numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/cgedmdq.f90 33767B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
!> \brief \b CGEDMDQ computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.
!
!  =========== DOCUMENTATION ===========
!
!  Definition:
!  ===========
!
!     SUBROUTINE CGEDMDQ( JOBS,  JOBZ, JOBR, JOBQ, JOBT, JOBF,   &
!                   WHTSVD,   M, N, F, LDF,  X, LDX,  Y,   &
!                   LDY,   NRNK,  TOL,   K,  EIGS,         &
!                   Z, LDZ, RES,  B,     LDB,   V, LDV,    &
!                   S, LDS, ZWORK, LZWORK, WORK,  LWORK,   &
!                   IWORK, LIWORK, INFO )
!.....
!     USE, INTRINSIC :: iso_fortran_env, only: real32
!     IMPLICIT NONE
!     INTEGER, PARAMETER :: WP = real32
!.....
!     Scalar arguments
!     CHARACTER, INTENT(IN)  :: JOBS, JOBZ, JOBR, JOBQ,    &
!                               JOBT, JOBF
!     INTEGER,   INTENT(IN)  :: WHTSVD, M, N,   LDF, LDX,  &
!                               LDY, NRNK, LDZ, LDB, LDV,  &
!                               LDS, LZWORK,  LWORK, LIWORK
!     INTEGER,   INTENT(OUT) :: INFO,   K
!     REAL(KIND=WP), INTENT(IN)    ::   TOL
!     Array arguments
!     COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*)
!     COMPLEX(KIND=WP), INTENT(OUT)   :: X(LDX,*), Y(LDY,*), &
!                                        Z(LDZ,*), B(LDB,*), &
!                                        V(LDV,*), S(LDS,*)
!     COMPLEX(KIND=WP), INTENT(OUT)   :: EIGS(*)
!     COMPLEX(KIND=WP), INTENT(OUT)   :: ZWORK(*)
!     REAL(KIND=WP), INTENT(OUT)   :: RES(*)
!     REAL(KIND=WP), INTENT(OUT)   :: WORK(*)
!     INTEGER,       INTENT(OUT)   :: IWORK(*)
!
!............................................................
!>    \par Purpose:
!     =============
!>    \verbatim
!>    CGEDMDQ computes the Dynamic Mode Decomposition (DMD) for
!>    a pair of data snapshot matrices, using a QR factorization
!>    based compression of the data. For the input matrices
!>    X and Y such that Y = A*X with an unaccessible matrix
!>    A, CGEDMDQ computes a certain number of Ritz pairs of A using
!>    the standard Rayleigh-Ritz extraction from a subspace of
!>    range(X) that is determined using the leading left singular
!>    vectors of X. Optionally, CGEDMDQ returns the residuals
!>    of the computed Ritz pairs, the information needed for
!>    a refinement of the Ritz vectors, or the eigenvectors of
!>    the Exact DMD.
!>    For further details see the references listed
!>    below. For more details of the implementation see [3].
!>    \endverbatim
!............................................................
!>    \par References:
!     ================
!>    \verbatim
!>    [1] P. Schmid: Dynamic mode decomposition of numerical
!>        and experimental data,
!>        Journal of Fluid Mechanics 656, 5-28, 2010.
!>    [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
!>        decompositions: analysis and enhancements,
!>        SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
!>    [3] Z. Drmac: A LAPACK implementation of the Dynamic
!>        Mode Decomposition I. Technical report. AIMDyn Inc.
!>        and LAPACK Working Note 298.
!>    [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
!>        Brunton, N. Kutz: On Dynamic Mode Decomposition:
!>        Theory and Applications, Journal of Computational
!>        Dynamics 1(2), 391 -421, 2014.
!>    \endverbatim
!......................................................................
!>    \par Developed and supported by:
!     ================================
!>    \verbatim
!>    Developed and coded by Zlatko Drmac, Faculty of Science,
!>    University of Zagreb;  drmac@math.hr
!>    In cooperation with
!>    AIMdyn Inc., Santa Barbara, CA.
!>    and supported by
!>    - DARPA SBIR project "Koopman Operator-Based Forecasting
!>    for Nonstationary Processes from Near-Term, Limited
!>    Observational Data" Contract No: W31P4Q-21-C-0007
!>    - DARPA PAI project "Physics-Informed Machine Learning
!>    Methodologies" Contract No: HR0011-18-9-0033
!>    - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
!>    Framework for Space-Time Analysis of Process Dynamics"
!>    Contract No: HR0011-16-C-0116
!>    Any opinions, findings and conclusions or recommendations
!>    expressed in this material are those of the author and
!>    do not necessarily reflect the views of the DARPA SBIR
!>    Program Office.
