS+I-1)*B21E(I) - $ RWORK(IV1TSN+I-1)*B21D(I) B21D(I) = TEMP B21BULGE = RWORK(IV1TSN+I-1)*B21D(I+1) B21D(I+1) = RWORK(IV1TCS+I-1)*B21D(I+1) TEMP = RWORK(IV2TCS+I-1-1)*B12E(I-1) + $ RWORK(IV2TSN+I-1-1)*B12D(I) B12D(I) = RWORK(IV2TCS+I-1-1)*B12D(I) - $ RWORK(IV2TSN+I-1-1)*B12E(I-1) B12E(I-1) = TEMP B12BULGE = RWORK(IV2TSN+I-1-1)*B12E(I) B12E(I) = RWORK(IV2TCS+I-1-1)*B12E(I) TEMP = RWORK(IV2TCS+I-1-1)*B22E(I-1) + $ RWORK(IV2TSN+I-1-1)*B22D(I) B22D(I) = RWORK(IV2TCS+I-1-1)*B22D(I) - $ RWORK(IV2TSN+I-1-1)*B22E(I-1) B22E(I-1) = TEMP B22BULGE = RWORK(IV2TSN+I-1-1)*B22E(I) B22E(I) = RWORK(IV2TCS+I-1-1)*B22E(I) * * Compute THETA(I) * X1 = COS(PHI(I-1))*B11D(I) + SIN(PHI(I-1))*B12E(I-1) X2 = COS(PHI(I-1))*B11BULGE + SIN(PHI(I-1))*B12BULGE Y1 = COS(PHI(I-1))*B21D(I) + SIN(PHI(I-1))*B22E(I-1) Y2 = COS(PHI(I-1))*B21BULGE + SIN(PHI(I-1))*B22BULGE * THETA(I) = ATAN2( SQRT(Y1**2+Y2**2), SQRT(X1**2+X2**2) ) * * Determine if there are bulges to chase or if a new direct * summand has been reached * RESTART11 = B11D(I)**2 + B11BULGE**2 .LE. THRESH**2 RESTART12 = B12E(I-1)**2 + B12BULGE**2 .LE. THRESH**2 RESTART21 = B21D(I)**2 + B21BULGE**2 .LE. THRESH**2 RESTART22 = B22E(I-1)**2 + B22BULGE**2 .LE. THRESH**2 * * If possible, chase bulges from B11(I+1,I), B12(I+1,I-1), * B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge- * chasing by applying the original shift again. * IF( .NOT. RESTART11 .AND. .NOT. RESTART12 ) THEN CALL SLARTGP( X2, X1, RWORK(IU1SN+I-1), $ RWORK(IU1CS+I-1), $ R ) ELSE IF( .NOT. RESTART11 .AND. RESTART12 ) THEN CALL SLARTGP( B11BULGE, B11D(I), RWORK(IU1SN+I-1), $ RWORK(IU1CS+I-1), R ) ELSE IF( RESTART11 .AND. .NOT. RESTART12 ) THEN CALL SLARTGP( B12BULGE, B12E(I-1), RWORK(IU1SN+I-1), $ RWORK(IU1CS+I-1), R ) ELSE IF( MU .LE. NU ) THEN CALL SLARTGS( B11E(I), B11D(I+1), MU, $ RWORK(IU1CS+I-1), $ RWORK(IU1SN+I-1) ) ELSE CALL SLARTGS( B12D(I), B12E(I), NU, RWORK(IU1CS+I-1), $ RWORK(IU1SN+I-1) ) END IF IF( .NOT. RESTART21 .AND. .NOT. RESTART22 ) THEN CALL SLARTGP( Y2, Y1, RWORK(IU2SN+I-1), $ RWORK(IU2CS+I-1), $ R ) ELSE IF( .NOT. RESTART21 .AND. RESTART22 ) THEN CALL SLARTGP( B21BULGE, B21D(I), RWORK(IU2SN+I-1), $ RWORK(IU2CS+I-1), R ) ELSE IF( RESTART21 .AND. .NOT. RESTART22 ) THEN CALL SLARTGP( B22BULGE, B22E(I-1), RWORK(IU2SN+I-1), $ RWORK(IU2CS+I-1), R ) ELSE IF( NU .LT. MU ) THEN CALL SLARTGS( B21E(I), B21E(I+1), NU, $ RWORK(IU2CS+I-1), $ RWORK(IU2SN+I-1) ) ELSE CALL SLARTGS( B22D(I), B22E(I), MU, RWORK(IU2CS+I-1), $ RWORK(IU2SN+I-1) ) END IF RWORK(IU2CS+I-1) = -RWORK(IU2CS+I-1) RWORK(IU2SN+I-1) = -RWORK(IU2SN+I-1) * TEMP = RWORK(IU1CS+I-1)*B11E(I) + RWORK(IU1SN+I-1)*B11D(I+1) B11D(I+1) = RWORK(IU1CS+I-1)*B11D(I+1) - $ RWORK(IU1SN+I-1)*B11E(I) B11E(I) = TEMP IF( I .LT. IMAX - 1 ) THEN B11BULGE = RWORK(IU1SN+I-1)*B11E(I+1) B11E(I+1) = RWORK(IU1CS+I-1)*B11E(I+1) END IF TEMP = RWORK(IU2CS+I-1)*B21E(I) + RWORK(IU2SN+I-1)*B21D(I+1) B21D(I+1) = RWORK(IU2CS+I-1)*B21D(I+1) - $ RWORK(IU2SN+I-1)*B21E(I) B21E(I) = TEMP IF( I .LT. IMAX - 1 ) THEN B21BULGE = RWORK(IU2SN+I-1)*B21E(I+1) B21E(I+1) = RWORK(IU2CS+I-1)*B21E(I+1) END IF TEMP = RWORK(IU1CS+I-1)*B12D(I) + RWORK(IU1SN+I-1)*B12E(I) B12E(I) = RWORK(IU1CS+I-1)*B12E(I) - $ RWORK(IU1SN+I-1)*B12D(I) B12D(I) = TEMP B12BULGE = RWORK(IU1SN+I-1)*B12D(I+1) B12D(I+1) = RWORK(IU1CS+I-1)*B12D(I+1) TEMP = RWORK(IU2CS+I-1)*B22D(I) + RWORK(IU2SN+I-1)*B22E(I) B22E(I) = RWORK(IU2CS+I-1)*B22E(I) - $ RWORK(IU2SN+I-1)*B22D(I) B22D(I) = TEMP B22BULGE = RWORK(IU2SN+I-1)*B22D(I+1) B22D(I+1) = RWORK(IU2CS+I-1)*B22D(I+1) * END DO * * Compute PHI(IMAX-1) * X1 = SIN(THETA(IMAX-1))*B11E(IMAX-1) + $ COS(THETA(IMAX-1))*B21E(IMAX-1) Y1 = SIN(THETA(IMAX-1))*B12D(IMAX-1) + $ COS(THETA(IMAX-1))*B22D(IMAX-1) Y2 = SIN(THETA(IMAX-1))*B12BULGE + COS(THETA(IMAX-1))*B22BULGE * PHI(IMAX-1) = ATAN2( ABS(X1), SQRT(Y1**2+Y2**2) ) * * Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX) * RESTART12 = B12D(IMAX-1)**2 + B12BULGE**2 .LE. THRESH**2 RESTART22 = B22D(IMAX-1)**2 + B22BULGE**2 .LE. THRESH**2 * IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN CALL SLARTGP( Y2, Y1, RWORK(IV2TSN+IMAX-1-1), $ RWORK(IV2TCS+IMAX-1-1), R ) ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN CALL SLARTGP( B12BULGE, B12D(IMAX-1), $ RWORK(IV2TSN+IMAX-1-1), $ RWORK(IV2TCS+IMAX-1-1), R ) ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN CALL SLARTGP( B22BULGE, B22D(IMAX-1), $ RWORK(IV2TSN+IMAX-1-1), $ RWORK(IV2TCS+IMAX-1-1), R ) ELSE IF( NU .LT. MU ) THEN CALL SLARTGS( B12E(IMAX-1), B12D(IMAX), NU, $ RWORK(IV2TCS+IMAX-1-1), $ RWORK(IV2TSN+IMAX-1-1) ) ELSE CALL SLARTGS( B22E(IMAX-1), B22D(IMAX), MU, $ RWORK(IV2TCS+IMAX-1-1), $ RWORK(IV2TSN+IMAX-1-1) ) END IF * TEMP = RWORK(IV2TCS+IMAX-1-1)*B12E(IMAX-1) + $ RWORK(IV2TSN+IMAX-1-1)*B12D(IMAX) B12D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B12D(IMAX) - $ RWORK(IV2TSN+IMAX-1-1)*B12E(IMAX-1) B12E(IMAX-1) = TEMP TEMP = RWORK(IV2TCS+IMAX-1-1)*B22E(IMAX-1) + $ RWORK(IV2TSN+IMAX-1-1)*B22D(IMAX) B22D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B22D(IMAX) - $ RWORK(IV2TSN+IMAX-1-1)*B22E(IMAX-1) B22E(IMAX-1) = TEMP * * Update singular vectors * IF( WANTU1 ) THEN IF( COLMAJOR ) THEN CALL CLASR( 'R', 'V', 'F', P, IMAX-IMIN+1, $ RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1), $ U1(1,IMIN), LDU1 ) ELSE CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, P, $ RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1), $ U1(IMIN,1), LDU1 ) END IF END IF IF( WANTU2 ) THEN IF( COLMAJOR ) THEN CALL CLASR( 'R', 'V', 'F', M-P, IMAX-IMIN+1, $ RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1), $ U2(1,IMIN), LDU2 ) ELSE CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-P, $ RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1), $ U2(IMIN,1), LDU2 ) END IF END IF IF( WANTV1T ) THEN IF( COLMAJOR ) THEN CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, Q, $ RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1), $ V1T(IMIN,1), LDV1T ) ELSE CALL CLASR( 'R', 'V', 'F', Q, IMAX-IMIN+1, $ RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1), $ V1T(1,IMIN), LDV1T ) END IF END IF IF( WANTV2T ) THEN IF( COLMAJOR ) THEN CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-Q, $ RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1), $ V2T(IMIN,1), LDV2T ) ELSE CALL CLASR( 'R', 'V', 'F', M-Q, IMAX-IMIN+1, $ RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1), $ V2T(1,IMIN), LDV2T ) END IF END IF * * Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX) * IF( B11E(IMAX-1)+B21E(IMAX-1) .GT. 0 ) THEN B11D(IMAX) = -B11D(IMAX) B21D(IMAX) = -B21D(IMAX) IF( WANTV1T ) THEN IF( COLMAJOR ) THEN CALL CSCAL( Q, NEGONECOMPLEX, V1T(IMAX,1), LDV1T ) ELSE CALL CSCAL( Q, NEGONECOMPLEX, V1T(1,IMAX), 1 ) END IF END IF END IF * * Compute THETA(IMAX) * X1 = COS(PHI(IMAX-1))*B11D(IMAX) + $ SIN(PHI(IMAX-1))*B12E(IMAX-1) Y1 = COS(PHI(IMAX-1))*B21D(IMAX) + $ SIN(PHI(IMAX-1))*B22E(IMAX-1) * THETA(IMAX) = ATAN2( ABS(Y1), ABS(X1) ) * * Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX), * and