numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/cgedmd.f90 | 46803B | -rw-r--r-- |
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
!> \brief \b CGEDMD computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices. ! ! =========== DOCUMENTATION =========== ! ! Definition: ! =========== ! ! SUBROUTINE CGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, & ! M, N, X, LDX, Y, LDY, NRNK, TOL, & ! K, EIGS, Z, LDZ, RES, B, LDB, & ! W, LDW, S, LDS, ZWORK, LZWORK, & ! RWORK, LRWORK, IWORK, LIWORK, INFO ) !..... ! USE, INTRINSIC :: iso_fortran_env, only: real32 ! IMPLICIT NONE ! INTEGER, PARAMETER :: WP = real32 ! !..... ! Scalar arguments ! CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF ! INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, & ! NRNK, LDZ, LDB, LDW, LDS, & ! LIWORK, LRWORK, LZWORK ! INTEGER, INTENT(OUT) :: K, INFO ! REAL(KIND=WP), INTENT(IN) :: TOL ! Array arguments ! COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*) ! COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), & ! W(LDW,*), S(LDS,*) ! COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*) ! COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*) ! REAL(KIND=WP), INTENT(OUT) :: RES(*) ! REAL(KIND=WP), INTENT(OUT) :: RWORK(*) ! INTEGER, INTENT(OUT) :: IWORK(*) ! !............................................................ !> \par Purpose: ! ============= !> \verbatim !> CGEDMD computes the Dynamic Mode Decomposition (DMD) for !> a pair of data snapshot matrices. For the input matrices !> X and Y such that Y = A*X with an unaccessible matrix !> A, CGEDMD computes a certain number of Ritz pairs of A using !> the standard Rayleigh-Ritz extraction from a subspace of !> range(X) that is determined using the leading left singular !> vectors of X. Optionally, CGEDMD returns the residuals !> of the computed Ritz pairs, the information needed for !> a refinement of the Ritz vectors, or the eigenvectors of !> the Exact DMD. !> For further details see the references listed !> below. For more details of the implementation see [3]. !> \endverbatim !............................................................ !> \par References: ! ================ !> \verbatim !> [1] P. Schmid: Dynamic mode decomposition of numerical !> and experimental data, !> Journal of Fluid Mechanics 656, 5-28, 2010. !> [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal !> decompositions: analysis and enhancements, !> SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. !> [3] Z. Drmac: A LAPACK implementation of the Dynamic !> Mode Decomposition I. Technical report. AIMDyn Inc. !> and LAPACK Working Note 298. !> [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. !> Brunton, N. Kutz: On Dynamic Mode Decomposition: !> Theory and Applications, Journal of Computational !> Dynamics 1(2), 391 -421, 2014. !> \endverbatim !...................................................................... !> \par Developed and supported by: ! ================================ !> \verbatim !> Developed and coded by Zlatko Drmac, Faculty of Science, !> University of Zagreb; drmac@math.hr !> In cooperation with !> AIMdyn Inc., Santa Barbara, CA. !> and supported by !> - DARPA SBIR project "Koopman Operator-Based Forecasting !> for Nonstationary Processes from Near-Term, Limited !> Observational Data" Contract No: W31P4Q-21-C-0007 !> - DARPA PAI project "Physics-Informed Machine Learning !> Methodologies" Contract No: HR0011-18-9-0033 !> - DARPA MoDyL project "A Data-Driven, Operator-Theoretic !> Framework for Space-Time Analysis of Process Dynamics" !> Contract No: HR0011-16-C-0116 !> Any opinions, findings and conclusions or recommendations !> expressed in this material are those of the author and !> do not necessarily reflect the views of the DARPA SBIR !> Program Office !> \endverbatim !...................................................................... !> \par Distribution Statement A: ! ============================== !> \verbatim !> Approved for Public Release, Distribution Unlimited. !> Cleared by DARPA on September 29, 2022 !> \endverbatim !...................................................................... ! Arguments ! ========= ! !> \param[in] JOBS !> \verbatim !> JOBS (input) CHARACTER*1 !> Determines whether the initial data snapshots are scaled !> by a diagonal matrix. !> 'S' :: The data snapshots matrices X and Y are multiplied !> with a diagonal matrix D so that X*D has unit !> nonzero columns (in the Euclidean 2-norm) !> 'C' :: The snapshots are scaled as with the 'S' option. !> If it is found that an i-th column of X is zero !> vector and the corresponding i-th column of Y is !> non-zero, then the i-th column of Y is set to !