numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/cgejsv.f 96111B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
*> \brief \b CGEJSV
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGEJSV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgejsv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgejsv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgejsv.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*     SUBROUTINE CGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
*                         M, N, A, LDA, SVA, U, LDU, V, LDV,
*                         CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
*
*     .. Scalar Arguments ..
*     IMPLICIT    NONE
*     INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
*     ..
*     .. Array Arguments ..
*     COMPLEX     A( LDA, * ),  U( LDU, * ), V( LDV, * ), CWORK( LWORK )
*     REAL        SVA( N ), RWORK( LRWORK )
*     INTEGER     IWORK( * )
*     CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CGEJSV computes the singular value decomposition (SVD) of a complex M-by-N
*> matrix [A], where M >= N. The SVD of [A] is written as
*>
*>              [A] = [U] * [SIGMA] * [V]^*,
*>
*> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
*> diagonal elements, [U] is an M-by-N (or M-by-M) unitary matrix, and
*> [V] is an N-by-N unitary matrix. The diagonal elements of [SIGMA] are
*> the singular values of [A]. The columns of [U] and [V] are the left and
*> the right singular vectors of [A], respectively. The matrices [U] and [V]
*> are computed and stored in the arrays U and V, respectively. The diagonal
*> of [SIGMA] is computed and stored in the array SVA.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBA
*> \verbatim
*>          JOBA is CHARACTER*1
*>         Specifies the level of accuracy:
*>       = 'C': This option works well (high relative accuracy) if A = B * D,
*>              with well-conditioned B and arbitrary diagonal matrix D.
*>              The accuracy cannot be spoiled by COLUMN scaling. The
*>              accuracy of the computed output depends on the condition of
*>              B, and the procedure aims at the best theoretical accuracy.
*>              The relative error max_{i=1:N}|d sigma_i| / sigma_i is
*>              bounded by f(M,N)*epsilon* cond(B), independent of D.
*>              The input matrix is preprocessed with the QRF with column
*>              pivoting. This initial preprocessing and preconditioning by
*>              a rank revealing QR factorization is common for all values of
*>              JOBA. Additional actions are specified as follows:
*>       = 'E': Computation as with 'C' with an additional estimate of the
*>              condition number of B. It provides a realistic error bound.
*>       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
*>              D1, D2, and well-conditioned matrix C, this option gives
*>              higher accuracy than the 'C' option. If the structure of the
*>              input matrix is not known, and relative accuracy is
*>              desirable, then this option is advisable. The input matrix A
*>              is preprocessed with QR factorization with FULL (row and
*>              column) pivoting.
*>       = 'G': Computation as with 'F' with an additional estimate of the
*>              condition number of B, where A=B*D. If A has heavily weighted
*>              rows, then using this condition number gives too pessimistic
*>              error bound.
*>       = 'A': Small singular values are not well determined by the data 
*>              and are considered as noisy; the matrix is treated as
*>              numerically rank deficient. The error in the computed
*>              singular values is bounded by f(m,n)*epsilon*||A||.
*>              The computed SVD A = U * S * V^* restores A up to
*>              f(m,n)*epsilon*||A||.
*>              This gives the procedure the licence to discard (set to zero)
*>              all singular values below N*epsilon*||A||.
*>       = 'R': Similar as in 'A'. Rank revealing property of the initial
*>              QR factorization is used do reveal (using triangular factor)
*>              a gap sigma_{r+1} < epsilon * sigma_r in which case the
*>              numerical RANK is declared to be r. The SVD is computed with
*>              absolute error bounds, but more accurately than with 'A'.
*> \endverbatim
*>
*> \param[in] JOBU
*> \verbatim
*>          JOBU is CHARACTER*1
*>         Specifies whether to compute the columns of U:
*>       = 'U': N columns of U are returned in the array U.
*>       = 'F': full set of M left sing. vectors is returned in the array U.
*>       = 'W': U may be used as workspace of length M*N. See the description
*>              of U.
*>       = 'N': U is not computed.
*> \endverbatim
*>
*> \param[in] JOBV
*> \verbatim
*>          JOBV is CHARACTER*1
*>         Specifies whether to compute the matrix V:
*>       = 'V': N columns of V are returned in the array V; Jacobi rotations
*>              are not explicitly accumulated.
*>       = 'J': N columns of V are returned in the array V, but they are
*>              computed as the product of Jacobi rotations, if JOBT = 'N'.
*>       = 'W': V may be used as workspace of length N*N. See the description
*>              of V.
*>       = 'N': V is not computed.
*> \endverbatim
*>
*> \param[in] JOBR
*> \verbatim
*>          JOBR is CHARACTER*1
*>         Specifies the RANGE for the singular values. Issues the licence to
*>         set to zero small positive singular values if they are outside
*>         specified range. If A .NE. 0 is scaled so that the largest singular
*>         value of c*A is around SQRT(BIG), BIG=SLAMCH('O'), then JOBR issues
*>         the licence to kill columns of A whose norm in c*A is less than
*>         SQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN,
*>         where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E').
*>       = 'N': Do not kill small columns of c*A. This option assumes that
*>              BLAS and QR factorizations and triangular solvers are
*>              implemented to work in that range. If the condition of A
*>              is greater than BIG, use CGESVJ.
*>       = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)]
*>              (roughly, as described above). This option is recommended.
*>                                             ===========================
*>         For computing the singular values in the FULL range [SFMIN,BIG]
*>         use CGESVJ.
*> \endverbatim
*>
*> \param[in] JOBT
*> \verbatim
*>          JOBT is CHARACTER*1
*>         If the matrix is square then the procedure may determine to use
*>         transposed A if A^* seems to be better with respect to convergence.
*>         If the matrix is not square, JOBT is ignored.
*>         The decision is based on two values of entropy over the adjoint
*>         orbit of A^* * A. See the descriptions of RWORK(6) and RWORK(7).
*>       = 'T': transpose if entropy test indicates possibly faster
*>         convergence of Jacobi process if A^* is taken as input. If A is
*>         replaced with A^*, then the row pivoting is included automatically.
*>       = 'N': do not speculate.
*>         The option 'T' can be used to compute only the singular values, or
*>         the full SVD (U, SIGMA and V). For only one set of singular vectors
*>         (U or V), the caller should provide both U and V, as one of the
*>         matrices is used as workspace if the matrix A is transposed.
*>         The implementer can easily remove this constraint and make the
*>         code more complicated. See the descriptions of U and V.
*>         In general, this option is considered experimental, and 'N'; should
*>         be preferred. This is subject to changes in the future.
*> \endverbatim
*>
*> \param[in] JOBP
*> \verbatim
*>          JOBP is CHARACTER*1
*>         Issues the licence to introduce structured perturbations to drown
*>         denormalized numbers. This licence should be active if the
*>         denormals are poorly implemented, causing slow computation,
*>         especially in cases of fast convergence (!). For details see [1,2].
*>         For the sake of simplicity, this perturbations are included only
*>         when the full SVD or only the singular values are requested. The
*>         implementer/user can easily add the perturbation for the cases of
*>         computing one set of singular vectors.
*>       = 'P': introduce perturbation
*>       = 'N': do not perturb
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>         The number of rows of the input matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>         The number of columns of the input matrix A. M >= N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          On entry, the M-by-N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] SVA
*> \verbatim
*>          SVA is REAL array, dimension (N)
*>          On exit,
*>          - For RWORK(1)/RWORK(2) = ONE: The singular values of A. During
*>            the computation SVA contains Euclidean column norms of the
*>            iterated matrices in the array A.
*>          - For RWORK(1) .NE. RWORK(2): The singular values of A are
*>            (RWORK(1)/RWORK(2)) * SVA(1:N). This factored form is used if
*>            sigma_max(A) overflows or if small singular values have been
*>            saved from underflow by scaling the input matrix A.
*>          - If JOBR='R' then some of the singular values may be returned
*>            as exact zeros obtained by "set to zero" because they are
*>            below the numerical rank threshold or are denormalized numbers.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*>          U is COMPLEX array, dimension ( LDU, N ) or ( LDU, M )
*>          If JOBU = 'U', then U contains on exit the M-by-N matrix of
*>                         the left singular vectors.
*>          If JOBU = 'F', then U contains on exit the M-by-M matrix of
*>                         the left singular vectors, including an ONB
*>                         of the orthogonal complement of the Range(A).
*>          If JOBU = 'W'  .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N),
*>                         then U is used as workspace if the procedure
*>                         replaces A with A^*. In that case, [V] is computed
*>                         in U as left singular vectors of A^* and then
*>                         copied back to the V array. This 'W' option is just
*>                         a reminder to the caller that in this case U is
*>                         reserved as workspace of length N*N.
*>          If JOBU = 'N'  U is not referenced, unless JOBT='T'.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>          The leading dimension of the array U,  LDU >= 1.
*>          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M.
