numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/cgbequb.f | 9604B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
*> \brief \b CGBEQUB * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CGBEQUB + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbequb.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbequb.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbequb.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CGBEQUB( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, * AMAX, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, KL, KU, LDAB, M, N * REAL AMAX, COLCND, ROWCND * .. * .. Array Arguments .. * REAL C( * ), R( * ) * COMPLEX AB( LDAB, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CGBEQUB computes row and column scalings intended to equilibrate an *> M-by-N matrix A and reduce its condition number. R returns the row *> scale factors and C the column scale factors, chosen to try to make *> the largest element in each row and column of the matrix B with *> elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most *> the radix. *> *> R(i) and C(j) are restricted to be a power of the radix between *> SMLNUM = smallest safe number and BIGNUM = largest safe number. Use *> of these scaling factors is not guaranteed to reduce the condition *> number of A but works well in practice. *> *> This routine differs from CGEEQU by restricting the scaling factors *> to a power of the radix. Barring over- and underflow, scaling by *> these factors introduces no additional rounding errors. However, the *> scaled entries' magnitudes are no longer approximately 1 but lie *> between sqrt(radix) and 1/sqrt(radix). *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] KL *> \verbatim *> KL is INTEGER *> The number of subdiagonals within the band of A. KL >= 0. *> \endverbatim *> *> \param[in] KU *> \verbatim *> KU is INTEGER *> The number of superdiagonals within the band of A. KU >= 0. *> \endverbatim *> *> \param[in] AB *> \verbatim *> AB is COMPLEX array, dimension (LDAB,N) *> On entry, the matrix A in band storage, in rows 1 to KL+KU+1. *> The j-th column of A is stored in the j-th column of the *> array AB as follows: *> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) *> \endverbatim *> *> \param[in] LDAB *> \verbatim *> LDAB is INTEGER *> The leading dimension of the array A. LDAB >= max(1,M). *> \endverbatim *> *> \param[out] R *> \verbatim *> R is REAL array, dimension (M) *> If INFO = 0 or INFO > M, R contains the row scale factors *> for A. *> \endverbatim *> *> \param[out] C *> \verbatim *> C is REAL array, dimension (N) *> If INFO = 0, C contains the column scale factors for A. *> \endverbatim *> *> \param[out] ROWCND *> \verbatim *> ROWCND is REAL *> If INFO = 0 or INFO > M, ROWCND contains the ratio of the *> smallest R(i) to the largest R(i). If ROWCND >= 0.1 and *> AMAX is neither too large nor too small, it is not worth *> scaling by R. *> \endverbatim *> *> \param[out] COLCND *> \verbatim *> COLCND is REAL *> If INFO = 0, COLCND contains the ratio of the smallest *> C(i) to the largest C(i). If COLCND >= 0.1, it is not *> worth scaling by C. *> \endverbatim *> *> \param[out] AMAX *> \verbatim *> AMAX is REAL *> Absolute value of largest matrix element. If AMAX is very *> close to overflow or very close to underflow, the matrix *> should be scaled. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, and i is *> <= M: the i-th row of A is exactly zero *> > M: the (i-M)-th column of A is exactly zero *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup gbequb * * ===================================================================== SUBROUTINE CGBEQUB( M, N, KL, KU, AB, LDAB, R, C, ROWCND, $ COLCND, $ AMAX, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, KL, KU, LDAB, M, N REAL AMAX, COLCND, ROWCND * .. * .. Array Arguments .. REAL C( * ), R( * ) COMPLEX AB( LDAB, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER I, J, KD REAL BIGNUM, RCMAX, RCMIN, SMLNUM, RADIX, $ LOGRDX COMPLEX ZDUM * .. * .. External Functions .. REAL SLAMCH EXTERNAL SLAMCH * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, LOG, REAL, AIMAG * .. * .. Statement Functions .. REAL CABS1 * .. * .. Statement Function definitions .. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) ) * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( KL.LT.0 ) THEN INFO = -3 ELSE IF( KU.LT.0 ) THEN INFO = -4 ELSE IF( LDAB.LT.KL+KU+1 ) THEN INFO = -6 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGBEQUB', -INFO ) RETURN END IF * * Quick return if possible. * IF( M.EQ.0 .OR. N.EQ.0 ) THEN ROWCND = ONE COLCND = ONE AMAX = ZERO RETURN END IF * * Get machine constants. Assume SMLNUM is a power of the radix. * SMLNUM = SLAMCH( 'S' ) BIGNUM = ONE / SMLNUM RADIX = SLAMCH( 'B' ) LOGRDX = LOG(RADIX) * * Compute row scale factors. * DO 10 I = 1, M R( I ) = ZERO 10 CONTINUE * * Find the maximum element in each row. * KD = KU + 1 DO 30 J = 1, N DO 20 I = MAX( J-KU, 1 ), MIN( J+KL, M ) R( I ) = MAX( R( I ), CABS1( AB( KD+I-J, J ) ) ) 20 CONTINUE 30 CONTINUE DO I = 1, M IF( R( I ).GT.ZERO ) THEN R( I ) = RADIX**INT( LOG( R( I ) ) / LOGRDX ) END IF END DO * * Find the maximum and minimum scale factors. * RCMIN = BIGNUM RCMAX = ZERO DO 40 I = 1, M RCMAX = MAX( RCMAX, R( I ) ) RCMIN = MIN( RCMIN, R( I ) ) 40 CONTINUE AMAX = RCMAX * IF( RCMIN.EQ.ZERO ) THEN * * Find the first zero scale factor and return an error code. * DO 50 I = 1, M IF( R( I ).EQ.ZERO ) THEN INFO = I RETURN END IF 50 CONTINUE ELSE * * Invert the scale factors. * DO 60 I = 1, M R( I ) = ONE / MIN( MAX( R( I ), SMLNUM ), BIGNUM ) 60 CONTINUE * * Compute ROWCND = min(R(I)) / max(R(I)). * ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) END IF * * Compute column scale factors. * DO 70 J = 1, N C( J ) = ZERO 70 CONTINUE * * Find the maximum element in each column, * assuming the row scaling computed above. * DO 90 J = 1, N DO 80 I = MAX( J-KU, 1 ), MIN( J+KL, M ) C( J ) = MAX( C( J ), CABS1( AB( KD+I-J, J ) )*R( I ) ) 80 CONTINUE IF( C( J ).GT.ZERO ) THEN C( J ) = RADIX**INT( LOG( C( J ) ) / LOGRDX ) END IF 90 CONTINUE * * Find the maximum and minimum scale factors. * RCMIN = BIGNUM RCMAX = ZERO DO 100 J = 1, N RCMIN = MIN( RCMIN, C( J ) ) RCMAX = MAX( RCMAX, C( J ) ) 100 CONTINUE * IF( RCMIN.EQ.ZERO ) THEN * * Find the first zero scale factor and return an error code. * DO 110 J = 1, N IF( C( J ).EQ.ZERO ) THEN INFO = M + J RETURN END IF 110 CONTINUE ELSE * * Invert the scale factors. * DO 120 J = 1, N C( J ) = ONE / MIN( MAX( C( J ), SMLNUM ), BIGNUM ) 120 CONTINUE * * Compute COLCND = min(C(J)) / max(C(J)). * COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) END IF * RETURN * * End of CGBEQUB * END