> zero and a warning flag is raised. !> 'Y' :: The data snapshots matrices X and Y are multiplied !> by a diagonal matrix D so that Y*D has unit !> nonzero columns (in the Euclidean 2-norm) !> 'N' :: No data scaling. !> \endverbatim !..... !> \param[in] JOBZ !> \verbatim !> JOBZ (input) CHARACTER*1 !> Determines whether the eigenvectors (Koopman modes) will !> be computed. !> 'V' :: The eigenvectors (Koopman modes) will be computed !> and returned in the matrix Z. !> See the description of Z. !> 'F' :: The eigenvectors (Koopman modes) will be returned !> in factored form as the product X(:,1:K)*W, where X !> contains a POD basis (leading left singular vectors !> of the data matrix X) and W contains the eigenvectors !> of the corresponding Rayleigh quotient. !> See the descriptions of K, X, W, Z. !> 'N' :: The eigenvectors are not computed. !> \endverbatim !..... !> \param[in] JOBR !> \verbatim !> JOBR (input) CHARACTER*1 !> Determines whether to compute the residuals. !> 'R' :: The residuals for the computed eigenpairs will be !> computed and stored in the array RES. !> See the description of RES. !> For this option to be legal, JOBZ must be 'V'. !> 'N' :: The residuals are not computed. !> \endverbatim !..... !> \param[in] JOBF !> \verbatim !> JOBF (input) CHARACTER*1 !> Specifies whether to store information needed for post- !> processing (e.g. computing refined Ritz vectors) !> 'R' :: The matrix needed for the refinement of the Ritz !> vectors is computed and stored in the array B. !> See the description of B. !> 'E' :: The unscaled eigenvectors of the Exact DMD are !> computed and returned in the array B. See the !> description of B. !> 'N' :: No eigenvector refinement data is computed. !> \endverbatim !..... !> \param[in] WHTSVD !> \verbatim !> WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } !> Allows for a selection of the SVD algorithm from the !> LAPACK library. !> 1 :: CGESVD (the QR SVD algorithm) !> 2 :: CGESDD (the Divide and Conquer algorithm; if enough !> workspace available, this is the fastest option) !> 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4 !> are the most accurate options) !> 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3 !> are the most accurate options) !> For the four methods above, a significant difference in !> the accuracy of small singular values is possible if !> the snapshots vary in norm so that X is severely !> ill-conditioned. If small (smaller than EPS*||X||) !> singular values are of interest and JOBS=='N', then !> the options (3, 4) give the most accurate results, where !> the option 4 is slightly better and with stronger !> theoretical background. !> If JOBS=='S', i.e. the columns of X will be normalized, !> then all methods give nearly equally accurate results. !> \endverbatim !..... !> \param[in] M !> \verbatim !> M (input) INTEGER, M>= 0 !> The state space dimension (the row dimension of X, Y). !> \endverbatim !..... !> \param[in] N !> \verbatim !> N (input) INTEGER, 0 <= N <= M !> The number of data snapshot pairs !> (the number of columns of X and Y). !> \endverbatim !..... !> \param[in,out] X !> \verbatim !> X (input/output) COMPLEX(KIND=WP) M-by-N array !> > On entry, X contains the data snapshot matrix X. It is !> assumed that the column norms of X are in the range of !> the normalized floating point numbers. !> < On exit, the leading K columns of X contain a POD basis, !> i.e. the leading K left singular vectors of the input !> data matrix X, U(:,1:K). All N columns of X contain all !> left singular vectors of the input matrix X. !> See the descriptions of K, Z and W. !> \endverbatim !..... !> \param[in] LDX !> \verbatim !> LDX (input) INTEGER, LDX >= M !> The leading dimension of the array X. !> \endverbatim !..... !> \param[in,out] Y !> \verbatim !> Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array !> > On entry, Y contains the data snapshot matrix Y !> < On exit, !> If JOBR == 'R', the leading K columns of Y contain !> the residual vectors for the computed Ritz pairs. !> See the description of RES. !> If JOBR == 'N', Y contains the original input data, !> scaled according to the value of JOBS. !> \endverbatim !..... !> \param[in] LDY !> \verbatim !> LDY (input) INTEGER , LDY >= M !> The leading dimension of the array Y. !> \endverbatim !..... !> \param[in] NRNK !> \verbatim !> NRNK (input) INTEGER !> Determines the mode how to compute the numerical rank, !> i.e. how to truncate small singular values of the input !> matrix X. On input, if !> NRNK = -1 :: i-th singular value sigma(i) is truncated !> if sigma(i) <= TOL*sigma(1) !> This option is recommended. !> NRNK = -2 :: i-th singular value sigma(i) is truncated !> if sigma(i) <= TOL*sigma(i-1) !