!>    \endverbatim
!......................................................................
!>    \par Developed and supported by:
!     ================================
!>    \verbatim
!>    Approved for Public Release, Distribution Unlimited.
!>    Cleared by DARPA on September 29, 2022
!>    \endverbatim
!......................................................................
!     Arguments
!     =========
!
!>    \param[in] JOBS
!>    \verbatim
!>    JOBS (input) CHARACTER*1
!>    Determines whether the initial data snapshots are scaled
!>    by a diagonal matrix. The data snapshots are the columns
!>    of F. The leading N-1 columns of F are denoted X and the
!>    trailing N-1 columns are denoted Y.
!>    'S' :: The data snapshots matrices X and Y are multiplied
!>           with a diagonal matrix D so that X*D has unit
!>           nonzero columns (in the Euclidean 2-norm)
!>    'C' :: The snapshots are scaled as with the 'S' option.
!>           If it is found that an i-th column of X is zero
!>           vector and the corresponding i-th column of Y is
!>           non-zero, then the i-th column of Y is set to
!>           zero and a warning flag is raised.
!>    'Y' :: The data snapshots matrices X and Y are multiplied
!>           by a diagonal matrix D so that Y*D has unit
!>           nonzero columns (in the Euclidean 2-norm)
!>    'N' :: No data scaling.
!>    \endverbatim
!.....
!>    \param[in] JOBZ
!>    \verbatim
!>    JOBZ (input) CHARACTER*1
!>    Determines whether the eigenvectors (Koopman modes) will
!>    be computed.
!>    'V' :: The eigenvectors (Koopman modes) will be computed
!>           and returned in the matrix Z.
!>           See the description of Z.
!>    'F' :: The eigenvectors (Koopman modes) will be returned
!>           in factored form as the product Z*V, where Z
!>           is orthonormal and V contains the eigenvectors
!>           of the corresponding Rayleigh quotient.
!>           See the descriptions of F, V, Z.
!>    'Q' :: The eigenvectors (Koopman modes) will be returned
!>           in factored form as the product Q*Z, where Z
!>           contains the eigenvectors of the compression of the
!>           underlying discretised operator onto the span of
!>           the data snapshots. See the descriptions of F, V, Z.
!>           Q is from the inital QR facorization.
!>    'N' :: The eigenvectors are not computed.
!>    \endverbatim
!.....
!>    \param[in] JOBR
!>    \verbatim
!>    JOBR (input) CHARACTER*1
!>    Determines whether to compute the residuals.
!>    'R' :: The residuals for the computed eigenpairs will
!>           be computed and stored in the array RES.
!>           See the description of RES.
!>           For this option to be legal, JOBZ must be 'V'.
!>    'N' :: The residuals are not computed.
!>    \endverbatim
!.....
!>    \param[in] JOBQ
!>    \verbatim
!>    JOBQ (input) CHARACTER*1
!>    Specifies whether to explicitly compute and return the
!>    unitary matrix from the QR factorization.
!>    'Q' :: The matrix Q of the QR factorization of the data
!>           snapshot matrix is computed and stored in the
!>           array F. See the description of F.
!>    'N' :: The matrix Q is not explicitly computed.
!>    \endverbatim
!.....
!>    \param[in] JOBT
!>    \verbatim
!>    JOBT (input) CHARACTER*1
!>    Specifies whether to return the upper triangular factor
!>    from the QR factorization.
!>    'R' :: The matrix R of the QR factorization of the data
!>           snapshot matrix F is returned in the array Y.
!>           See the description of Y and Further details.
!>    'N' :: The matrix R is not returned.
!>    \endverbatim
!.....
!>    \param[in] JOBF
!>    \verbatim
!>    JOBF (input) CHARACTER*1
!>    Specifies whether to store information needed for post-
!>    processing (e.g. computing refined Ritz vectors)
!>    'R' :: The matrix needed for the refinement of the Ritz
!>           vectors is computed and stored in the array B.
!>           See the description of B.
!>    'E' :: The unscaled eigenvectors of the Exact DMD are
!>           computed and returned in the array B. See the
!>           description of B.
!>    'N' :: No eigenvector refinement data is computed.
!>    To be useful on exit, this option needs JOBQ='Q'.
!>    \endverbatim
!.....