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*>          V is COMPLEX array, dimension ( LDV, N )
*>          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
*>                         the right singular vectors;
*>          If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N),
*>                         then V is used as workspace if the procedure
*>                         replaces A with A^*. In that case, [U] is computed
*>                         in V as right singular vectors of A^* and then
*>                         copied back to the U array. This 'W' option is just
*>                         a reminder to the caller that in this case V is
*>                         reserved as workspace of length N*N.
*>          If JOBV = 'N'  V is not referenced, unless JOBT='T'.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*>          LDV is INTEGER
*>          The leading dimension of the array V,  LDV >= 1.
*>          If JOBV = 'V' or 'J' or 'W', then LDV >= N.
*> \endverbatim
*>
*> \param[out] CWORK
*> \verbatim
*>          CWORK is COMPLEX array, dimension (MAX(2,LWORK))
*>          If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or
*>          LRWORK=-1), then on exit CWORK(1) contains the required length of 
*>          CWORK for the job parameters used in the call.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          Length of CWORK to confirm proper allocation of workspace.
*>          LWORK depends on the job:
*>
*>          1. If only SIGMA is needed ( JOBU = 'N', JOBV = 'N' ) and
*>            1.1 .. no scaled condition estimate required (JOBA.NE.'E'.AND.JOBA.NE.'G'):
*>               LWORK >= 2*N+1. This is the minimal requirement.
*>               ->> For optimal performance (blocked code) the optimal value
*>               is LWORK >= N + (N+1)*NB. Here NB is the optimal
*>               block size for CGEQP3 and CGEQRF.
*>               In general, optimal LWORK is computed as
*>               LWORK >= max(N+LWORK(CGEQP3),N+LWORK(CGEQRF), LWORK(CGESVJ)).        
*>            1.2. .. an estimate of the scaled condition number of A is
*>               required (JOBA='E', or 'G'). In this case, LWORK the minimal
*>               requirement is LWORK >= N*N + 2*N.
*>               ->> For optimal performance (blocked code) the optimal value
*>               is LWORK >= max(N+(N+1)*NB, N*N+2*N)=N**2+2*N.
*>               In general, the optimal length LWORK is computed as
*>               LWORK >= max(N+LWORK(CGEQP3),N+LWORK(CGEQRF), LWORK(CGESVJ),
*>                            N*N+LWORK(CPOCON)).
*>          2. If SIGMA and the right singular vectors are needed (JOBV = 'V'),
*>             (JOBU = 'N')
*>            2.1   .. no scaled condition estimate requested (JOBE = 'N'):    
*>            -> the minimal requirement is LWORK >= 3*N.
*>            -> For optimal performance, 
*>               LWORK >= max(N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
*>               where NB is the optimal block size for CGEQP3, CGEQRF, CGELQF,
*>               CUNMLQ. In general, the optimal length LWORK is computed as
*>               LWORK >= max(N+LWORK(CGEQP3), N+LWORK(CGESVJ),
*>                       N+LWORK(CGELQF), 2*N+LWORK(CGEQRF), N+LWORK(CUNMLQ)).
*>            2.2 .. an estimate of the scaled condition number of A is
*>               required (JOBA='E', or 'G').
*>            -> the minimal requirement is LWORK >= 3*N.      
*>            -> For optimal performance, 
*>               LWORK >= max(N+(N+1)*NB, 2*N,2*N+N*NB)=2*N+N*NB,
*>               where NB is the optimal block size for CGEQP3, CGEQRF, CGELQF,
*>               CUNMLQ. In general, the optimal length LWORK is computed as
*>               LWORK >= max(N+LWORK(CGEQP3), LWORK(CPOCON), N+LWORK(CGESVJ),
*>                       N+LWORK(CGELQF), 2*N+LWORK(CGEQRF), N+LWORK(CUNMLQ)).   
*>          3. If SIGMA and the left singular vectors are needed
*>            3.1  .. no scaled condition estimate requested (JOBE = 'N'):
*>            -> the minimal requirement is LWORK >= 3*N.
*>            -> For optimal performance:
*>               if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
*>               where NB is the optimal block size for CGEQP3, CGEQRF, CUNMQR.
*>               In general, the optimal length LWORK is computed as
*>               LWORK >= max(N+LWORK(CGEQP3), 2*N+LWORK(CGEQRF), N+LWORK(CUNMQR)). 
*>            3.2  .. an estimate of the scaled condition number of A is
*>               required (JOBA='E', or 'G').
*>            -> the minimal requirement is LWORK >= 3*N.
*>            -> For optimal performance:
*>               if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
*>               where NB is the optimal block size for CGEQP3, CGEQRF, CUNMQR.
*>               In general, the optimal length LWORK is computed as
*>               LWORK >= max(N+LWORK(CGEQP3),N+LWORK(CPOCON),
*>                        2*N+LWORK(CGEQRF), N+LWORK(CUNMQR)).
*>
*>          4. If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and
*>            4.1. if JOBV = 'V'
*>               the minimal requirement is LWORK >= 5*N+2*N*N.
*>            4.2. if JOBV = 'J' the minimal requirement is
*>               LWORK >= 4*N+N*N.
*>            In both cases, the allocated CWORK can accommodate blocked runs
*>            of CGEQP3, CGEQRF, CGELQF, CUNMQR, CUNMLQ.
*> 
*>          If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or
*>          LRWORK=-1), then on exit CWORK(1) contains the optimal and CWORK(2) contains the
*>          minimal length of CWORK for the job parameters used in the call.        
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (MAX(7,LRWORK))
*>          On exit,
*>          RWORK(1) = Determines the scaling factor SCALE = RWORK(2) / RWORK(1)
*>                    such that SCALE*SVA(1:N) are the computed singular values
*>                    of A. (See the description of SVA().)
*>          RWORK(2) = See the description of RWORK(1).
*>          RWORK(3) = SCONDA is an estimate for the condition number of
*>                    column equilibrated A. (If JOBA = 'E' or 'G')
*>                    SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
*>                    It is computed using CPOCON. It holds
*>                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
*>                    where R is the triangular factor from the QRF of A.
*>                    However, if R is truncated and the numerical rank is
*>                    determined to be strictly smaller than N, SCONDA is
*>                    returned as -1, thus indicating that the smallest
*>                    singular values might be lost.
*>
*>          If full SVD is needed, the following two condition numbers are
*>          useful for the analysis of the algorithm. They are provided for
*>          a developer/implementer who is familiar with the details of
*>          the method.
*>
*>          RWORK(4) = an estimate of the scaled condition number of the
*>                    triangular factor in the first QR factorization.
*>          RWORK(5) = an estimate of the scaled condition number of the
*>                    triangular factor in the second QR factorization.
*>          The following two parameters are computed if JOBT = 'T'.
*>          They are provided for a developer/implementer who is familiar
*>          with the details of the method.
*>          RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy
*>                    of diag(A^* * A) / Trace(A^* * A) taken as point in the
*>                    probability simplex.
*>          RWORK(7) = the entropy of A * A^*. (See the description of RWORK(6).)
*>          If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or
*>          LRWORK=-1), then on exit RWORK(1) contains the required length of
*>          RWORK for the job parameters used in the call.
*> \endverbatim
*>
*> \param[in] LRWORK
*> \verbatim
*>          LRWORK is INTEGER
*>          Length of RWORK to confirm proper allocation of workspace.
*>          LRWORK depends on the job:
*>
*>       1. If only the singular values are requested i.e. if
*>          LSAME(JOBU,'N') .AND. LSAME(JOBV,'N')
*>          then:
*>          1.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
*>               then: LRWORK = max( 7, 2 * M ).
*>          1.2. Otherwise, LRWORK  = max( 7,  N ).
*>       2. If singular values with the right singular vectors are requested
*>          i.e. if
*>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) .AND.
*>          .NOT.(LSAME(JOBU,'U').OR.LSAME(JOBU,'F'))
*>          then:
*>          2.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
*>          then LRWORK = max( 7, 2 * M ).
*>          2.2. Otherwise, LRWORK  = max( 7,  N ).
*>       3. If singular values with the left singular vectors are requested, i.e. if
*>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
*>          .NOT.(LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
*>          then:
*>          3.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
*>          then LRWORK = max( 7, 2 * M ).
*>          3.2. Otherwise, LRWORK  = max( 7,  N ).
*>       4. If singular values with both the left and the right singular vectors
*>          are requested, i.e. if
*>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
*>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
*>          then:
*>          4.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
*>          then LRWORK = max( 7, 2 * M ).
*>          4.2. Otherwise, LRWORK  = max( 7, N ).
*> 
*>          If, on entry, LRWORK = -1 or LWORK=-1, a workspace query is assumed and 
*>          the length of RWORK is returned in RWORK(1). 