> This option is included for R&D purposes. !> It requires highly accurate SVD, which !> may not be feasible. !> The numerical rank can be enforced by using positive !> value of NRNK as follows: !> 0 < NRNK <= N :: at most NRNK largest singular values !> will be used. If the number of the computed nonzero !> singular values is less than NRNK, then only those !> nonzero values will be used and the actually used !> dimension is less than NRNK. The actual number of !> the nonzero singular values is returned in the variable !> K. See the descriptions of TOL and K. !> \endverbatim !..... !> \param[in] TOL !> \verbatim !> TOL (input) REAL(KIND=WP), 0 <= TOL < 1 !> The tolerance for truncating small singular values. !> See the description of NRNK. !> \endverbatim !..... !> \param[out] K !> \verbatim !> K (output) INTEGER, 0 <= K <= N !> The dimension of the POD basis for the data snapshot !> matrix X and the number of the computed Ritz pairs. !> The value of K is determined according to the rule set !> by the parameters NRNK and TOL. !> See the descriptions of NRNK and TOL. !> \endverbatim !..... !> \param[out] EIGS !> \verbatim !> EIGS (output) COMPLEX(KIND=WP) N-by-1 array !> The leading K (K<=N) entries of EIGS contain !> the computed eigenvalues (Ritz values). !> See the descriptions of K, and Z. !> \endverbatim !..... !> \param[out] Z !> \verbatim !> Z (workspace/output) COMPLEX(KIND=WP) M-by-N array !> If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i) !> is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1. !> If JOBZ == 'F', then the Z(:,i)'s are given implicitly as !> the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i) !> is an eigenvector corresponding to EIGS(i). The columns !> of W(1:k,1:K) are the computed eigenvectors of the !> K-by-K Rayleigh quotient. !> See the descriptions of EIGS, X and W. !> \endverbatim !..... !> \param[in] LDZ !> \verbatim !> LDZ (input) INTEGER , LDZ >= M !> The leading dimension of the array Z. !> \endverbatim !..... !> \param[out] RES !> \verbatim !> RES (output) REAL(KIND=WP) N-by-1 array !> RES(1:K) contains the residuals for the K computed !> Ritz pairs, !> RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2. !> See the description of EIGS and Z. !> \endverbatim !..... !> \param[out] B !> \verbatim !> B (output) COMPLEX(KIND=WP) M-by-N array. !> IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can !> be used for computing the refined vectors; see further !> details in the provided references. !> If JOBF == 'E', B(1:M,1:K) contains !> A*U(:,1:K)*W(1:K,1:K), which are the vectors from the !> Exact DMD, up to scaling by the inverse eigenvalues. !> If JOBF =='N', then B is not referenced. !> See the descriptions of X, W, K. !> \endverbatim !..... !> \param[in] LDB !> \verbatim !> LDB (input) INTEGER, LDB >= M !> The leading dimension of the array B. !> \endverbatim !..... !> \param[out] W !> \verbatim !> W (workspace/output) COMPLEX(KIND=WP) N-by-N array !> On exit, W(1:K,1:K) contains the K computed !> eigenvectors of the matrix Rayleigh quotient. !> The Ritz vectors (returned in Z) are the !> product of X (containing a POD basis for the input !> matrix X) and W. See the descriptions of K, S, X and Z. !> W is also used as a workspace to temporarily store the !> right singular vectors of X. !> \endverbatim !..... !> \param[in] LDW !> \verbatim !> LDW (input) INTEGER, LDW >= N !> The leading dimension of the array W. !> \endverbatim !..... !> \param[out] S !> \verbatim !> S (workspace/output) COMPLEX(KIND=WP) N-by-N array !> The array S(1:K,1:K) is used for the matrix Rayleigh !> quotient. This content is overwritten during !> the eigenvalue decomposition by CGEEV. !> See the description of K. !> \endverbatim !..... !> \param[in] LDS !> \verbatim !> LDS (input) INTEGER, LDS >= N !> The leading dimension of the array S. !> \endverbatim !..... !> \param[out] ZWORK !> \verbatim !> ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array !> ZWORK is used as complex workspace in the complex SVD, as !> specified by WHTSVD (1,2, 3 or 4) and for CGEEV for computing !> the eigenvalues of a Rayleigh quotient. !> If the call to CGEDMD is only workspace query, then !> ZWORK(1) contains the minimal complex workspace length and !> ZWORK(2) is the optimal complex workspace length. !> Hence, the length of work is at least 2. !> See the description of LZWORK. !> \endverbatim !..... !> \param[in] LZWORK !> \verbatim !> LZWORK (input) INTEGER !> The minimal length of the workspace vector ZWORK. !> LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_CGEEV), !> where LZWORK_CGEEV = MAX( 1, 2*N ) and the minimal !> LZWORK_SVD is calculated as follows !