!>    \param[in] WHTSVD
!>    \verbatim
!>    WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
!>    Allows for a selection of the SVD algorithm from the
!>    LAPACK library.
!>    1 :: CGESVD (the QR SVD algorithm)
!>    2 :: CGESDD (the Divide and Conquer algorithm; if enough
!>         workspace available, this is the fastest option)
!>    3 :: CGESVDQ (the preconditioned QR SVD  ; this and 4
!>         are the most accurate options)
!>    4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3
!>         are the most accurate options)
!>    For the four methods above, a significant difference in
!>    the accuracy of small singular values is possible if
!>    the snapshots vary in norm so that X is severely
!>    ill-conditioned. If small (smaller than EPS*||X||)
!>    singular values are of interest and JOBS=='N',  then
!>    the options (3, 4) give the most accurate results, where
!>    the option 4 is slightly better and with stronger
!>    theoretical background.
!>    If JOBS=='S', i.e. the columns of X will be normalized,
!>    then all methods give nearly equally accurate results.
!>    \endverbatim
!.....
!>    \param[in] M
!>    \verbatim
!>    M (input) INTEGER, M >= 0
!>    The state space dimension (the number of rows of F).
!>    \endverbatim
!.....
!>    \param[in] N
!>    \verbatim
!>    N (input) INTEGER, 0 <= N <= M
!>    The number of data snapshots from a single trajectory,
!>    taken at equidistant discrete times. This is the
!>    number of columns of F.
!>    \endverbatim
!.....
!>    \param[in,out] F
!>    \verbatim
!>    F (input/output) COMPLEX(KIND=WP) M-by-N array
!>    > On entry,
!>    the columns of F are the sequence of data snapshots
!>    from a single trajectory, taken at equidistant discrete
!>    times. It is assumed that the column norms of F are
!>    in the range of the normalized floating point numbers.
!>    < On exit,
!>    If JOBQ == 'Q', the array F contains the orthogonal
!>    matrix/factor of the QR factorization of the initial
!>    data snapshots matrix F. See the description of JOBQ.
!>    If JOBQ == 'N', the entries in F strictly below the main
!>    diagonal contain, column-wise, the information on the
!>    Householder vectors, as returned by CGEQRF. The
!>    remaining information to restore the orthogonal matrix
!>    of the initial QR factorization is stored in ZWORK(1:MIN(M,N)).
!>    See the description of ZWORK.
!>    \endverbatim
!.....
!>    \param[in] LDF
!>    \verbatim
!>    LDF (input) INTEGER, LDF >= M
!>    The leading dimension of the array F.
!>    \endverbatim
!.....
!>    \param[in,out] X
!>    \verbatim
!>    X (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array
!>    X is used as workspace to hold representations of the
!>    leading N-1 snapshots in the orthonormal basis computed
!>    in the QR factorization of F.
!>    On exit, the leading K columns of X contain the leading
!>    K left singular vectors of the above described content
!>    of X. To lift them to the space of the left singular
!>    vectors U(:,1:K) of the input data, pre-multiply with the
!>    Q factor from the initial QR factorization.
!>    See the descriptions of F, K, V  and Z.
!>    \endverbatim
!.....
!>    \param[in] LDX
!>    \verbatim
!>    LDX (input) INTEGER, LDX >= N
!>    The leading dimension of the array X.
!>    \endverbatim
!.....
!>    \param[in,out] Y
!>    \verbatim
!>    Y (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N) array
!>    Y is used as workspace to hold representations of the
!>    trailing N-1 snapshots in the orthonormal basis computed
!>    in the QR factorization of F.
!>    On exit,
!>    If JOBT == 'R', Y contains the MIN(M,N)-by-N upper
!>    triangular factor from the QR factorization of the data
!>    snapshot matrix F.
!>    \endverbatim
!.....
!>    \param[in] LDY
!>    \verbatim
!>    LDY (input) INTEGER , LDY >= N
!>    The leading dimension of the array Y.
!>    \endverbatim
!.....
!>    \param[in] NRNK
!>    \verbatim
!>    NRNK (input) INTEGER
!>    Determines the mode how to compute the numerical rank,
!>    i.e. how to truncate small singular values of the input
!>    matrix X. On input, if
!>    NRNK = -1 :: i-th singular value sigma(i) is truncated
!>                 if sigma(i) <= TOL*sigma(1)
!>                 This option is recommended.
!>    NRNK = -2 :: i-th singular value sigma(i) is truncated
!>                 if sigma(i) <= TOL*sigma(i-1)
!>                 This option is included for R&D purposes.