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, of dimension at least 4, that further depends
*>          on the job:
*> 
*>          1. If only the singular values are requested then:
*>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
*>             then the length of IWORK is N+M; otherwise the length of IWORK is N.
*>          2. If the singular values and the right singular vectors are requested then:
*>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
*>             then the length of IWORK is N+M; otherwise the length of IWORK is N. 
*>          3. If the singular values and the left singular vectors are requested then:
*>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
*>             then the length of IWORK is N+M; otherwise the length of IWORK is N. 
*>          4. If the singular values with both the left and the right singular vectors
*>             are requested, then:      
*>             4.1. If LSAME(JOBV,'J') the length of IWORK is determined as follows:
*>                  If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
*>                  then the length of IWORK is N+M; otherwise the length of IWORK is N. 
*>             4.2. If LSAME(JOBV,'V') the length of IWORK is determined as follows:
*>                  If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
*>                  then the length of IWORK is 2*N+M; otherwise the length of IWORK is 2*N.
*>        
*>          On exit,
*>          IWORK(1) = the numerical rank determined after the initial
*>                     QR factorization with pivoting. See the descriptions
*>                     of JOBA and JOBR.
*>          IWORK(2) = the number of the computed nonzero singular values
*>          IWORK(3) = if nonzero, a warning message:
*>                     If IWORK(3) = 1 then some of the column norms of A
*>                     were denormalized floats. The requested high accuracy
*>                     is not warranted by the data.
*>          IWORK(4) = 1 or -1. If IWORK(4) = 1, then the procedure used A^* to
*>                     do the job as specified by the JOB parameters.
*>          If the call to CGEJSV is a workspace query (indicated by LWORK = -1 and 
*>          LRWORK = -1), then on exit IWORK(1) contains the required length of 
*>          IWORK for the job parameters used in the call.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>           < 0:  if INFO = -i, then the i-th argument had an illegal value.
*>           = 0:  successful exit;
*>           > 0:  CGEJSV  did not converge in the maximal allowed number
*>                 of sweeps. The computed values may be inaccurate.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup gejsv
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>  CGEJSV implements a preconditioned Jacobi SVD algorithm. It uses CGEQP3,
*>  CGEQRF, and CGELQF as preprocessors and preconditioners. Optionally, an
*>  additional row pivoting can be used as a preprocessor, which in some
*>  cases results in much higher accuracy. An example is matrix A with the
*>  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
*>  diagonal matrices and C is well-conditioned matrix. In that case, complete
*>  pivoting in the first QR factorizations provides accuracy dependent on the
*>  condition number of C, and independent of D1, D2. Such higher accuracy is
*>  not completely understood theoretically, but it works well in practice.
*>  Further, if A can be written as A = B*D, with well-conditioned B and some
*>  diagonal D, then the high accuracy is guaranteed, both theoretically and
*>  in software, independent of D. For more details see [1], [2].
*>     The computational range for the singular values can be the full range
*>  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
*>  & LAPACK routines called by CGEJSV are implemented to work in that range.
*>  If that is not the case, then the restriction for safe computation with
*>  the singular values in the range of normalized IEEE numbers is that the
*>  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
*>  overflow. This code (CGEJSV) is best used in this restricted range,
*>  meaning that singular values of magnitude below ||A||_2 / SLAMCH('O') are
*>  returned as zeros. See JOBR for details on this.
*>     Further, this implementation is somewhat slower than the one described
*>  in [1,2] due to replacement of some non-LAPACK components, and because
*>  the choice of some tuning parameters in the iterative part (CGESVJ) is
*>  left to the implementer on a particular machine.
*>     The rank revealing QR factorization (in this code: CGEQP3) should be
*>  implemented as in [3]. We have a new version of CGEQP3 under development
*>  that is more robust than the current one in LAPACK, with a cleaner cut in
*>  rank deficient cases. It will be available in the SIGMA library [4].
*>  If M is much larger than N, it is obvious that the initial QRF with
*>  column pivoting can be preprocessed by the QRF without pivoting. That
*>  well known trick is not used in CGEJSV because in some cases heavy row
*>  weighting can be treated with complete pivoting. The overhead in cases
*>  M much larger than N is then only due to pivoting, but the benefits in
*>  terms of accuracy have prevailed. The implementer/user can incorporate
*>  this extra QRF step easily. The implementer can also improve data movement
*>  (matrix transpose, matrix copy, matrix transposed copy) - this
*>  implementation of CGEJSV uses only the simplest, naive data movement.
*> \endverbatim
*
*> \par Contributor:
*  ==================
*>
*>  Zlatko Drmac (Zagreb, Croatia)
*
*> \par References:
*  ================
*>
*> \verbatim
*>
*> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
*>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
*>     LAPACK Working note 169.
*> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
*>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
*>     LAPACK Working note 170.
*> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
*>     factorization software - a case study.
*>     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
*>     LAPACK Working note 176.
*> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
*>     QSVD, (H,K)-SVD computations.
*>     Department of Mathematics, University of Zagreb, 2008, 2016.
*> \endverbatim
*
*>  \par Bugs, examples and comments:
*   =================================
*>
*>  Please report all bugs and send interesting examples and/or comments to
*>  drmac@math.hr. Thank you.
*>
*  =====================================================================
      SUBROUTINE CGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
     $                   M, N, A, LDA, SVA, U, LDU, V, LDV,
     $                   CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      IMPLICIT    NONE
      INTEGER     INFO, LDA, LDU, LDV, LWORK, LRWORK, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX     A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( LWORK )
      REAL        SVA( N ), RWORK( LRWORK )
      INTEGER     IWORK( * )
      CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
*     ..
*
*  ===========================================================================
*
*     .. Local Parameters ..
      REAL        ZERO,         ONE
      PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
      COMPLEX     CZERO,                    CONE
      PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ), CONE = ( 1.0E0, 0.0E0 ) )
*     ..
*     .. Local Scalars ..
      COMPLEX CTEMP
      REAL    AAPP,   AAQQ,   AATMAX, AATMIN, BIG,    BIG1,   COND_OK,
     $        CONDR1, CONDR2, ENTRA,  ENTRAT, EPSLN,  MAXPRJ, SCALEM,
     $        SCONDA, SFMIN,  SMALL,  TEMP1,  USCAL1, USCAL2, XSC
      INTEGER IERR,   N1,     NR,     NUMRANK,        p, q,   WARNING
      LOGICAL ALMORT, DEFR,   ERREST, GOSCAL,  JRACC,  KILL,   LQUERY,
     $        LSVEC,  L2ABER, L2KILL, L2PERT,  L2RANK, L2TRAN, NOSCAL,
     $        ROWPIV, RSVEC,  TRANSP
*
      INTEGER OPTWRK, MINWRK, MINRWRK, MINIWRK
      INTEGER LWCON,  LWLQF, LWQP3, LWQRF, LWUNMLQ, LWUNMQR, LWUNMQRM,
     $        LWSVDJ, LWSVDJV, LRWQP3, LRWCON, LRWSVDJ, IWOFF
      INTEGER LWRK_CGELQF, LWRK_CGEQP3,  LWRK_CGEQP3N, LWRK_CGEQRF,  
     $        LWRK_CGESVJ, LWRK_CGESVJV, LWRK_CGESVJU, LWRK_CUNMLQ, 
     $        LWRK_CUNMQR, LWRK_CUNMQRM    
*     ..
*     .. Local Arrays
      COMPLEX CDUMMY(1)
      REAL    RDUMMY(1)
*
*     .. Intrinsic Functions ..
      INTRINSIC ABS, CMPLX, CONJG, ALOG, MAX, MIN, REAL, NINT, SQRT
*     ..
*     .. External Functions ..
      REAL      SLAMCH, SCNRM2
      INTEGER   ISAMAX, ICAMAX
      LOGICAL   LSAME
      EXTERNAL  ISAMAX, ICAMAX, LSAME, SLAMCH, SCNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL  SLASSQ, CCOPY,  CGELQF, CGEQP3, CGEQRF, CLACPY,
     $          CLAPMR, CLASCL, SLASCL, CLASET, CLASSQ, CLASWP,
     $          CUNGQR, CUNMLQ, CUNMQR, CPOCON, SSCAL,  CSSCAL,
     $          CSWAP,  CTRSM,  CLACGV, XERBLA
*
      EXTERNAL  CGESVJ
*     ..
*
*     Test the input arguments
*
      LSVEC  = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
      JRACC  = LSAME( JOBV, 'J' )
      RSVEC  = LSAME( JOBV, 'V' ) .OR. JRACC
      ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
      L2RANK = LSAME( JOBA, 'R' )
      L2ABER = LSAME( JOBA, 'A' )
      ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
      L2TRAN = LSAME( JOBT, 'T' ) .AND. ( M .EQ. N )
      L2KILL = LSAME( JOBR, 'R' )
      DEFR   = LSAME( JOBR, 'N' )
      L2PERT = LSAME( JOBP, 'P' )
*
      LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 )
*
      IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
     $     ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
         INFO = - 1
      ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR.
