numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/cgbbrd.f | 17646B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
*> \brief \b CGBBRD * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CGBBRD + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbbrd.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbbrd.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbbrd.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, * LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER VECT * INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC * .. * .. Array Arguments .. * REAL D( * ), E( * ), RWORK( * ) * COMPLEX AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ), * $ Q( LDQ, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CGBBRD reduces a complex general m-by-n band matrix A to real upper *> bidiagonal form B by a unitary transformation: Q**H * A * P = B. *> *> The routine computes B, and optionally forms Q or P**H, or computes *> Q**H*C for a given matrix C. *> \endverbatim * * Arguments: * ========== * *> \param[in] VECT *> \verbatim *> VECT is CHARACTER*1 *> Specifies whether or not the matrices Q and P**H are to be *> formed. *> = 'N': do not form Q or P**H; *> = 'Q': form Q only; *> = 'P': form P**H only; *> = 'B': form both. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] NCC *> \verbatim *> NCC is INTEGER *> The number of columns of the matrix C. NCC >= 0. *> \endverbatim *> *> \param[in] KL *> \verbatim *> KL is INTEGER *> The number of subdiagonals of the matrix A. KL >= 0. *> \endverbatim *> *> \param[in] KU *> \verbatim *> KU is INTEGER *> The number of superdiagonals of the matrix A. KU >= 0. *> \endverbatim *> *> \param[in,out] AB *> \verbatim *> AB is COMPLEX array, dimension (LDAB,N) *> On entry, the m-by-n band matrix A, stored in rows 1 to *> KL+KU+1. The j-th column of A is stored in the j-th column of *> the array AB as follows: *> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). *> On exit, A is overwritten by values generated during the *> reduction. *> \endverbatim *> *> \param[in] LDAB *> \verbatim *> LDAB is INTEGER *> The leading dimension of the array A. LDAB >= KL+KU+1. *> \endverbatim *> *> \param[out] D *> \verbatim *> D is REAL array, dimension (min(M,N)) *> The diagonal elements of the bidiagonal matrix B. *> \endverbatim *> *> \param[out] E *> \verbatim *> E is REAL array, dimension (min(M,N)-1) *> The superdiagonal elements of the bidiagonal matrix B. *> \endverbatim *> *> \param[out] Q *> \verbatim *> Q is COMPLEX array, dimension (LDQ,M) *> If VECT = 'Q' or 'B', the m-by-m unitary matrix Q. *> If VECT = 'N' or 'P', the array Q is not referenced. *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. *> LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. *> \endverbatim *> *> \param[out] PT *> \verbatim *> PT is COMPLEX array, dimension (LDPT,N) *> If VECT = 'P' or 'B', the n-by-n unitary matrix P'. *> If VECT = 'N' or 'Q', the array PT is not referenced. *> \endverbatim *> *> \param[in] LDPT *> \verbatim *> LDPT is INTEGER *> The leading dimension of the array PT. *> LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. *> \endverbatim *> *> \param[in,out] C *> \verbatim *> C is COMPLEX array, dimension (LDC,NCC) *> On entry, an m-by-ncc matrix C. *> On exit, C is overwritten by Q**H*C. *> C is not referenced if NCC = 0. *> \endverbatim *> *> \param[in] LDC *> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. *> LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (max(M,N)) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (max(M,N)) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup gbbrd * * ===================================================================== SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, $ LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER VECT INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC * .. * .. Array Arguments .. REAL D( * ), E( * ), RWORK( * ) COMPLEX AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ), $ Q( LDQ, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. LOGICAL WANTB, WANTC, WANTPT, WANTQ INTEGER I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1, $ KUN, L, MINMN, ML, ML0, MU, MU0, NR, NRT REAL ABST, RC COMPLEX RA, RB, RS, T * .. * .. External Subroutines .. EXTERNAL CLARGV, CLARTG, CLARTV, CLASET, CROT, $ CSCAL, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, CONJG, MAX, MIN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Executable Statements .. * * Test the input parameters * WANTB = LSAME( VECT, 'B' ) WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB WANTPT = LSAME( VECT, 'P' ) .OR. WANTB WANTC = NCC.GT.0 KLU1 = KL + KU + 1 INFO = 0 IF( .NOT.WANTQ .AND. $ .NOT.WANTPT .AND. $ .NOT.LSAME( VECT, 'N' ) ) $ THEN INFO = -1 ELSE IF( M.LT.0 ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( NCC.LT.0 ) THEN INFO = -4 ELSE IF( KL.LT.0 ) THEN INFO = -5 ELSE IF( KU.LT.0 ) THEN INFO = -6 ELSE IF( LDAB.LT.KLU1 ) THEN INFO = -8 ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX( 1, M ) ) THEN INFO = -12 ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX( 1, N ) ) THEN INFO = -14 ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX( 1, M ) ) THEN INFO = -16 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGBBRD', -INFO ) RETURN END IF * * Initialize Q and P**H to the unit matrix, if needed * IF( WANTQ ) $ CALL CLASET( 'Full', M, M, CZERO, CONE, Q, LDQ ) IF( WANTPT ) $ CALL CLASET( 'Full', N, N, CZERO, CONE, PT, LDPT ) * * Quick return if possible. * IF( M.EQ.0 .OR. N.EQ.0 ) $ RETURN * MINMN = MIN( M, N ) * IF( KL+KU.GT.1 ) THEN * * Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce * first to lower bidiagonal form and then transform to upper * bidiagonal * IF( KU.GT.0 ) THEN ML0 = 1 MU0 = 2 ELSE ML0 = 2 MU0 = 1 END IF * * Wherever possible, plane rotations are generated and applied in * vector operations of length NR over the index set J1:J2:KLU1. * * The complex sines of the plane rotations are stored in WORK, * and the real cosines in RWORK. * KLM = MIN( M-1, KL ) KUN = MIN( N-1, KU ) KB = KLM + KUN KB1 = KB + 1 INCA = KB1*LDAB NR = 0 J1 = KLM + 2 J2 = 1 - KUN * DO 90 I = 1, MINMN * * Reduce i-th column and i-th row of matrix to bidiagonal form * ML = KLM + 1 MU = KUN + 1 DO 80 KK = 1, KB J1 = J1 + KB J2 = J2 + KB * * generate plane rotations to annihilate nonzero elements * which have been created below the band * IF( NR.GT.0 ) $ CALL CLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA, $ WORK( J1 ), KB1, RWORK( J1 ), KB1 ) * * apply plane rotations from the left * DO 10 L = 1, KB IF( J2-KLM+L-1.GT.N ) THEN NRT = NR - 1 ELSE NRT = NR END IF IF( NRT.GT.0 ) $ CALL CLARTV( NRT, AB( KLU1-L, J1-KLM+L-1 ), $ INCA, $ AB( KLU1-L+1, J1-KLM+L-1 ), INCA, $ RWORK( J1 ), WORK( J1 ), KB1 ) 10 CONTINUE * IF( ML.GT.ML0 ) THEN IF( ML.LE.M-I+1 ) THEN * * generate plane rotation to annihilate a(i+ml-1,i) * within the band, and apply rotation from the left * CALL CLARTG( AB( KU+ML-1, I ), AB( KU+ML, I ), $ RWORK( I+ML-1 ), WORK( I+ML-1 ), RA ) AB( KU+ML-1, I ) = RA IF( I.LT.N ) $ CALL CROT( MIN( KU+ML-2, N-I ), $ AB( KU+ML-2, I+1 ), LDAB-1, $ AB( KU+ML-1, I+1 ), LDAB-1, $ RWORK( I+ML-1 ), WORK( I+ML-1 ) ) END IF NR = NR + 1 J1 = J1 - KB1 END IF * IF( WANTQ ) THEN * * accumulate product of plane rotations in Q * DO 20 J = J1, J2, KB1 CALL CROT( M, Q( 1, J-1 ), 1, Q( 1, J ), 1, $ RWORK( J ), CONJG( WORK( J ) ) ) 20 CONTINUE END IF * IF( WANTC ) THEN * * apply plane rotations to C * DO 30 J = J1, J2, KB1 CALL CROT( NCC, C( J-1, 1 ), LDC, C( J, 1 ), $ LDC, $ RWORK( J ), WORK( J ) ) 30 CONTINUE END IF * IF( J2+KUN.GT.N ) THEN * * adjust J2 to keep within the bounds of the matrix * NR = NR - 1 J2 = J2 - KB1 END IF * DO 40 J = J1, J2, KB1 * * create nonzero element a(j-1,j+ku) above the band * and store it in WORK(n+1:2*n) * WORK( J+KUN ) = WORK( J )*AB( 1, J+KUN ) AB( 1, J+KUN ) = RWORK( J )*AB( 1, J+KUN ) 40 CONTINUE * * generate plane rotations to annihilate nonzero elements * which have been generated above the band * IF( NR.GT.0 ) $ CALL CLARGV( NR, AB( 1, J1+KUN-1 ), INCA, $ WORK( J1+KUN ), KB1, RWORK( J1+KUN ), $ KB1 ) * * apply plane rotations from the right * DO 50 L = 1, KB IF( J2+L-1.GT.M ) THEN NRT = NR - 1 ELSE NRT = NR END IF IF( NRT.GT.0 ) $ CALL CLARTV( NRT, AB( L+1, J1+KUN-1 ), INCA, $ AB( L, J1+KUN ), INCA, $ RWORK( J1+KUN ), WORK( J1+KUN ), KB1 ) 50 CONTINUE * IF( ML.EQ.ML0 .AND. MU.GT.MU0 ) THEN IF( MU.LE.N-I+1 ) THEN * * generate plane rotation to annihilate a(i,i+mu-1) * within the band, and apply rotation from the right * CALL CLARTG( AB( KU-MU+3, I+MU-2 ), $ AB( KU-MU+2, I+MU-1 ), $ RWORK( I+MU-1 ), WORK( I+MU-1 ), RA ) AB( KU-MU+3, I+MU-2 ) = RA CALL CROT( MIN( KL+MU-2, M-I ), $ AB( KU-MU+4, I+MU-2 ), 1, $ AB( KU-MU+3, I+MU-1 ), 1, $ RWORK( I+MU-1 ), WORK( I+MU-1 ) ) END IF NR = NR + 1 J1 = J1 - KB1 END IF * IF( WANTPT ) THEN * * accumulate product of plane rotations in P**H * DO 60 J = J1, J2, KB1 CALL CROT( N, PT( J+KUN-1, 1 ), LDPT, $ PT( J+KUN, 1 ), LDPT, RWORK( J+KUN ), $ CONJG( WORK( J+KUN ) ) ) 60 CONTINUE END IF * IF( J2+KB.GT.M ) THEN * * adjust J2 to keep within the bounds of the matrix * NR = NR - 1 J2 = J2 - KB1 END IF * DO 70 J = J1, J2, KB1 * * create nonzero element a(j+kl+ku,j+ku-1) below the * band and store it in WORK(1:n) * WORK( J+KB ) = WORK( J+KUN )*AB( KLU1, J+KUN ) AB( KLU1, J+KUN ) = RWORK( J+KUN )*AB( KLU1, J+KUN ) 70 CONTINUE * IF( ML.GT.ML0 ) THEN ML = ML - 1 ELSE MU = MU - 1 END IF 80 CONTINUE 90 CONTINUE END IF * IF( KU.EQ.0 .AND. KL.GT.0 ) THEN * * A has been reduced to complex lower bidiagonal form * * Transform lower bidiagonal form to upper bidiagonal by applying * plane rotations from the left, overwriting superdiagonal * elements on subdiagonal elements * DO 100 I = 1, MIN( M-1, N ) CALL CLARTG( AB( 1, I ), AB( 2, I ), RC, RS, RA ) AB( 1, I ) = RA IF( I.LT.N ) THEN AB( 2, I ) = RS*AB( 1, I+1 ) AB( 1, I+1 ) = RC*AB( 1, I+1 ) END IF IF( WANTQ ) $ CALL CROT( M, Q( 1, I ), 1, Q( 1, I+1 ), 1, RC, $ CONJG( RS ) ) IF( WANTC ) $ CALL CROT( NCC, C( I, 1 ), LDC, C( I+1, 1 ), LDC, RC, $ RS ) 100 CONTINUE ELSE * * A has been reduced to complex upper bidiagonal form or is * diagonal * IF( KU.GT.0 .AND. M.LT.N ) THEN * * Annihilate a(m,m+1) by applying plane rotations from the * right * RB = AB( KU, M+1 ) DO 110 I = M, 1, -1 CALL CLARTG( AB( KU+1, I ), RB, RC, RS, RA ) AB( KU+1, I ) = RA IF( I.GT.1 ) THEN RB = -CONJG( RS )*AB( KU, I ) AB( KU, I ) = RC*AB( KU, I ) END IF IF( WANTPT ) $ CALL CROT( N, PT( I, 1 ), LDPT, PT( M+1, 1 ), LDPT, $ RC, CONJG( RS ) ) 110 CONTINUE END IF END IF * * Make diagonal and superdiagonal elements real, storing them in D * and E * T = AB( KU+1, 1 ) DO 120 I = 1, MINMN ABST = ABS( T ) D( I ) = ABST IF( ABST.NE.ZERO ) THEN T = T / ABST ELSE T = CONE END IF IF( WANTQ ) $ CALL CSCAL( M, T, Q( 1, I ), 1 ) IF( WANTC ) $ CALL CSCAL( NCC, CONJG( T ), C( I, 1 ), LDC ) IF( I.LT.MINMN ) THEN IF( KU.EQ.0 .AND. KL.EQ.0 ) THEN E( I ) = ZERO T = AB( 1, I+1 ) ELSE IF( KU.EQ.0 ) THEN T = AB( 2, I )*CONJG( T ) ELSE T = AB( KU, I+1 )*CONJG( T ) END IF ABST = ABS( T ) E( I ) = ABST IF( ABST.NE.ZERO ) THEN T = T / ABST ELSE T = CONE END IF IF( WANTPT ) $ CALL CSCAL( N, T, PT( I+1, 1 ), LDPT ) T = AB( KU+1, I+1 )*CONJG( T ) END IF END IF 120 CONTINUE RETURN * * End of CGBBRD * END