!>                 It requires highly accurate SVD, which
!>                 may not be feasible.
!>    The numerical rank can be enforced by using positive
!>    value of NRNK as follows:
!>    0 < NRNK <= N-1 :: at most NRNK largest singular values
!>    will be used. If the number of the computed nonzero
!>    singular values is less than NRNK, then only those
!>    nonzero values will be used and the actually used
!>    dimension is less than NRNK. The actual number of
!>    the nonzero singular values is returned in the variable
!>    K. See the description of K.
!>    \endverbatim
!.....
!>    \param[in] TOL
!>    \verbatim
!>    TOL (input) REAL(KIND=WP), 0 <= TOL < 1
!>    The tolerance for truncating small singular values.
!>    See the description of NRNK.
!>    \endverbatim
!.....
!>    \param[out] K
!>    \verbatim
!>    K (output) INTEGER,  0 <= K <= N
!>    The dimension of the SVD/POD basis for the leading N-1
!>    data snapshots (columns of F) and the number of the
!>    computed Ritz pairs. The value of K is determined
!>    according to the rule set by the parameters NRNK and
!>    TOL. See the descriptions of NRNK and TOL.
!>    \endverbatim
!.....
!>    \param[out] EIGS
!>    \verbatim
!>    EIGS (output) COMPLEX(KIND=WP) (N-1)-by-1 array
!>    The leading K (K<=N-1) entries of EIGS contain
!>    the computed eigenvalues (Ritz values).
!>    See the descriptions of K, and Z.
!>    \endverbatim
!.....
!>    \param[out] Z
!>    \verbatim
!>    Z (workspace/output) COMPLEX(KIND=WP)  M-by-(N-1) array
!>    If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
!>    is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
!>    If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
!>    Z*V, where Z contains orthonormal matrix (the product of
!>    Q from the initial QR factorization and the SVD/POD_basis
!>    returned by CGEDMD in X) and the second factor (the
!>    eigenvectors of the Rayleigh quotient) is in the array V,
!>    as returned by CGEDMD. That is,  X(:,1:K)*V(:,i)
!>    is an eigenvector corresponding to EIGS(i). The columns
!>    of V(1:K,1:K) are the computed eigenvectors of the
!>    K-by-K Rayleigh quotient.
!>    See the descriptions of EIGS, X and V.
!>    \endverbatim
!.....
!>    \param[in] LDZ
!>    \verbatim
!>    LDZ (input) INTEGER , LDZ >= M
!>    The leading dimension of the array Z.
!>    \endverbatim
!.....
!>    \param[out] RES
!>    \verbatim
!>    RES (output) REAL(KIND=WP) (N-1)-by-1 array
!>    RES(1:K) contains the residuals for the K computed
!>    Ritz pairs,
!>    RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
!>    See the description of EIGS and Z.
!>    \endverbatim
!.....
!>    \param[out] B
!>    \verbatim
!>    B (output) COMPLEX(KIND=WP)  MIN(M,N)-by-(N-1) array.
!>    IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can
!>    be used for computing the refined vectors; see further
!>    details in the provided references.
!>    If JOBF == 'E', B(1:N,1;K) contains
!>    A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
!>    Exact DMD, up to scaling by the inverse eigenvalues.
!>    In both cases, the content of B can be lifted to the
!>    original dimension of the input data by pre-multiplying
!>    with the Q factor from the initial QR factorization.
!>    Here A denotes a compression of the underlying operator.
!>    See the descriptions of F and X.
!>    If JOBF =='N', then B is not referenced.
!>    \endverbatim
!.....
!>    \param[in] LDB
!>    \verbatim
!>    LDB (input) INTEGER, LDB >= MIN(M,N)
!>    The leading dimension of the array B.
!>    \endverbatim
!.....
!>    \param[out] V
!>    \verbatim
!>    V (workspace/output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
!>    On exit, V(1:K,1:K) V contains the K eigenvectors of
!>    the Rayleigh quotient. The Ritz vectors
!>    (returned in Z) are the product of Q from the initial QR
!>    factorization (see the description of F) X (see the
!>    description of X) and V.
!>    \endverbatim
!.....
!>    \param[in] LDV
!>    \verbatim
!>    LDV (input) INTEGER, LDV >= N-1
!>    The leading dimension of the array V.
!>    \endverbatim
!.....
!>    \param[out] S
!>    \verbatim
!>    S (output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
!>    The array S(1:K,1:K) is used for the matrix Rayleigh
!>    quotient. This content is overwritten during
!>    the eigenvalue decomposition by CGEEV.