     $   ( LSAME( JOBU, 'W' ) .AND. RSVEC .AND. L2TRAN ) ) ) THEN
         INFO = - 2
      ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
     $   ( LSAME( JOBV, 'W' ) .AND. LSVEC .AND. L2TRAN ) ) ) THEN
         INFO = - 3
      ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) )    THEN
         INFO = - 4
      ELSE IF ( .NOT. ( LSAME(JOBT,'T') .OR.
     $          LSAME(JOBT,'N') ) ) THEN
         INFO = - 5
      ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
         INFO = - 6
      ELSE IF ( M .LT. 0 ) THEN
         INFO = - 7
      ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
         INFO = - 8
      ELSE IF ( LDA .LT. M ) THEN
         INFO = - 10
      ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
         INFO = - 13
      ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
         INFO = - 15
      ELSE
*        #:)
         INFO = 0
      END IF
*
      IF ( INFO .EQ. 0 ) THEN 
*         .. compute the minimal and the optimal workspace lengths 
*         [[The expressions for computing the minimal and the optimal
*         values of LCWORK, LRWORK are written with a lot of redundancy and
*         can be simplified. However, this verbose form is useful for
*         maintenance and modifications of the code.]]
*
*        .. minimal workspace length for CGEQP3 of an M x N matrix,
*         CGEQRF of an N x N matrix, CGELQF of an N x N matrix,
*         CUNMLQ for computing N x N matrix, CUNMQR for computing N x N
*         matrix, CUNMQR for computing M x N matrix, respectively.
          LWQP3 = N+1   
          LWQRF = MAX( 1, N )
          LWLQF = MAX( 1, N )
          LWUNMLQ  = MAX( 1, N )
          LWUNMQR  = MAX( 1, N )
          LWUNMQRM = MAX( 1, M )
*        .. minimal workspace length for CPOCON of an N x N matrix
          LWCON = 2 * N 
*        .. minimal workspace length for CGESVJ of an N x N matrix,
*         without and with explicit accumulation of Jacobi rotations
          LWSVDJ  = MAX( 2 * N, 1 )         
          LWSVDJV = MAX( 2 * N, 1 )
*         .. minimal REAL workspace length for CGEQP3, CPOCON, CGESVJ
          LRWQP3  = 2 * N 
          LRWCON  = N 
          LRWSVDJ = N 
          IF ( LQUERY ) THEN 
              CALL CGEQP3( M, N, A, LDA, IWORK, CDUMMY, CDUMMY, -1, 
     $             RDUMMY, IERR )
              LWRK_CGEQP3 = INT( CDUMMY(1) )
              CALL CGEQRF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
              LWRK_CGEQRF = INT( CDUMMY(1) )
              CALL CGELQF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
              LWRK_CGELQF = INT( CDUMMY(1) )
          END IF
          MINWRK  = 2
          OPTWRK  = 2
          MINIWRK = N 
          IF ( .NOT. (LSVEC .OR. RSVEC ) ) THEN
*             .. minimal and optimal sizes of the complex workspace if
*             only the singular values are requested
              IF ( ERREST ) THEN 
                  MINWRK = MAX( N+LWQP3, N**2+LWCON, N+LWQRF, LWSVDJ )
              ELSE
                  MINWRK = MAX( N+LWQP3, N+LWQRF, LWSVDJ )
              END IF
              IF ( LQUERY ) THEN 
                  CALL CGESVJ( 'L', 'N', 'N', N, N, A, LDA, SVA, N,
     $                         V,
     $                 LDV, CDUMMY, -1, RDUMMY, -1, IERR )
                  LWRK_CGESVJ = INT( CDUMMY(1) )
                  IF ( ERREST ) THEN 
                      OPTWRK = MAX( N+LWRK_CGEQP3, N**2+LWCON, 
     $                              N+LWRK_CGEQRF, LWRK_CGESVJ )
                  ELSE
                      OPTWRK = MAX( N+LWRK_CGEQP3, N+LWRK_CGEQRF, 
     $                              LWRK_CGESVJ )
                  END IF
              END IF
              IF ( L2TRAN .OR. ROWPIV ) THEN 
                  IF ( ERREST ) THEN 
                     MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWCON, LRWSVDJ )
                  ELSE
                     MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ )
                  END IF                 
              ELSE
                  IF ( ERREST ) THEN 
                     MINRWRK = MAX( 7, LRWQP3, LRWCON, LRWSVDJ )
                  ELSE
                     MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
                  END IF
              END IF   
              IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M 
          ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN
*            .. minimal and optimal sizes of the complex workspace if the
*            singular values and the right singular vectors are requested
             IF ( ERREST ) THEN 
                 MINWRK = MAX( N+LWQP3, LWCON, LWSVDJ, N+LWLQF,  
     $                         2*N+LWQRF, N+LWSVDJ, N+LWUNMLQ )
             ELSE
                 MINWRK = MAX( N+LWQP3, LWSVDJ, N+LWLQF, 2*N+LWQRF, 
     $                         N+LWSVDJ, N+LWUNMLQ )
             END IF
             IF ( LQUERY ) THEN
                 CALL CGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
     $                LDA, CDUMMY, -1, RDUMMY, -1, IERR )
                 LWRK_CGESVJ = INT( CDUMMY(1) )
                 CALL CUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
     $                V, LDV, CDUMMY, -1, IERR )
                 LWRK_CUNMLQ = INT( CDUMMY(1) )
                 IF ( ERREST ) THEN 
                 OPTWRK = MAX( N+LWRK_CGEQP3, LWCON, LWRK_CGESVJ, 
     $                         N+LWRK_CGELQF, 2*N+LWRK_CGEQRF,
     $                         N+LWRK_CGESVJ,  N+LWRK_CUNMLQ )
                 ELSE
                 OPTWRK = MAX( N+LWRK_CGEQP3, LWRK_CGESVJ,N+LWRK_CGELQF,
     $                         2*N+LWRK_CGEQRF, N+LWRK_CGESVJ, 
     $                         N+LWRK_CUNMLQ )
                 END IF
             END IF
             IF ( L2TRAN .OR. ROWPIV ) THEN 
                  IF ( ERREST ) THEN 
                     MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
                  ELSE
                     MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ ) 
                  END IF                  
             ELSE
                  IF ( ERREST ) THEN 
                     MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
                  ELSE
                     MINRWRK = MAX( 7, LRWQP3, LRWSVDJ ) 
                  END IF                 
             END IF
             IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
          ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN  
*            .. minimal and optimal sizes of the complex workspace if the
*            singular values and the left singular vectors are requested
             IF ( ERREST ) THEN
                 MINWRK = N + MAX( LWQP3,LWCON,N+LWQRF,LWSVDJ,LWUNMQRM )
             ELSE
                 MINWRK = N + MAX( LWQP3, N+LWQRF, LWSVDJ, LWUNMQRM )
             END IF
             IF ( LQUERY ) THEN
                 CALL CGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
     $                LDA, CDUMMY, -1, RDUMMY, -1, IERR )
                 LWRK_CGESVJ = INT( CDUMMY(1) )
                 CALL CUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
     $               LDU, CDUMMY, -1, IERR )
                 LWRK_CUNMQRM = INT( CDUMMY(1) )
                 IF ( ERREST ) THEN
                 OPTWRK = N + MAX( LWRK_CGEQP3, LWCON, N+LWRK_CGEQRF,
     $                             LWRK_CGESVJ, LWRK_CUNMQRM )
                 ELSE
                 OPTWRK = N + MAX( LWRK_CGEQP3, N+LWRK_CGEQRF,
     $                             LWRK_CGESVJ, LWRK_CUNMQRM )
                 END IF
             END IF
             IF ( L2TRAN .OR. ROWPIV ) THEN 
                 IF ( ERREST ) THEN 
                    MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
                 ELSE
                    MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ )
                 END IF                 
             ELSE
                 IF ( ERREST ) THEN 
                    MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
                 ELSE
                    MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
                 END IF                
             END IF 
             IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
          ELSE
*            .. minimal and optimal sizes of the complex workspace if the
*            full SVD is requested
             IF ( .NOT. JRACC ) THEN                
                 IF ( ERREST ) THEN 
                    MINWRK = MAX( N+LWQP3, N+LWCON,  2*N+N**2+LWCON, 
     $                         2*N+LWQRF,         2*N+LWQP3, 
     $                         2*N+N**2+N+LWLQF,  2*N+N**2+N+N**2+LWCON,
     $                         2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV, 
     $                         2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ, 