B22(IMAX,IMAX-1) * IF( B11D(IMAX)+B12E(IMAX-1) .LT. 0 ) THEN B12D(IMAX) = -B12D(IMAX) IF( WANTU1 ) THEN IF( COLMAJOR ) THEN CALL CSCAL( P, NEGONECOMPLEX, U1(1,IMAX), 1 ) ELSE CALL CSCAL( P, NEGONECOMPLEX, U1(IMAX,1), LDU1 ) END IF END IF END IF IF( B21D(IMAX)+B22E(IMAX-1) .GT. 0 ) THEN B22D(IMAX) = -B22D(IMAX) IF( WANTU2 ) THEN IF( COLMAJOR ) THEN CALL CSCAL( M-P, NEGONECOMPLEX, U2(1,IMAX), 1 ) ELSE CALL CSCAL( M-P, NEGONECOMPLEX, U2(IMAX,1), LDU2 ) END IF END IF END IF * * Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX) * IF( B12D(IMAX)+B22D(IMAX) .LT. 0 ) THEN IF( WANTV2T ) THEN IF( COLMAJOR ) THEN CALL CSCAL( M-Q, NEGONECOMPLEX, V2T(IMAX,1), $ LDV2T ) ELSE CALL CSCAL( M-Q, NEGONECOMPLEX, V2T(1,IMAX), 1 ) END IF END IF END IF * * Test for negligible sines or cosines * DO I = IMIN, IMAX IF( THETA(I) .LT. THRESH ) THEN THETA(I) = ZERO ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN THETA(I) = PIOVER2 END IF END DO DO I = IMIN, IMAX-1 IF( PHI(I) .LT. THRESH ) THEN PHI(I) = ZERO ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN PHI(I) = PIOVER2 END IF END DO * * Deflate * IF (IMAX .GT. 1) THEN DO WHILE( PHI(IMAX-1) .EQ. ZERO ) IMAX = IMAX - 1 IF (IMAX .LE. 1) EXIT END DO END IF IF( IMIN .GT. IMAX - 1 ) $ IMIN = IMAX - 1 IF (IMIN .GT. 1) THEN DO WHILE (PHI(IMIN-1) .NE. ZERO) IMIN = IMIN - 1 IF (IMIN .LE. 1) EXIT END DO END IF * * Repeat main iteration loop * END DO * * Postprocessing: order THETA from least to greatest * DO I = 1, Q * MINI = I THETAMIN = THETA(I) DO J = I+1, Q IF( THETA(J) .LT. THETAMIN ) THEN MINI = J THETAMIN = THETA(J) END IF END DO * IF( MINI .NE. I ) THEN THETA(MINI) = THETA(I) THETA(I) = THETAMIN IF( COLMAJOR ) THEN IF( WANTU1 ) $ CALL CSWAP( P, U1(1,I), 1, U1(1,MINI), 1 ) IF( WANTU2 ) $ CALL CSWAP( M-P, U2(1,I), 1, U2(1,MINI), 1 ) IF( WANTV1T ) $ CALL CSWAP( Q, V1T(I,1), LDV1T, V1T(MINI,1), $ LDV1T ) IF( WANTV2T ) $ CALL CSWAP( M-Q, V2T(I,1), LDV2T, V2T(MINI,1), $ LDV2T ) ELSE IF( WANTU1 ) $ CALL CSWAP( P, U1(I,1), LDU1, U1(MINI,1), LDU1 ) IF( WANTU2 ) $ CALL CSWAP( M-P, U2(I,1), LDU2, U2(MINI,1), LDU2 ) IF( WANTV1T ) $ CALL CSWAP( Q, V1T(1,I), 1, V1T(1,MINI), 1 ) IF( WANTV2T ) $ CALL CSWAP( M-Q, V2T(1,I), 1, V2T(1,MINI), 1 ) END IF END IF * END DO * RETURN * * End of CBBCSD * END