!>    See the description of K.
!>    \endverbatim
!.....
!>    \param[in] LDS
!>    \verbatim
!>    LDS (input) INTEGER, LDS >= N-1
!>    The leading dimension of the array S.
!>    \endverbatim
!.....
!>    \param[out] ZWORK
!>    \verbatim
!>    ZWORK (workspace/output) COMPLEX(KIND=WP) LWORK-by-1 array
!>    On exit,
!>    ZWORK(1:MIN(M,N)) contains the scalar factors of the
!>    elementary reflectors as returned by CGEQRF of the
!>    M-by-N input matrix F.
!>    If the call to CGEDMDQ is only workspace query, then
!>    ZWORK(1) contains the minimal complex workspace length and
!>    ZWORK(2) is the optimal complex workspace length.
!>    Hence, the length of work is at least 2.
!>    See the description of LZWORK.
!>    \endverbatim
!.....
!>    \param[in] LZWORK
!>    \verbatim
!>    LZWORK (input) INTEGER
!>    The minimal length of the  workspace vector ZWORK.
!>    LZWORK is calculated as follows:
!>    Let MLWQR  = N (minimal workspace for CGEQRF[M,N])
!>        MLWDMD = minimal workspace for CGEDMD (see the
!>                 description of LWORK in CGEDMD)
!>        MLWMQR = N (minimal workspace for
!>                   ZUNMQR['L','N',M,N,N])
!>        MLWGQR = N (minimal workspace for ZUNGQR[M,N,N])
!>        MINMN  = MIN(M,N)
!>    Then
!>    LZWORK = MAX(2, MIN(M,N)+MLWQR, MINMN+MLWDMD)
!>    is further updated as follows:
!>       if   JOBZ == 'V' or JOBZ == 'F' THEN
!>            LZWORK = MAX( LZWORK, MINMN+MLWMQR )
!>       if   JOBQ == 'Q' THEN
!>            LZWORK = MAX( ZLWORK, MINMN+MLWGQR)
!>    \endverbatim
!.....
!>    \param[out] WORK
!>    \verbatim
!>    WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
!>    On exit,
!>    WORK(1:N-1) contains the singular values of
!>    the input submatrix F(1:M,1:N-1).
!>    If the call to CGEDMDQ is only workspace query, then
!>    WORK(1) contains the minimal workspace length and
!>    WORK(2) is the optimal workspace length. hence, the
!>    length of work is at least 2.
!>    See the description of LWORK.
!>    \endverbatim
!.....
!>    \param[in] LWORK
!>    \verbatim
!>    LWORK (input) INTEGER
!>    The minimal length of the  workspace vector WORK.
!>    LWORK is the same as in CGEDMD, because in CGEDMDQ
!>    only CGEDMD requires real workspace for snapshots
!>    of dimensions MIN(M,N)-by-(N-1).
!>    If on entry LWORK = -1, then a workspace query is
!>    assumed and the procedure only computes the minimal
!>    and the optimal workspace lengths for both WORK and
!>    IWORK. See the descriptions of WORK and IWORK.
!>    \endverbatim
!.....
!>    \param[out] IWORK
!>    \verbatim
!>    IWORK (workspace/output) INTEGER LIWORK-by-1 array
!>    Workspace that is required only if WHTSVD equals
!>    2 , 3 or 4. (See the description of WHTSVD).
!>    If on entry LWORK =-1 or LIWORK=-1, then the
!>    minimal length of IWORK is computed and returned in
!>    IWORK(1). See the description of LIWORK.
!>    \endverbatim
!.....
!>    \param[in] LIWORK
!>    \verbatim
!>    LIWORK (input) INTEGER
!>    The minimal length of the workspace vector IWORK.
!>    If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
!>    Let M1=MIN(M,N), N1=N-1. Then
!>    If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
!>    If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
!>    If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
!>    If on entry LIWORK = -1, then a workspace query is
!>    assumed and the procedure only computes the minimal
!>    and the optimal workspace lengths for both WORK and
!>    IWORK. See the descriptions of WORK and IWORK.
!>    \endverbatim
!.....
!>    \param[out] INFO
!>    \verbatim
!>    INFO (output) INTEGER
!>    -i < 0 :: On entry, the i-th argument had an
!>              illegal value
!>       = 0 :: Successful return.
!>       = 1 :: Void input. Quick exit (M=0 or N=0).