     $                         N+N**2+LWSVDJ,   N+LWUNMQRM )
                 ELSE
                    MINWRK = MAX( N+LWQP3,        2*N+N**2+LWCON, 
     $                         2*N+LWQRF,         2*N+LWQP3, 
     $                         2*N+N**2+N+LWLQF,  2*N+N**2+N+N**2+LWCON,
     $                         2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV,
     $                         2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ,
     $                         N+N**2+LWSVDJ,      N+LWUNMQRM ) 
                 END IF 
                 MINIWRK = MINIWRK + N 
                 IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
             ELSE
                 IF ( ERREST ) THEN 
                    MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+LWQRF, 
     $                         2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR, 
     $                         N+LWUNMQRM )
                 ELSE
                    MINWRK = MAX( N+LWQP3, 2*N+LWQRF, 
     $                         2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR, 
     $                         N+LWUNMQRM ) 
                 END IF   
                 IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
             END IF
             IF ( LQUERY ) THEN
                 CALL CUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
     $                LDU, CDUMMY, -1, IERR )
                 LWRK_CUNMQRM = INT( CDUMMY(1) )
                 CALL CUNMQR( 'L', 'N', N, N, N, A, LDA, CDUMMY, U,
     $                LDU, CDUMMY, -1, IERR )
                 LWRK_CUNMQR = INT( CDUMMY(1) )
                 IF ( .NOT. JRACC ) THEN
                     CALL CGEQP3( N,N, A, LDA, IWORK, CDUMMY,CDUMMY,
     $                            -1,
     $                    RDUMMY, IERR )
                     LWRK_CGEQP3N = INT( CDUMMY(1) )
                     CALL CGESVJ( 'L', 'U', 'N', N, N, U, LDU, SVA,
     $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
                     LWRK_CGESVJ = INT( CDUMMY(1) )
                     CALL CGESVJ( 'U', 'U', 'N', N, N, U, LDU, SVA,
     $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
                     LWRK_CGESVJU = INT( CDUMMY(1) )
                     CALL CGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
     $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
                     LWRK_CGESVJV = INT( CDUMMY(1) )
                     CALL CUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
     $                    V, LDV, CDUMMY, -1, IERR )
                     LWRK_CUNMLQ = INT( CDUMMY(1) )
                     IF ( ERREST ) THEN 
                       OPTWRK = MAX( N+LWRK_CGEQP3, N+LWCON, 
     $                          2*N+N**2+LWCON, 2*N+LWRK_CGEQRF, 
     $                          2*N+LWRK_CGEQP3N, 
     $                          2*N+N**2+N+LWRK_CGELQF,  
     $                          2*N+N**2+N+N**2+LWCON,
     $                          2*N+N**2+N+LWRK_CGESVJ, 
     $                          2*N+N**2+N+LWRK_CGESVJV,               
     $                          2*N+N**2+N+LWRK_CUNMQR,
     $                          2*N+N**2+N+LWRK_CUNMLQ, 
     $                          N+N**2+LWRK_CGESVJU,                  
     $                          N+LWRK_CUNMQRM )
                     ELSE
                       OPTWRK = MAX( N+LWRK_CGEQP3,  
     $                          2*N+N**2+LWCON, 2*N+LWRK_CGEQRF, 
     $                          2*N+LWRK_CGEQP3N, 
     $                          2*N+N**2+N+LWRK_CGELQF,  
     $                          2*N+N**2+N+N**2+LWCON,
     $                          2*N+N**2+N+LWRK_CGESVJ,               
     $                          2*N+N**2+N+LWRK_CGESVJV, 
     $                          2*N+N**2+N+LWRK_CUNMQR,
     $                          2*N+N**2+N+LWRK_CUNMLQ, 
     $                          N+N**2+LWRK_CGESVJU,
     $                          N+LWRK_CUNMQRM )
                     END IF                    
                 ELSE
                     CALL CGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
     $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
                     LWRK_CGESVJV = INT( CDUMMY(1) )
                     CALL CUNMQR( 'L', 'N', N, N, N, CDUMMY, N,
     $                            CDUMMY,
     $                    V, LDV, CDUMMY, -1, IERR )
                     LWRK_CUNMQR = INT( CDUMMY(1) )
                     CALL CUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY,
     $                            U,
     $                    LDU, CDUMMY, -1, IERR )
                     LWRK_CUNMQRM = INT( CDUMMY(1) )
                     IF ( ERREST ) THEN 
                        OPTWRK = MAX( N+LWRK_CGEQP3, N+LWCON,   
     $                           2*N+LWRK_CGEQRF, 2*N+N**2,  
     $                           2*N+N**2+LWRK_CGESVJV,  
     $                           2*N+N**2+N+LWRK_CUNMQR,N+LWRK_CUNMQRM )
                     ELSE
                        OPTWRK = MAX( N+LWRK_CGEQP3, 2*N+LWRK_CGEQRF,  
     $                           2*N+N**2, 2*N+N**2+LWRK_CGESVJV, 
     $                           2*N+N**2+N+LWRK_CUNMQR, 
     $                           N+LWRK_CUNMQRM )   
                     END IF                  
                 END IF               
             END IF 
             IF ( L2TRAN .OR. ROWPIV ) THEN 
                 MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
             ELSE
                 MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
             END IF 
          END IF
          MINWRK = MAX( 2, MINWRK )
          OPTWRK = MAX( OPTWRK, MINWRK )
          IF ( LWORK  .LT. MINWRK  .AND. (.NOT.LQUERY) ) INFO = - 17
          IF ( LRWORK .LT. MINRWRK .AND. (.NOT.LQUERY) ) INFO = - 19   
      END IF
*      
      IF ( INFO .NE. 0 ) THEN
*       #:(
         CALL XERBLA( 'CGEJSV', - INFO )
         RETURN
      ELSE IF ( LQUERY ) THEN
          CWORK(1) = CMPLX( OPTWRK )
          CWORK(2) = CMPLX( MINWRK )
          RWORK(1) = REAL( MINRWRK )
          IWORK(1) = MAX( 4, MINIWRK )
          RETURN   
      END IF
*
*     Quick return for void matrix (Y3K safe)
* #:)
      IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
         IWORK(1:4) = 0
         RWORK(1:7) = 0
         RETURN
      ENDIF
*
*     Determine whether the matrix U should be M x N or M x M
*
      IF ( LSVEC ) THEN
         N1 = N
         IF ( LSAME( JOBU, 'F' ) ) N1 = M
      END IF
*
*     Set numerical parameters
*
*!    NOTE: Make sure SLAMCH() does not fail on the target architecture.
*
      EPSLN = SLAMCH('Epsilon')
      SFMIN = SLAMCH('SafeMinimum')
      SMALL = SFMIN / EPSLN
      BIG   = SLAMCH('O')
*     BIG   = ONE / SFMIN
*
*     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
*
*(!)  If necessary, scale SVA() to protect the largest norm from
*     overflow. It is possible that this scaling pushes the smallest
*     column norm left from the underflow threshold (extreme case).
*
      SCALEM  = ONE / SQRT(REAL(M)*REAL(N))
      NOSCAL  = .TRUE.
      GOSCAL  = .TRUE.
      DO 1874 p = 1, N
         AAPP = ZERO
         AAQQ = ONE
         CALL CLASSQ( M, A(1,p), 1, AAPP, AAQQ )
         IF ( AAPP .GT. BIG ) THEN
            INFO = - 9
            CALL XERBLA( 'CGEJSV', -INFO )
            RETURN
         END IF
         AAQQ = SQRT(AAQQ)
         IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL  ) THEN
            SVA(p)  = AAPP * AAQQ
         ELSE
            NOSCAL  = .FALSE.
            SVA(p)  = AAPP * ( AAQQ * SCALEM )
            IF ( GOSCAL ) THEN
               GOSCAL = .FALSE.
               CALL SSCAL( p-1, SCALEM, SVA, 1 )
            END IF
         END IF
 1874 CONTINUE
*
      IF ( NOSCAL ) SCALEM = ONE
*
      AAPP = ZERO
      AAQQ = BIG
      DO 4781 p = 1, N
         AAPP = MAX( AAPP, SVA(p) )
         IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
 4781 CONTINUE
*
*     Quick return for zero M x N matrix
* #:)
      IF ( AAPP .EQ. ZERO ) THEN
         IF ( LSVEC ) CALL CLASET( 'G', M, N1, CZERO, CONE, U, LDU )
         IF ( RSVEC ) CALL CLASET( 'G', N, N,  CZERO, CONE, V, LDV )
         RWORK(1) = ONE
         RWORK(2) = ONE
         IF ( ERREST ) RWORK(3) = ONE
         IF ( LSVEC .AND. RSVEC ) THEN
            RWORK(4) = ONE
            RWORK(5) = ONE
         END IF
         IF ( L2TRAN ) THEN
            RWORK(6) = ZERO
            RWORK(7) = ZERO
         END IF
         IWORK(1) = 0
         IWORK(2) = 0
         IWORK(3) = 0
         IWORK(4) = -1
         RETURN
      END IF
*
*     Issue warning if denormalized column norms detected. Override the
*     high relative accuracy request. Issue licence to kill nonzero columns
*     (set them to zero) whose norm is less than sigma_max / BIG (roughly).