> If WHTSVD == 1 :: CGESVD :: !> LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N)) !> If WHTSVD == 2 :: CGESDD :: !> LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N) !> If WHTSVD == 3 :: CGESVDQ :: !> LZWORK_SVD = obtainable by a query !> If WHTSVD == 4 :: CGEJSV :: !> LZWORK_SVD = obtainable by a query !> If on entry LZWORK = -1, then a workspace query is !> assumed and the procedure only computes the minimal !> and the optimal workspace lengths and returns them in !> LZWORK(1) and LZWORK(2), respectively. !> \endverbatim !..... !> \param[out] RWORK !> \verbatim !> RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array !> On exit, RWORK(1:N) contains the singular values of !> X (for JOBS=='N') or column scaled X (JOBS=='S', 'C'). !> If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain !> scaling factor RWORK(N+2)/RWORK(N+1) used to scale X !> and Y to avoid overflow in the SVD of X. !> This may be of interest if the scaling option is off !> and as many as possible smallest eigenvalues are !> desired to the highest feasible accuracy. !> If the call to CGEDMD is only workspace query, then !> RWORK(1) contains the minimal workspace length. !> See the description of LRWORK. !> \endverbatim !..... !> \param[in] LRWORK !> \verbatim !> LRWORK (input) INTEGER !> The minimal length of the workspace vector RWORK. !> LRWORK is calculated as follows: !> LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_CGEEV), where !> LRWORK_CGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace !> for the SVD subroutine determined by the input parameter !> WHTSVD. !> If WHTSVD == 1 :: CGESVD :: !> LRWORK_SVD = 5*MIN(M,N) !> If WHTSVD == 2 :: CGESDD :: !> LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), !> 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) ) !> If WHTSVD == 3 :: CGESVDQ :: !> LRWORK_SVD = obtainable by a query !> If WHTSVD == 4 :: CGEJSV :: !> LRWORK_SVD = obtainable by a query !> If on entry LRWORK = -1, then a workspace query is !> assumed and the procedure only computes the minimal !> real workspace length and returns it in RWORK(1). !> \endverbatim !..... !> \param[out] IWORK !> \verbatim !> IWORK (workspace/output) INTEGER LIWORK-by-1 array !> Workspace that is required only if WHTSVD equals !> 2 , 3 or 4. (See the description of WHTSVD). !> If on entry LWORK =-1 or LIWORK=-1, then the !> minimal length of IWORK is computed and returned in !> IWORK(1). See the description of LIWORK. !> \endverbatim !..... !> \param[in] LIWORK !> \verbatim !> LIWORK (input) INTEGER !> The minimal length of the workspace vector IWORK. !> If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 !> If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N)) !> If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1) !> If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N) !> If on entry LIWORK = -1, then a workspace query is !> assumed and the procedure only computes the minimal !> and the optimal workspace lengths for ZWORK, RWORK and !> IWORK. See the descriptions of ZWORK, RWORK and IWORK. !> \endverbatim !..... !> \param[out] INFO !> \verbatim !> INFO (output) INTEGER !> -i < 0 :: On entry, the i-th argument had an !> illegal value !> = 0 :: Successful return. !> = 1 :: Void input. Quick exit (M=0 or N=0). !> = 2 :: The SVD computation of X did not converge. !> Suggestion: Check the input data and/or !> repeat with different WHTSVD. !> = 3 :: The computation of the eigenvalues did not !> converge. !> = 4 :: If data scaling was requested on input and !> the procedure found inconsistency in the data !> such that for some column index i, !> X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set !> to zero if JOBS=='C'. The computation proceeds !> with original or modified data and warning !> flag is set with INFO=4. !> \endverbatim ! ! Authors: ! ======== ! !> \author Zlatko Drmac ! !> \ingroup gedmd ! !............................................................. !............................................................. SUBROUTINE CGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, & M, N, X, LDX, Y, LDY, NRNK, TOL, & K, EIGS, Z, LDZ, RES, B, LDB, & W, LDW, S, LDS, ZWORK, LZWORK, & RWORK, LRWORK, IWORK, LIWORK, INFO ) ! ! -- LAPACK driver routine -- ! ! -- LAPACK is a software package provided by University of -- ! -- Tennessee, University of California Berkeley, University of -- ! -- Colorado Denver and NAG Ltd.. -- ! !..... USE, INTRINSIC :: iso_fortran_env, only: real32 IMPLICIT NONE INTEGER, PARAMETER :: WP = real32 ! ! Scalar arguments ! ~~~~~~~~~~~~~~~~ CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, & NRNK, LDZ, LDB, LDW, LDS, & LIWORK, LRWORK, LZWORK INTEGER, INTENT(OUT) :: K, INFO