!>       = 2 :: The SVD computation of X did not converge.
!>              Suggestion: Check the input data and/or
!>              repeat with different WHTSVD.
!>       = 3 :: The computation of the eigenvalues did not
!>              converge.
!>       = 4 :: If data scaling was requested on input and
!>              the procedure found inconsistency in the data
!>              such that for some column index i,
!>              X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
!>              to zero if JOBS=='C'. The computation proceeds
!>              with original or modified data and warning
!>              flag is set with INFO=4.
!>    \endverbatim
!
!  Authors:
!  ========
!
!> \author Zlatko Drmac
!
!> \ingroup gedmd
!
!.............................................................
!.............................................................
SUBROUTINE CGEDMDQ( JOBS,  JOBZ, JOBR, JOBQ, JOBT, JOBF,   &
                    WHTSVD,   M, N, F, LDF,  X, LDX,  Y,   &
                    LDY,   NRNK,  TOL,   K,  EIGS,         &
                    Z, LDZ, RES,  B,     LDB,   V, LDV,    &
                    S, LDS, ZWORK, LZWORK, WORK,  LWORK,   &
                    IWORK, LIWORK, INFO )
!
!  -- LAPACK driver routine                                           --
!
!  -- LAPACK is a software package provided by University of          --
!  -- Tennessee, University of California Berkeley, University of     --
!  -- Colorado Denver and NAG Ltd..                                   --
!
!.....
      USE, INTRINSIC :: iso_fortran_env, only: real32
      IMPLICIT NONE
      INTEGER, PARAMETER :: WP = real32
!
!     Scalar arguments
!     ~~~~~~~~~~~~~~~~
      CHARACTER, INTENT(IN)  :: JOBS, JOBZ, JOBR, JOBQ,    &
                                JOBT, JOBF
      INTEGER,   INTENT(IN)  :: WHTSVD, M, N,   LDF, LDX,  &
                                LDY, NRNK, LDZ, LDB, LDV,  &
                                LDS, LZWORK,  LWORK, LIWORK
      INTEGER,   INTENT(OUT) :: INFO,   K
      REAL(KIND=WP), INTENT(IN)    ::   TOL
!
!     Array arguments
!     ~~~~~~~~~~~~~~~
      COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*)
      COMPLEX(KIND=WP), INTENT(OUT)   :: X(LDX,*), Y(LDY,*), &
                                         Z(LDZ,*), B(LDB,*), &
                                         V(LDV,*), S(LDS,*)
      COMPLEX(KIND=WP), INTENT(OUT)   :: EIGS(*)
      COMPLEX(KIND=WP), INTENT(OUT)   :: ZWORK(*)
      REAL(KIND=WP), INTENT(OUT)   :: RES(*)
      REAL(KIND=WP), INTENT(OUT)   :: WORK(*)
      INTEGER,       INTENT(OUT)   :: IWORK(*)
!
!     Parameters
!     ~~~~~~~~~~
      REAL(KIND=WP), PARAMETER ::  ONE = 1.0_WP
      REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
!     COMPLEX(KIND=WP), PARAMETER ::  ZONE = ( 1.0_WP, 0.0_WP )
      COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
!
!     Local scalars
!     ~~~~~~~~~~~~~
      INTEGER           :: IMINWR, INFO1,  MINMN, MLRWRK,   &
                           MLWDMD, MLWGQR, MLWMQR, MLWORK,  &
                           MLWQR,  OLWDMD, OLWGQR, OLWMQR,  &
                           OLWORK, OLWQR
      LOGICAL           :: LQUERY, SCCOLX, SCCOLY, WANTQ,  &
                           WNTTRF, WNTRES, WNTVEC, WNTVCF, &
                           WNTVCQ, WNTREF, WNTEX
      CHARACTER(LEN=1)  :: JOBVL
!
!     External functions (BLAS and LAPACK)
!     ~~~~~~~~~~~~~~~~~
      LOGICAL       LSAME
      EXTERNAL      LSAME
!
!     External subroutines (BLAS and LAPACK)
!     ~~~~~~~~~~~~~~~~~~~~
      EXTERNAL      CGEDMD, CGEQRF, CLACPY, CLASET, CUNGQR, &
                    CUNMQR, XERBLA
!
!     Intrinsic functions
!     ~~~~~~~~~~~~~~~~~~~
      INTRINSIC      MAX, MIN, INT
!..........................................................
!