* #:(
      WARNING = 0
      IF ( AAQQ .LE. SFMIN ) THEN
         L2RANK = .TRUE.
         L2KILL = .TRUE.
         WARNING = 1
      END IF
*
*     Quick return for one-column matrix
* #:)
      IF ( N .EQ. 1 ) THEN
*
         IF ( LSVEC ) THEN
            CALL CLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
            CALL CLACPY( 'A', M, 1, A, LDA, U, LDU )
*           computing all M left singular vectors of the M x 1 matrix
            IF ( N1 .NE. N  ) THEN
              CALL CGEQRF( M, N, U,LDU, CWORK, CWORK(N+1),LWORK-N,
     $                     IERR )
              CALL CUNGQR( M,N1,1, U,LDU,CWORK,CWORK(N+1),LWORK-N,
     $                     IERR )
              CALL CCOPY( M, A(1,1), 1, U(1,1), 1 )
            END IF
         END IF
         IF ( RSVEC ) THEN
             V(1,1) = CONE
         END IF
         IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
            SVA(1)  = SVA(1) / SCALEM
            SCALEM  = ONE
         END IF
         RWORK(1) = ONE / SCALEM
         RWORK(2) = ONE
         IF ( SVA(1) .NE. ZERO ) THEN
            IWORK(1) = 1
            IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
               IWORK(2) = 1
            ELSE
               IWORK(2) = 0
            END IF
         ELSE
            IWORK(1) = 0
            IWORK(2) = 0
         END IF
         IWORK(3) = 0
         IWORK(4) = -1
         IF ( ERREST ) RWORK(3) = ONE
         IF ( LSVEC .AND. RSVEC ) THEN
            RWORK(4) = ONE
            RWORK(5) = ONE
         END IF
         IF ( L2TRAN ) THEN
            RWORK(6) = ZERO
            RWORK(7) = ZERO
         END IF
         RETURN
*
      END IF
*
      TRANSP = .FALSE.
*
      AATMAX = -ONE
      AATMIN =  BIG
      IF ( ROWPIV .OR. L2TRAN ) THEN
*
*     Compute the row norms, needed to determine row pivoting sequence
*     (in the case of heavily row weighted A, row pivoting is strongly
*     advised) and to collect information needed to compare the
*     structures of A * A^* and A^* * A (in the case L2TRAN.EQ..TRUE.).
*
         IF ( L2TRAN ) THEN
            DO 1950 p = 1, M
               XSC   = ZERO
               TEMP1 = ONE
               CALL CLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
*              CLASSQ gets both the ell_2 and the ell_infinity norm
*              in one pass through the vector
               RWORK(M+p)  = XSC * SCALEM
               RWORK(p)    = XSC * (SCALEM*SQRT(TEMP1))
               AATMAX = MAX( AATMAX, RWORK(p) )
               IF (RWORK(p) .NE. ZERO) 
     $            AATMIN = MIN(AATMIN,RWORK(p))
 1950       CONTINUE
         ELSE
            DO 1904 p = 1, M
               RWORK(M+p) = SCALEM*ABS( A(p,ICAMAX(N,A(p,1),LDA)) )
               AATMAX = MAX( AATMAX, RWORK(M+p) )
               AATMIN = MIN( AATMIN, RWORK(M+p) )
 1904       CONTINUE
         END IF
*
      END IF
*
*     For square matrix A try to determine whether A^*  would be better
*     input for the preconditioned Jacobi SVD, with faster convergence.
*     The decision is based on an O(N) function of the vector of column
*     and row norms of A, based on the Shannon entropy. This should give
*     the right choice in most cases when the difference actually matters.
*     It may fail and pick the slower converging side.
*
      ENTRA  = ZERO
      ENTRAT = ZERO
      IF ( L2TRAN ) THEN
*
         XSC   = ZERO
         TEMP1 = ONE
         CALL SLASSQ( N, SVA, 1, XSC, TEMP1 )
         TEMP1 = ONE / TEMP1
*
         ENTRA = ZERO
         DO 1113 p = 1, N
            BIG1  = ( ( SVA(p) / XSC )**2 ) * TEMP1
            IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * ALOG(BIG1)
 1113    CONTINUE
         ENTRA = - ENTRA / ALOG(REAL(N))
*
*        Now, SVA().^2/Trace(A^* * A) is a point in the probability simplex.
*        It is derived from the diagonal of  A^* * A.  Do the same with the
*        diagonal of A * A^*, compute the entropy of the corresponding
*        probability distribution. Note that A * A^* and A^* * A have the
*        same trace.
*
         ENTRAT = ZERO
         DO 1114 p = 1, M
            BIG1 = ( ( RWORK(p) / XSC )**2 ) * TEMP1
            IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * ALOG(BIG1)
 1114    CONTINUE
         ENTRAT = - ENTRAT / ALOG(REAL(M))
*
*        Analyze the entropies and decide A or A^*. Smaller entropy
*        usually means better input for the algorithm.
*
         TRANSP = ( ENTRAT .LT. ENTRA )
* 
*        If A^* is better than A, take the adjoint of A. This is allowed
*        only for square matrices, M=N.  
         IF ( TRANSP ) THEN
*           In an optimal implementation, this trivial transpose
*           should be replaced with faster transpose.
            DO 1115 p = 1, N - 1
               A(p,p) = CONJG(A(p,p))
               DO 1116 q = p + 1, N
                   CTEMP = CONJG(A(q,p))
                  A(q,p) = CONJG(A(p,q))
                  A(p,q) = CTEMP
 1116          CONTINUE
 1115       CONTINUE
            A(N,N) = CONJG(A(N,N))
            DO 1117 p = 1, N
               RWORK(M+p) = SVA(p)
               SVA(p) = RWORK(p)
*              previously computed row 2-norms are now column 2-norms
*              of the transposed matrix
 1117       CONTINUE
            TEMP1  = AAPP
            AAPP   = AATMAX
            AATMAX = TEMP1
            TEMP1  = AAQQ
            AAQQ   = AATMIN
            AATMIN = TEMP1
            KILL   = LSVEC
            LSVEC  = RSVEC
            RSVEC  = KILL
            IF ( LSVEC ) N1 = N
*
            ROWPIV = .TRUE.
         END IF
*
      END IF
*     END IF L2TRAN
*
*     Scale the matrix so that its maximal singular value remains less
*     than SQRT(BIG) -- the matrix is scaled so that its maximal column
*     has Euclidean norm equal to SQRT(BIG/N). The only reason to keep
*     SQRT(BIG) instead of BIG is the fact that CGEJSV uses LAPACK and
*     BLAS routines that, in some implementations, are not capable of
*     working in the full interval [SFMIN,BIG] and that they may provoke
*     overflows in the intermediate results. If the singular values spread
*     from SFMIN to BIG, then CGESVJ will compute them. So, in that case,
*     one should use CGESVJ instead of CGEJSV.
      BIG1   = SQRT( BIG )
      TEMP1  = SQRT( BIG / REAL(N) )
*     >> for future updates: allow bigger range, i.e. the largest column
*     will be allowed up to BIG/N and CGESVJ will do the rest. However, for
*     this all other (LAPACK) components must allow such a range.      
*     TEMP1  = BIG/REAL(N)
*     TEMP1  = BIG * EPSLN  this should 'almost' work with current LAPACK components
      CALL SLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
      IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
          AAQQ = ( AAQQ / AAPP ) * TEMP1
      ELSE
          AAQQ = ( AAQQ * TEMP1 ) / AAPP
      END IF
      TEMP1 = TEMP1 * SCALEM
      CALL CLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
*
*     To undo scaling at the end of this procedure, multiply the
*     computed singular values with USCAL2 / USCAL1.
*
      USCAL1 = TEMP1
      USCAL2 = AAPP
*
      IF ( L2KILL ) THEN
*        L2KILL enforces computation of nonzero singular values in
*        the restricted range of condition number of the initial A,
*        sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN).
         XSC = SQRT( SFMIN )
      ELSE
         XSC = SMALL
*
*        Now, if the condition number of A is too big,
*        sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN,
*        as a precaution measure, the full SVD is computed using CGESVJ
*        with accumulated Jacobi rotations. This provides numerically
*        more robust computation, at the cost of slightly increased run
*        time. Depending on the concrete implementation of BLAS and LAPACK
*        (i.e. how they behave in presence of extreme ill-conditioning) the
*        implementor may decide to remove this switch.
         IF ( ( AAQQ.LT.SQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
            JRACC = .TRUE.