REAL(KIND=WP), INTENT(IN) :: TOL ! ! Array arguments ! ~~~~~~~~~~~~~~~ COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*) COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), & W(LDW,*), S(LDS,*) COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*) COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*) REAL(KIND=WP), INTENT(OUT) :: RES(*) REAL(KIND=WP), INTENT(OUT) :: RWORK(*) INTEGER, INTENT(OUT) :: IWORK(*) ! ! Parameters ! ~~~~~~~~~~ REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP ) COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP ) ! ! Local scalars ! ~~~~~~~~~~~~~ REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, & SSUM, XSCL1, XSCL2 INTEGER :: i, j, IMINWR, INFO1, INFO2, & LWRKEV, LWRSDD, LWRSVD, LWRSVJ, & LWRSVQ, MLWORK, MWRKEV, MWRSDD, & MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, & OLWORK, MLRWRK LOGICAL :: BADXY, LQUERY, SCCOLX, SCCOLY, & WNTEX, WNTREF, WNTRES, WNTVEC CHARACTER :: JOBZL, T_OR_N CHARACTER :: JSVOPT ! ! Local arrays ! ~~~~~~~~~~~~ REAL(KIND=WP) :: RDUMMY(2) ! ! External functions (BLAS and LAPACK) ! ~~~~~~~~~~~~~~~~~ REAL(KIND=WP) CLANGE, SLAMCH, SCNRM2 EXTERNAL CLANGE, SLAMCH, SCNRM2, ICAMAX INTEGER ICAMAX LOGICAL SISNAN, LSAME EXTERNAL SISNAN, LSAME ! ! External subroutines (BLAS and LAPACK) ! ~~~~~~~~~~~~~~~~~~~~ EXTERNAL CAXPY, CGEMM, CSSCAL EXTERNAL CGEEV, CGEJSV, CGESDD, CGESVD, CGESVDQ, & CLACPY, CLASCL, CLASSQ, XERBLA ! ! Intrinsic functions ! ~~~~~~~~~~~~~~~~~~~ INTRINSIC FLOAT, INT, MAX, SQRT !............................................................ ! ! Test the input arguments ! WNTRES = LSAME(JOBR,'R') SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C') SCCOLY = LSAME(JOBS,'Y') WNTVEC = LSAME(JOBZ,'V') WNTREF = LSAME(JOBF,'R') WNTEX = LSAME(JOBF,'E') INFO = 0 LQUERY = ( ( LZWORK == -1 ) .OR. ( LIWORK == -1 ) & .OR. ( LRWORK == -1 ) ) ! IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. & LSAME(JOBS,'N')) ) THEN INFO = -1 ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N') & .OR. LSAME(JOBZ,'F')) ) THEN INFO = -2 ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. & ( WNTRES .AND. (.NOT.WNTVEC) ) ) THEN INFO = -3 ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. & LSAME(JOBF,'N') ) ) THEN INFO = -4 ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR. & (WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN INFO = -5 ELSE IF ( M < 0 ) THEN INFO = -6 ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN INFO = -7 ELSE IF ( LDX < M ) THEN INFO = -9 ELSE IF ( LDY < M ) THEN INFO = -11 ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. & ((NRNK >= 1).AND.(NRNK <=N ))) ) THEN INFO = -12 ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN INFO = -13 ELSE IF ( LDZ < M ) THEN INFO = -17 ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN INFO = -20 ELSE IF ( LDW < N ) THEN INFO = -22 ELSE IF ( LDS < N ) THEN INFO = -24 END IF ! IF ( INFO == 0 ) THEN ! Compute the minimal and the optimal workspace ! requirements. Simulate running the code and ! determine minimal and optimal sizes of the ! workspace at any moment of the run. IF ( N == 0 ) THEN ! Quick return. All output except K is void. ! INFO=1 signals the void input. ! In case of a workspace query, the default ! minimal workspace lengths are returned. IF ( LQUERY ) THEN IWORK(1) = 1 RWORK(1) = 1 ZWORK(1) = 2 ZWORK(2) = 2 ELSE K = 0 END IF INFO = 1 RETURN END IF IMINWR = 1 MLRWRK = MAX(1,N) MLWORK = 2 OLWORK = 2 SELECT CASE ( WHTSVD ) CASE (1) ! The following is specified as the minimal ! length of WORK in the definition of CGESVD: ! MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N)) MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N)) MLWORK = MAX(MLWORK,MWRSVD) MLRWRK = MAX(MLRWRK,N + 5*MIN(M,N)) IF ( LQUERY ) THEN CALL CGESVD( 'O', 'S', M, N, X, LDX, RWORK, & B, LDB, W, LDW, ZWORK, -1, RDUMMY, INFO1 ) LWRSVD = INT( ZWORK(1) ) OLWORK = MAX(OLWORK,LWRSVD) END IF CASE (2) ! The following is specified as the minimal ! length of WORK in the definition of CGESDD: ! MWRSDD = 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N). ! RWORK length: 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N) ! In LAPACK 3.10.1 RWORK is defined differently. ! Below we take max over the two versions. ! IMINWR = 8*MIN(M,N) MWRSDD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N) MLWORK = MAX(MLWORK,MWRSDD) IMINWR = 8*MIN(M,N) MLRWRK = MAX( MLRWRK, N + & MAX( 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), & 5*MIN(M,N)*MIN(M,N)+5*MIN(M,N), & 2*MAX(M,N)*MIN(M,N)+ & 2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) ) IF ( LQUERY ) THEN CALL CGESDD( 'O', M, N, X, LDX, RWORK, B, & LDB, W, LDW, ZWORK, -1, RDUMMY, IWORK, INFO1 ) LWRSDD = MAX(MWRSDD,INT( ZWORK(1) )) OLWORK = MAX(OLWORK,LWRSDD) END IF CASE (3) CALL CGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, & X, LDX, RWORK, Z, LDZ, W, LDW, NUMRNK, & IWORK, -1, ZWORK, -1, RDUMMY, -1, INFO1 ) IMINWR = IWORK(1) MWRSVQ = INT(ZWORK(2)) MLWORK = MAX(MLWORK,MWRSVQ) MLRWRK = MAX(MLRWRK,N + INT(RDUMMY(1))) IF ( LQUERY ) THEN LWRSVQ = INT(ZWORK(1)) OLWORK = MAX(OLWORK,LWRSVQ) END IF CASE (4) JSVOPT = 'J' CALL CGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, & N, X, LDX, RWORK, Z, LDZ, W, LDW, & ZWORK, -1, RDUMMY, -1, IWORK, INFO1 ) IMINWR = IWORK(1) MWRSVJ = INT(ZWORK(2)) MLWORK = MAX(MLWORK,MWRSVJ) MLRWRK = MAX(MLRWRK,N + MAX(7,INT(RDUMMY(1)))) IF ( LQUERY ) THEN LWRSVJ = INT(ZWORK(1)) OLWORK = MAX(OLWORK,LWRSVJ) END IF END SELECT IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN JOBZL = 'V' ELSE JOBZL = 'N' END IF ! Workspace calculation to the CGEEV call MWRKEV = MAX( 1, 2*N ) MLWORK = MAX(MLWORK,MWRKEV) MLRWRK = MAX(MLRWRK,N+2*N) IF ( LQUERY ) THEN CALL CGEEV( 'N', JOBZL, N, S, LDS, EIGS, & W, LDW, W, LDW, ZWORK, -1, RWORK, INFO1 ) ! LAPACK CALL LWRKEV = INT(ZWORK(1)) OLWORK = MAX( OLWORK, LWRKEV ) OLWORK = MAX( 2, OLWORK ) END IF ! IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -30 IF ( LRWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -28 IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -26 END IF ! IF( INFO /= 0 ) THEN CALL XERBLA( 'CGEDMD', -INFO ) RETURN ELSE IF ( LQUERY ) THEN ! Return minimal and optimal workspace sizes IWORK(1) = IMINWR RWORK(1) = REAL(MLRWRK) ZWORK(1) = CMPLX(MLWORK) ZWORK(2) = CMPLX(OLWORK) RETURN END IF !............................................................ ! OFL = SLAMCH('O')*SLAMCH('P') SMALL = SLAMCH('S') BADXY = .FALSE. ! ! <1> Optional scaling of the snapshots (columns of X, Y) ! ========================================================== IF ( SCCOLX ) THEN ! The columns of X will be normalized. ! To prevent overflows, the column norms of X are ! carefully computed using CLASSQ. K = 0 DO i = 1, N !WORK(i) = SCNRM2( M, X(1,i), 1 ) SSUM = ONE SCALE = ZERO CALL CLASSQ( M, X(1,i), 1, SCALE, SSUM ) IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN K = 0 INFO = -8 CALL XERBLA('CGEDMD',-INFO) END IF IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN ROOTSC = SQRT(SSUM) IF ( SCALE .GE. (OFL / ROOTSC) ) THEN ! Norm of X(:,i) overflows. First, X(:,i) ! is scaled by ! ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2. ! Next, the norm of X(:,i) is stored without ! overflow as WORK(i) = - SCALE * (ROOTSC/M), ! the minus sign indicating the 1/M factor. ! Scaling is performed without overflow, and ! underflow may occur in the smallest entries ! of X(:,i). The relative backward and forward ! errors are small in the ell_2 norm. CALL CLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, & M, 1, X(1,i), LDX, INFO2 ) RWORK(i) = - SCALE * ( ROOTSC / FLOAT(M) ) ELSE ! X(:,i) will be scaled to unit 2-norm RWORK(i) = SCALE * ROOTSC CALL CLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, & X(1,i), LDX, INFO2 ) ! LAPACK CALL ! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC END IF ELSE RWORK(i) = ZERO K = K + 1 END IF END DO IF ( K == N ) THEN ! All columns of X are zero. Return error code -8. ! (the 8th input variable had an illegal value) K = 0 INFO = -8 CALL XERBLA('CGEDMD',-INFO) RETURN END IF DO i = 1, N ! Now, apply the same scaling to the columns of Y. IF ( RWORK(i) > ZERO ) THEN CALL CSSCAL( M, ONE/RWORK(i), Y(1,i), 1 ) ! BLAS CALL ! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC ELSE IF ( RWORK(i) < ZERO ) THEN CALL CLASCL( 'G', 0, 0, -RWORK(i), & ONE/FLOAT(M), M, 1, Y(1,i), LDY, INFO2 ) ! LAPACK CALL ELSE IF ( ABS(Y(ICAMAX(M, Y(1,i),1),i )) & /= ZERO ) THEN ! X(:,i) is zero vector. For consistency, ! Y(:,i) should also be zero. If Y(:,i) is not ! zero, then the data might be inconsistent or ! corrupted. If JOBS == 'C', Y(:,i) is set to ! zero and a warning flag is raised. ! The computation continues but the ! situation will be reported in the output. BADXY = .TRUE. IF ( LSAME(JOBS,'C')) & CALL CSSCAL( M, ZERO, Y(1,i), 1 ) ! BLAS CALL END IF END DO END IF ! IF ( SCCOLY ) THEN ! The columns of Y will be normalized. ! To prevent overflows, the column norms of Y are ! carefully computed using CLASSQ. DO i = 1, N !RWORK(i) = SCNRM2( M, Y(1,i), 1 ) SSUM = ONE SCALE = ZERO CALL CLASSQ( M, Y(1,i), 1, SCALE, SSUM ) IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN K = 0 INFO = -10 CALL XERBLA('CGEDMD',-INFO) END IF IF ( SCALE /= ZERO .AND. (SSUM /= ZERO) ) THEN ROOTSC = SQRT(SSUM) IF ( SCALE .GE. (OFL / ROOTSC) ) THEN ! Norm of Y(:,i) overflows. First, Y(:,i) ! is scaled by ! ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2. ! Next, the norm of Y(:,i) is stored without ! overflow as RWORK(i) = - SCALE * (ROOTSC/M), ! the minus sign indicating the 1/M factor. ! Scaling is performed without overflow, and ! underflow may occur in the smallest entries ! of Y(:,i). The relative backward and forward ! errors are small in the ell_2 norm. CALL CLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, & M, 1, Y(1,i), LDY, INFO2 ) RWORK(i) = - SCALE * ( ROOTSC / FLOAT(M) ) ELSE ! Y(:,i) will be scaled to unit 2-norm RWORK(i) = SCALE * ROOTSC CALL CLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, & Y(1,i), LDY, INFO2 ) ! LAPACK CALL ! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC END IF ELSE RWORK(i) = ZERO END IF END DO DO i = 1, N ! Now, apply the same scaling to the columns of X. IF ( RWORK(i) > ZERO ) THEN CALL CSSCAL( M, ONE/RWORK(i), X(1,i), 1 ) ! BLAS CALL ! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC ELSE IF ( RWORK(i) < ZERO ) THEN CALL CLASCL( 'G', 0, 0, -RWORK(i), & ONE/FLOAT(M), M, 1, X(1,i), LDX, INFO2 ) ! LAPACK CALL ELSE IF ( ABS(X(ICAMAX(M, X(1,i),1),i )) & /= ZERO ) THEN ! Y(:,i) is zero vector. If X(:,i) is not ! zero, then a warning flag is raised. ! The computation continues but the ! situation will be reported in the output. BADXY = .TRUE. END IF END DO END IF ! ! <2> SVD of the data snapshot matrix X. ! ===================================== ! The left singular vectors are stored in the array X. ! The right singular vectors are in the array W. ! The array W will later on contain the eigenvectors ! of a Rayleigh quotient. NUMRNK = N SELECT CASE ( WHTSVD ) CASE (1) CALL CGESVD( 'O', 'S', M, N, X, LDX, RWORK, B, & LDB, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL T_OR_N = 'C' CASE (2) CALL CGESDD( 'O', M, N, X, LDX, RWORK, B, LDB, W, & LDW, ZWORK, LZWORK, RWORK(N+1), IWORK, INFO1 ) ! LAPACK CALL T_OR_N = 'C' CASE (3) CALL CGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, & X, LDX, RWORK, Z, LDZ, W, LDW, & NUMRNK, IWORK, LIWORK, ZWORK, & LZWORK, RWORK(N+1), LRWORK-N, INFO1) ! LAPACK CALL CALL CLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX ) ! LAPACK CALL T_OR_N = 'C' CASE (4) CALL CGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, & N, X, LDX, RWORK, Z, LDZ, W, LDW, & ZWORK, LZWORK, RWORK(N+1), LRWORK-N, IWORK, INFO1 ) ! LAPACK CALL CALL CLACPY( 'A', M, N, Z, LDZ, X, LDX ) ! LAPACK CALL T_OR_N = 'N' XSCL1 = RWORK(N+1) XSCL2 = RWORK(N+2) IF ( XSCL1 /= XSCL2 ) THEN ! This is an exceptional situation. If the ! data matrices are not scaled and the ! largest singular value of X overflows. ! In that case CGEJSV can return the SVD ! in scaled form. The scaling factor can be used ! to rescale the data (X and Y). CALL CLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2 ) END IF END SELECT ! IF ( INFO1 > 0 ) THEN ! The SVD selected subroutine did not converge. ! Return with an error code. INFO = 2 RETURN END IF ! IF ( RWORK(1) == ZERO ) THEN ! The largest computed singular value of (scaled) ! X is zero. Return error code -8 ! (the 8th input variable had an illegal value). K = 0 INFO = -8 CALL XERBLA('CGEDMD',-INFO) RETURN END IF ! !<3> Determine the numerical rank of the data ! snapshots matrix X. This depends on the ! parameters NRNK and TOL. SELECT CASE ( NRNK ) CASE ( -1 ) K = 1 DO i = 2, NUMRNK IF ( ( RWORK(i) <= RWORK(1)*TOL ) .OR. & ( RWORK(i) <= SMALL ) ) EXIT K = K + 1 END DO CASE ( -2 ) K = 1 DO i = 1, NUMRNK-1 IF ( ( RWORK(i+1) <= RWORK(i)*TOL ) .OR. & ( RWORK(i) <= SMALL ) ) EXIT K = K + 1 END DO CASE DEFAULT K = 1 DO i = 2, NRNK IF ( RWORK(i) <= SMALL ) EXIT K = K + 1 END DO END SELECT ! Now, U = X(1:M,1:K) is the SVD/POD basis for the ! snapshot data in the input matrix X. !<4> Compute the Rayleigh quotient S = U^H * A * U. ! Depending on the requested outputs, the computation ! is organized to compute additional auxiliary ! matrices (for the residuals and refinements). ! ! In all formulas below, we need V_k*Sigma_k^(-1) ! where either V_k is in W(1:N,1:K), or V_k^H is in ! W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)). IF ( LSAME(T_OR_N, 'N') ) THEN DO i = 1, K CALL CSSCAL( N, ONE/RWORK(i), W(1,i), 1 ) ! BLAS CALL ! W(1:N,i) = (ONE/RWORK(i)) * W(1:N,i) ! INTRINSIC END DO ELSE ! This non-unit stride access is due to the fact ! that CGESVD, CGESVDQ and CGESDD return the ! adjoint matrix of the right singular vectors. !DO i = 1, K ! CALL DSCAL( N, ONE/RWORK(i), W(i,1), LDW ) ! BLAS CALL ! ! W(i,1:N) = (ONE/RWORK(i)) * W(i,1:N) ! INTRINSIC !END DO DO i = 1, K RWORK(N+i) = ONE/RWORK(i) END DO DO j = 1, N DO i = 1, K W(i,j) = CMPLX(RWORK(N+i),ZERO,KIND=WP)*W(i,j) END DO END DO END IF ! IF ( WNTREF ) THEN ! ! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K))) ! for computing the refined Ritz vectors ! (optionally, outside CGEDMD). CALL CGEMM( 'N', T_OR_N, M, K, N, ZONE, Y, LDY, W, & LDW, ZZERO, Z, LDZ ) ! BLAS CALL ! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T' ! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K)) ! INTRINSIC, for T_OR_N=='N' ! ! At this point Z contains ! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and ! this is needed for computing the residuals. ! This matrix is returned in the array B and ! it can be used to compute refined Ritz vectors. CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB ) ! BLAS CALL ! B(1:M,1:K) = Z(1:M,1:K) ! INTRINSIC CALL CGEMM( 'C', 'N', K, K, M, ZONE, X, LDX, Z, & LDZ, ZZERO, S, LDS ) ! BLAS CALL ! S(1:K,1:K) = MATMUL(TANSPOSE(X(1:M,1:K)),Z(1:M,1:K)) ! INTRINSIC ! At this point S = U^H * A * U is the Rayleigh quotient. ELSE ! A * U(:,1:K) is not explicitly needed and the ! computation is organized differently. The Rayleigh ! quotient is computed more efficiently. CALL CGEMM( 'C', 'N', K, N, M, ZONE, X, LDX, Y, LDY, & ZZERO, Z, LDZ ) ! BLAS CALL ! Z(1:K,1:N) = MATMUL( TRANSPOSE(X(1:M,1:K)), Y(1:M,1:N) ) ! INTRINSIC ! CALL CGEMM( 'N', T_OR_N, K, K, N, ZONE, Z, LDZ, W, & LDW, ZZERO, S, LDS ) ! BLAS CALL ! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T' ! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K))) ! INTRINSIC, for T_OR_N=='N' ! At this point S = U^H * A * U is the Rayleigh quotient. ! If the residuals are requested, save scaled V_k into Z. ! Recall that V_k or V_k^H is stored in W. IF ( WNTRES .OR. WNTEX ) THEN IF ( LSAME(T_OR_N, 'N') ) THEN CALL CLACPY( 'A', N, K, W, LDW, Z, LDZ ) ELSE CALL CLACPY( 'A', K, N, W, LDW, Z, LDZ ) END IF END IF END IF ! !<5> Compute the Ritz values and (if requested) the ! right eigenvectors of the Rayleigh quotient. ! CALL CGEEV( 'N', JOBZL, K, S, LDS, EIGS, W, & LDW, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL ! ! W(1:K,1:K) contains the eigenvectors of the Rayleigh ! quotient. See the description of Z. ! Also, see the description of CGEEV. IF ( INFO1 > 0 ) THEN ! CGEEV failed to compute the eigenvalues and ! eigenvectors of the Rayleigh quotient. INFO = 3 RETURN END IF ! ! <6> Compute the eigenvectors (if requested) and, ! the residuals (if requested). ! IF ( WNTVEC .OR. WNTEX ) THEN IF ( WNTRES ) THEN IF ( WNTREF ) THEN ! Here, if the refinement is requested, we have ! A*U(:,1:K) already computed and stored in Z. ! For the residuals, need Y = A * U(:,1;K) * W. CALL CGEMM( 'N', 'N', M, K, K, ZONE, Z, LDZ, W, & LDW, ZZERO, Y, LDY ) ! BLAS CALL ! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K) ! INTRINSIC ! This frees Z; Y contains A * U(:,1:K) * W. ELSE ! Compute S = V_k * Sigma_k^(-1) * W, where ! V_k * Sigma_k^(-1) (or its adjoint) is stored in Z CALL CGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, & W, LDW, ZZERO, S, LDS) ! Then, compute Z = Y * S = ! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = ! = A * U(:,1:K) * W(1:K,1:K) CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & LDS, ZZERO, Z, LDZ) ! Save a copy of Z into Y and free Z for holding ! the Ritz vectors. CALL CLACPY( 'A', M, K, Z, LDZ, Y, LDY ) IF ( WNTEX ) CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB ) END IF ELSE IF ( WNTEX ) THEN ! Compute S = V_k * Sigma_k^(-1) * W, where ! V_k * Sigma_k^(-1) is stored in Z CALL CGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, & W, LDW, ZZERO, S, LDS) ! Then, compute Z = Y * S = ! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = ! = A * U(:,1:K) * W(1:K,1:K) CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & LDS, ZZERO, B, LDB) ! The above call replaces the following two calls ! that were used in the developing-testing phase. ! CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & ! LDS, ZZERO, Z, LDZ) ! Save a copy of Z into Y and free Z for holding ! the Ritz vectors. ! CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB ) END IF ! ! Compute the Ritz vectors IF ( WNTVEC ) CALL CGEMM( 'N', 'N', M, K, K, ZONE, X, LDX, W, LDW, & ZZERO, Z, LDZ ) ! BLAS CALL ! Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K)) ! INTRINSIC ! IF ( WNTRES ) THEN DO i = 1, K CALL CAXPY( M, -EIGS(i), Z(1,i), 1, Y(1,i), 1 ) ! BLAS CALL ! Y(1:M,i) = Y(1:M,i) - EIGS(i) * Z(1:M,i) ! INTRINSIC RES(i) = SCNRM2( M, Y(1,i), 1) ! BLAS CALL END DO END IF END IF ! IF ( WHTSVD == 4 ) THEN RWORK(N+1) = XSCL1 RWORK(N+2) = XSCL2 END IF ! ! Successful exit. IF ( .NOT. BADXY ) THEN INFO = 0 ELSE ! A warning on possible data inconsistency. ! This should be a rare event. INFO = 4 END IF !............................................................ RETURN ! ...... END SUBROUTINE CGEDMD