!     Test the input arguments
      WNTRES = LSAME(JOBR,'R')
      SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' )
      SCCOLY = LSAME(JOBS,'Y')
      WNTVEC = LSAME(JOBZ,'V')
      WNTVCF = LSAME(JOBZ,'F')
      WNTVCQ = LSAME(JOBZ,'Q')
      WNTREF = LSAME(JOBF,'R')
      WNTEX  = LSAME(JOBF,'E')
      WANTQ  = LSAME(JOBQ,'Q')
      WNTTRF = LSAME(JOBT,'R')
      MINMN  = MIN(M,N)
      INFO = 0
      LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) )
!
      IF ( .NOT. (SCCOLX .OR. SCCOLY .OR.                &
                                  LSAME(JOBS,'N')) )  THEN
          INFO = -1
      ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ       &
                              .OR. LSAME(JOBZ,'N')) ) THEN
          INFO = -2
      ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR.    &
          ( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN
          INFO = -3
      ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN
           INFO = -4
      ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) )  THEN
          INFO = -5
       ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR.             &
                LSAME(JOBF,'N') ) )                     THEN
          INFO = -6
      ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR.   &
                       (WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN
          INFO = -7
      ELSE IF ( M < 0 ) THEN
          INFO = -8
      ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN
          INFO = -9
      ELSE IF ( LDF < M ) THEN
          INFO = -11
      ELSE IF ( LDX < MINMN ) THEN
          INFO = -13
      ELSE IF ( LDY < MINMN ) THEN
          INFO = -15
      ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR.    &
                       ((NRNK >= 1).AND.(NRNK <=N ))) )  THEN
          INFO = -16
      ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
          INFO = -17
      ELSE IF ( LDZ < M ) THEN
          INFO = -21
      ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN
          INFO = -24
      ELSE IF ( LDV < N-1 ) THEN
          INFO = -26
      ELSE IF ( LDS < N-1 ) THEN
          INFO = -28
      END IF
!
      IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN
          JOBVL = 'V'
      ELSE
          JOBVL = 'N'
      END IF
      IF ( INFO == 0 ) THEN
          ! Compute the minimal and the optimal workspace
          ! requirements. Simulate running the code and
          ! determine minimal and optimal sizes of the
          ! workspace at any moment of the run.
         IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN
             ! All output except K is void. INFO=1 signals
             ! the void input. In case of a workspace query,
             ! the minimal workspace lengths are returned.
            IF ( LQUERY ) THEN
               IWORK(1) = 1
                WORK(1) = 2
                WORK(2) = 2
            ELSE
               K = 0
            END IF
            INFO = 1
            RETURN
         END IF

         MLRWRK = 2
         MLWORK = 2
         OLWORK = 2
         IMINWR = 1
         MLWQR  = MAX(1,N)  ! Minimal workspace length for CGEQRF.
         MLWORK = MAX(MLWORK,MINMN + MLWQR)

         IF ( LQUERY ) THEN
             CALL CGEQRF( M, N, F, LDF, ZWORK, ZWORK, -1, &
                          INFO1 )
             OLWQR  = INT(ZWORK(1))
             OLWORK = MAX(OLWORK,MINMN + OLWQR)
         END IF
         CALL CGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,&
                      N-1, X, LDX, Y, LDY, NRNK, TOL, K,     &
                      EIGS, Z, LDZ, RES,  B, LDB, V, LDV,    &
                      S, LDS, ZWORK, LZWORK, WORK, -1, IWORK,&
                      LIWORK, INFO1 )
         MLWDMD = INT(ZWORK(1))
         MLWORK = MAX(MLWORK, MINMN + MLWDMD)
         MLRWRK = MAX(MLRWRK, INT(WORK(1)))
         IMINWR = MAX(IMINWR, IWORK(1))
         IF ( LQUERY ) THEN
             OLWDMD = INT(ZWORK(2))
             OLWORK = MAX(OLWORK, MINMN+OLWDMD)
         END IF
         IF ( WNTVEC .OR. WNTVCF ) THEN
            MLWMQR = MAX(1,N)
            MLWORK = MAX(MLWORK, MINMN+MLWMQR)
            IF ( LQUERY ) THEN
               CALL CUNMQR( 'L','N', M, N, MINMN, F, LDF,  &
                            ZWORK, Z, LDZ, ZWORK, -1, INFO1 )
               OLWMQR = INT(ZWORK(1))
               OLWORK = MAX(OLWORK, MINMN+OLWMQR)
            END IF
         END IF
         IF ( WANTQ ) THEN
            MLWGQR = MAX(1,N)
            MLWORK = MAX(MLWORK, MINMN+MLWGQR)
            IF ( LQUERY ) THEN
                CALL CUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, &
                             ZWORK, -1, INFO1 )
                OLWGQR = INT(ZWORK(1))
                OLWORK = MAX(OLWORK, MINMN+OLWGQR)
            END IF
         END IF
         IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -34
         IF ( LWORK  < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -32
         IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -30
      END IF
      IF( INFO /= 0 ) THEN
         CALL XERBLA( 'CGEDMDQ', -INFO )
         RETURN
      ELSE IF ( LQUERY ) THEN
!     Return minimal and optimal workspace sizes
          IWORK(1) = IMINWR
          ZWORK(1) = CMPLX(MLWORK)
          ZWORK(2) = CMPLX(OLWORK)
          WORK(1)  = REAL(MLRWRK)
          WORK(2)  = REAL(MLRWRK)
          RETURN
      END IF
!.....