         END IF
*
      END IF
      IF ( AAQQ .LT. XSC ) THEN
         DO 700 p = 1, N
            IF ( SVA(p) .LT. XSC ) THEN
               CALL CLASET( 'A', M, 1, CZERO, CZERO, A(1,p), LDA )
               SVA(p) = ZERO
            END IF
 700     CONTINUE
      END IF
*
*     Preconditioning using QR factorization with pivoting
*
      IF ( ROWPIV ) THEN
*        Optional row permutation (Bjoerck row pivoting):
*        A result by Cox and Higham shows that the Bjoerck's
*        row pivoting combined with standard column pivoting
*        has similar effect as Powell-Reid complete pivoting.
*        The ell-infinity norms of A are made nonincreasing.
         IF ( ( LSVEC .AND. RSVEC ) .AND. .NOT.( JRACC ) ) THEN 
              IWOFF = 2*N
         ELSE
              IWOFF = N
         END IF
         DO 1952 p = 1, M - 1
            q = ISAMAX( M-p+1, RWORK(M+p), 1 ) + p - 1
            IWORK(IWOFF+p) = q
            IF ( p .NE. q ) THEN
               TEMP1      = RWORK(M+p)
               RWORK(M+p) = RWORK(M+q)
               RWORK(M+q) = TEMP1
            END IF
 1952    CONTINUE
         CALL CLASWP( N, A, LDA, 1, M-1, IWORK(IWOFF+1), 1 )
      END IF
*
*     End of the preparation phase (scaling, optional sorting and
*     transposing, optional flushing of small columns).
*
*     Preconditioning
*
*     If the full SVD is needed, the right singular vectors are computed
*     from a matrix equation, and for that we need theoretical analysis
*     of the Businger-Golub pivoting. So we use CGEQP3 as the first RR QRF.
*     In all other cases the first RR QRF can be chosen by other criteria
*     (eg speed by replacing global with restricted window pivoting, such
*     as in xGEQPX from TOMS # 782). Good results will be obtained using
*     xGEQPX with properly (!) chosen numerical parameters.
*     Any improvement of CGEQP3 improves overall performance of CGEJSV.
*
*     A * P1 = Q1 * [ R1^* 0]^*:
      DO 1963 p = 1, N
*        .. all columns are free columns
         IWORK(p) = 0
 1963 CONTINUE
      CALL CGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LWORK-N,
     $             RWORK, IERR )
*
*     The upper triangular matrix R1 from the first QRF is inspected for
*     rank deficiency and possibilities for deflation, or possible
*     ill-conditioning. Depending on the user specified flag L2RANK,
*     the procedure explores possibilities to reduce the numerical
*     rank by inspecting the computed upper triangular factor. If
*     L2RANK or L2ABER are up, then CGEJSV will compute the SVD of
*     A + dA, where ||dA|| <= f(M,N)*EPSLN.
*
      NR = 1
      IF ( L2ABER ) THEN
*        Standard absolute error bound suffices. All sigma_i with
*        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
*        aggressive enforcement of lower numerical rank by introducing a
*        backward error of the order of N*EPSLN*||A||.
         TEMP1 = SQRT(REAL(N))*EPSLN
         DO 3001 p = 2, N
            IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN
               NR = NR + 1
            ELSE
               GO TO 3002
            END IF
 3001    CONTINUE
 3002    CONTINUE
      ELSE IF ( L2RANK ) THEN
*        .. similarly as above, only slightly more gentle (less aggressive).
*        Sudden drop on the diagonal of R1 is used as the criterion for
*        close-to-rank-deficient.
         TEMP1 = SQRT(SFMIN)
         DO 3401 p = 2, N
            IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
     $           ( ABS(A(p,p)) .LT. SMALL ) .OR.
     $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
            NR = NR + 1
 3401    CONTINUE
 3402    CONTINUE
*
      ELSE
*        The goal is high relative accuracy. However, if the matrix
*        has high scaled condition number the relative accuracy is in
*        general not feasible. Later on, a condition number estimator
*        will be deployed to estimate the scaled condition number.
*        Here we just remove the underflowed part of the triangular
*        factor. This prevents the situation in which the code is
*        working hard to get the accuracy not warranted by the data.
         TEMP1  = SQRT(SFMIN)
         DO 3301 p = 2, N
            IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR.
     $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
            NR = NR + 1
 3301    CONTINUE
 3302    CONTINUE
*
      END IF
*
      ALMORT = .FALSE.
      IF ( NR .EQ. N ) THEN
         MAXPRJ = ONE
         DO 3051 p = 2, N
            TEMP1  = ABS(A(p,p)) / SVA(IWORK(p))
            MAXPRJ = MIN( MAXPRJ, TEMP1 )
 3051    CONTINUE
         IF ( MAXPRJ**2 .GE. ONE - REAL(N)*EPSLN ) ALMORT = .TRUE.
      END IF
*
*
      SCONDA = - ONE
      CONDR1 = - ONE
      CONDR2 = - ONE
*
      IF ( ERREST ) THEN
         IF ( N .EQ. NR ) THEN
            IF ( RSVEC ) THEN
*              .. V is available as workspace
               CALL CLACPY( 'U', N, N, A, LDA, V, LDV )
               DO 3053 p = 1, N
                  TEMP1 = SVA(IWORK(p))
                  CALL CSSCAL( p, ONE/TEMP1, V(1,p), 1 )
 3053          CONTINUE
               IF ( LSVEC )THEN
                   CALL CPOCON( 'U', N, V, LDV, ONE, TEMP1,
     $                  CWORK(N+1), RWORK, IERR )
               ELSE
                   CALL CPOCON( 'U', N, V, LDV, ONE, TEMP1,
     $                  CWORK, RWORK, IERR )
               END IF               
*          
            ELSE IF ( LSVEC ) THEN
*              .. U is available as workspace
               CALL CLACPY( 'U', N, N, A, LDA, U, LDU )
               DO 3054 p = 1, N
                  TEMP1 = SVA(IWORK(p))
                  CALL CSSCAL( p, ONE/TEMP1, U(1,p), 1 )
 3054          CONTINUE
               CALL CPOCON( 'U', N, U, LDU, ONE, TEMP1,
     $              CWORK(N+1), RWORK, IERR )
            ELSE
               CALL CLACPY( 'U', N, N, A, LDA, CWORK, N )
*[]            CALL CLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
*              Change: here index shifted by N to the left, CWORK(1:N) 
*              not needed for SIGMA only computation
               DO 3052 p = 1, N
                  TEMP1 = SVA(IWORK(p))
*[]               CALL CSSCAL( p, ONE/TEMP1, CWORK(N+(p-1)*N+1), 1 )
                  CALL CSSCAL( p, ONE/TEMP1, CWORK((p-1)*N+1), 1 )
 3052          CONTINUE
*           .. the columns of R are scaled to have unit Euclidean lengths.
*[]               CALL CPOCON( 'U', N, CWORK(N+1), N, ONE, TEMP1,
*[]     $              CWORK(N+N*N+1), RWORK, IERR )
               CALL CPOCON( 'U', N, CWORK, N, ONE, TEMP1,
     $              CWORK(N*N+1), RWORK, IERR )               
*              
            END IF
            IF ( TEMP1 .NE. ZERO ) THEN 
               SCONDA = ONE / SQRT(TEMP1)
            ELSE
               SCONDA = - ONE
            END IF
*           SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
*           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
         ELSE
            SCONDA = - ONE
         END IF
      END IF
*
      L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. SQRT(BIG1) )
*     If there is no violent scaling, artificial perturbation is not needed.
*
*     Phase 3:
*
      IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
*
*         Singular Values only
*
*         .. transpose A(1:NR,1:N)
         DO 1946 p = 1, MIN( N-1, NR )
            CALL CCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
            CALL CLACGV( N-p+1, A(p,p), 1 )
 1946    CONTINUE
         IF ( NR .EQ. N ) A(N,N) = CONJG(A(N,N))
*
*        The following two DO-loops introduce small relative perturbation
*        into the strict upper triangle of the lower triangular matrix.
*        Small entries below the main diagonal are also changed.
*        This modification is useful if the computing environment does not
*        provide/allow FLUSH TO ZERO underflow, for it prevents many
*        annoying denormalized numbers in case of strongly scaled matrices.
*        The perturbation is structured so that it does not introduce any
*        new perturbation of the singular values, and it does not destroy
*        the job done by the preconditioner.
*        The licence for this perturbation is in the variable L2PERT, which
*        should be .FALSE. if FLUSH TO ZERO underflow is active.