!     Initial QR factorization that is used to represent the
!     snapshots as elements of lower dimensional subspace.
!     For large scale computation with M >>N , at this place
!     one can use an out of core QRF.
!
      CALL CGEQRF( M, N, F, LDF, ZWORK,                &
                   ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
!
!     Define X and Y as the snapshots representations in the
!     orthogonal basis computed in the QR factorization.
!     X corresponds to the leading N-1 and Y to the trailing
!     N-1 snapshots.
      CALL CLASET( 'L', MINMN, N-1, ZZERO,  ZZERO, X, LDX )
      CALL CLACPY( 'U', MINMN, N-1, F,      LDF, X, LDX )
      CALL CLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY )
      IF ( M >= 3 ) THEN
          CALL CLASET( 'L', MINMN-2, N-2, ZZERO,  ZZERO, &
                       Y(3,1), LDY )
      END IF
!
!     Compute the DMD of the projected snapshot pairs (X,Y)
      CALL CGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, &
                  N-1,  X, LDX, Y, LDY, NRNK,   TOL, K,    &
                  EIGS, Z, LDZ, RES, B,  LDB,   V, LDV,    &
                  S, LDS, ZWORK(MINMN+1), LZWORK-MINMN,    &
                  WORK,   LWORK, IWORK, LIWORK, INFO1 )
      IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN
          ! Return with error code. See CGEDMD for details.
          INFO = INFO1
          RETURN
      ELSE
          INFO = INFO1
      END IF
!
!     The Ritz vectors (Koopman modes) can be explicitly
!     formed or returned in factored form.
      IF ( WNTVEC ) THEN
        ! Compute the eigenvectors explicitly.
        IF ( M > MINMN ) CALL CLASET( 'A', M-MINMN, K, ZZERO, &
                                     ZZERO, Z(MINMN+1,1), LDZ )
        CALL CUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z,  &
             LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
      ELSE IF ( WNTVCF ) THEN
        !   Return the Ritz vectors (eigenvectors) in factored
        !   form Z*V, where Z contains orthonormal matrix (the
        !   product of Q from the initial QR factorization and
        !   the SVD/POD_basis returned by CGEDMD in X) and the
        !   second factor (the eigenvectors of the Rayleigh
        !   quotient) is in the array V, as returned by CGEDMD.
        CALL CLACPY( 'A', N, K, X, LDX, Z, LDZ )
        IF ( M > N ) CALL CLASET( 'A', M-N, K, ZZERO, ZZERO, &
                                 Z(N+1,1), LDZ )
        CALL CUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, &
                    LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
      END IF
!
!     Some optional output variables:
!
!     The upper triangular factor R in the initial QR
!     factorization is optionally returned in the array Y.
!     This is useful if this call to CGEDMDQ is to be

!     followed by a streaming DMD that is implemented in a
!     QR compressed form.
      IF ( WNTTRF ) THEN ! Return the upper triangular R in Y
         CALL CLASET( 'A', MINMN, N, ZZERO,  ZZERO, Y, LDY )
         CALL CLACPY( 'U', MINMN, N, F, LDF,        Y, LDY )
      END IF
!
!     The orthonormal/unitary factor Q in the initial QR
!     factorization is optionally returned in the array F.
!     Same as with the triangular factor above, this is
!     useful in a streaming DMD.
      IF ( WANTQ ) THEN                   ! Q overwrites F
         CALL CUNGQR( M, MINMN, MINMN, F, LDF, ZWORK,     &
                      ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
      END IF
!
      RETURN
!
      END SUBROUTINE CGEDMDQ