*
         IF ( .NOT. ALMORT ) THEN
*
            IF ( L2PERT ) THEN
*              XSC = SQRT(SMALL)
               XSC = EPSLN / REAL(N)
               DO 4947 q = 1, NR
                  CTEMP = CMPLX(XSC*ABS(A(q,q)),ZERO)
                  DO 4949 p = 1, N
                     IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
     $                    .OR. ( p .LT. q ) )
*     $                     A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
     $                     A(p,q) = CTEMP
 4949             CONTINUE
 4947          CONTINUE
            ELSE
               CALL CLASET( 'U', NR-1,NR-1, CZERO,CZERO, A(1,2),LDA )
            END IF
*
*            .. second preconditioning using the QR factorization
*
            CALL CGEQRF( N,NR, A,LDA, CWORK, CWORK(N+1),LWORK-N,
     $                   IERR )
*
*           .. and transpose upper to lower triangular
            DO 1948 p = 1, NR - 1
               CALL CCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
               CALL CLACGV( NR-p+1, A(p,p), 1 )
 1948       CONTINUE
*
         END IF
*
*           Row-cyclic Jacobi SVD algorithm with column pivoting
*
*           .. again some perturbation (a "background noise") is added
*           to drown denormals
            IF ( L2PERT ) THEN
*              XSC = SQRT(SMALL)
               XSC = EPSLN / REAL(N)
               DO 1947 q = 1, NR
                  CTEMP = CMPLX(XSC*ABS(A(q,q)),ZERO)
                  DO 1949 p = 1, NR
                     IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
     $                       .OR. ( p .LT. q ) )
*     $                   A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
     $                   A(p,q) = CTEMP
 1949             CONTINUE
 1947          CONTINUE
            ELSE
               CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, A(1,2),
     $                      LDA )
            END IF
*
*           .. and one-sided Jacobi rotations are started on a lower
*           triangular matrix (plus perturbation which is ignored in
*           the part which destroys triangular form (confusing?!))
*
            CALL CGESVJ( 'L', 'N', 'N', NR, NR, A, LDA, SVA,
     $                N, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
*
            SCALEM  = RWORK(1)
            NUMRANK = NINT(RWORK(2))
*
*
      ELSE IF ( ( RSVEC .AND. ( .NOT. LSVEC ) .AND. ( .NOT. JRACC ) ) 
     $       .OR. 
     $   ( JRACC .AND. ( .NOT. LSVEC ) .AND. ( NR .NE. N ) ) ) THEN
*
*        -> Singular Values and Right Singular Vectors <-
*
         IF ( ALMORT ) THEN
*
*           .. in this case NR equals N
            DO 1998 p = 1, NR
               CALL CCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
               CALL CLACGV( N-p+1, V(p,p), 1 )
 1998       CONTINUE
            CALL CLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
*
            CALL CGESVJ( 'L','U','N', N, NR, V, LDV, SVA, NR, A, LDA,
     $                  CWORK, LWORK, RWORK, LRWORK, INFO )
            SCALEM  = RWORK(1)
            NUMRANK = NINT(RWORK(2))

         ELSE
*
*        .. two more QR factorizations ( one QRF is not enough, two require
*        accumulated product of Jacobi rotations, three are perfect )
*
            CALL CLASET( 'L', NR-1,NR-1, CZERO, CZERO, A(2,1), LDA )
            CALL CGELQF( NR,N, A, LDA, CWORK, CWORK(N+1), LWORK-N,
     $                   IERR)
            CALL CLACPY( 'L', NR, NR, A, LDA, V, LDV )
            CALL CLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
            CALL CGEQRF( NR, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
     $                   LWORK-2*N, IERR )
            DO 8998 p = 1, NR
               CALL CCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
               CALL CLACGV( NR-p+1, V(p,p), 1 )
 8998       CONTINUE
            CALL CLASET('U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV)
*
            CALL CGESVJ( 'L', 'U','N', NR, NR, V,LDV, SVA, NR, U,
     $                  LDU, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
            SCALEM  = RWORK(1)
            NUMRANK = NINT(RWORK(2))
            IF ( NR .LT. N ) THEN
               CALL CLASET( 'A',N-NR, NR, CZERO,CZERO, V(NR+1,1),
     $                      LDV )
               CALL CLASET( 'A',NR, N-NR, CZERO,CZERO, V(1,NR+1),
     $                      LDV )
               CALL CLASET( 'A',N-NR,N-NR,CZERO,CONE, V(NR+1,NR+1),
     $                      LDV )
            END IF
*
         CALL CUNMLQ( 'L', 'C', N, N, NR, A, LDA, CWORK,
     $               V, LDV, CWORK(N+1), LWORK-N, IERR )
*
         END IF
*         .. permute the rows of V
*         DO 8991 p = 1, N
*            CALL CCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
* 8991    CONTINUE
*         CALL CLACPY( 'All', N, N, A, LDA, V, LDV )
         CALL CLAPMR( .FALSE., N, N, V, LDV, IWORK )
*
          IF ( TRANSP ) THEN
            CALL CLACPY( 'A', N, N, V, LDV, U, LDU )
          END IF
*
      ELSE IF ( JRACC .AND. (.NOT. LSVEC) .AND. ( NR.EQ. N ) ) THEN 
*          
         CALL CLASET( 'L', N-1,N-1, CZERO, CZERO, A(2,1), LDA )
*
         CALL CGESVJ( 'U','N','V', N, N, A, LDA, SVA, N, V, LDV,
     $               CWORK, LWORK, RWORK, LRWORK, INFO )
          SCALEM  = RWORK(1)
          NUMRANK = NINT(RWORK(2))
          CALL CLAPMR( .FALSE., N, N, V, LDV, IWORK )
*
      ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
*
*        .. Singular Values and Left Singular Vectors                 ..
*
*        .. second preconditioning step to avoid need to accumulate
*        Jacobi rotations in the Jacobi iterations.
         DO 1965 p = 1, NR
            CALL CCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
            CALL CLACGV( N-p+1, U(p,p), 1 )
 1965    CONTINUE
         CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
*
         CALL CGEQRF( N, NR, U, LDU, CWORK(N+1), CWORK(2*N+1),
     $              LWORK-2*N, IERR )
*
         DO 1967 p = 1, NR - 1
            CALL CCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
            CALL CLACGV( N-p+1, U(p,p), 1 )
 1967    CONTINUE
         CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
*
         CALL CGESVJ( 'L', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
     $        LDA, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
         SCALEM  = RWORK(1)
         NUMRANK = NINT(RWORK(2))
*
         IF ( NR .LT. M ) THEN
            CALL CLASET( 'A',  M-NR, NR,CZERO, CZERO, U(NR+1,1),
     $                   LDU )
            IF ( NR .LT. N1 ) THEN
               CALL CLASET( 'A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),
     $                      LDU )
               CALL CLASET( 'A',M-NR,N1-NR,CZERO,CONE,U(NR+1,NR+1),
     $                      LDU )
            END IF
         END IF
*
         CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
     $               LDU, CWORK(N+1), LWORK-N, IERR )
*
         IF ( ROWPIV )
     $       CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
*
         DO 1974 p = 1, N1
            XSC = ONE / SCNRM2( M, U(1,p), 1 )
            CALL CSSCAL( M, XSC, U(1,p), 1 )
 1974    CONTINUE
*
         IF ( TRANSP ) THEN
            CALL CLACPY( 'A', N, N, U, LDU, V, LDV )
         END IF
*
      ELSE
*
*        .. Full SVD ..
*
         IF ( .NOT. JRACC ) THEN
*
         IF ( .NOT. ALMORT ) THEN
*
*           Second Preconditioning Step (QRF [with pivoting])
*           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
*           equivalent to an LQF CALL. Since in many libraries the QRF
*           seems to be better optimized than the LQF, we do explicit
*           transpose and use the QRF. This is subject to changes in an
*           optimized implementation of CGEJSV.
*
            DO 1968 p = 1, NR
               CALL CCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
               CALL CLACGV( N-p+1, V(p,p), 1 )
 1968       CONTINUE
*
*           .. the following two loops perturb small entries to avoid
*           denormals in the second QR factorization, where they are
*           as good as zeros. This is done to avoid painfully slow
*           computation with denormals. The relative size of the perturbation
*           is a parameter that can be changed by the implementer.
*           This perturbation device will be obsolete on machines with
*           properly implemented arithmetic.
*           To switch it off, set L2PERT=.FALSE. To remove it from  the
*           code, remove the action under L2PERT=.TRUE., leave the ELSE part.
*           The following two loops should be blocked and fused with the
*           transposed copy above.
*
            IF ( L2PERT ) THEN
               XSC = SQRT(SMALL)
               DO 2969 q = 1, NR
                  CTEMP = CMPLX(XSC*ABS( V(q,q) ),ZERO)
                  DO 2968 p = 1, N
                     IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
     $                   .OR. ( p .LT. q ) )
*     $                   V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
     $                   V(p,q) = CTEMP
                     IF ( p .LT. q ) V(p,q) = - V(p,q)
 2968             CONTINUE
 2969          CONTINUE
            ELSE
               CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2),
     $                      LDV )
            END IF
*
*           Estimate the row scaled condition number of R1
*           (If R1 is rectangular, N > NR, then the condition number
*           of the leading NR x NR submatrix is estimated.)
*
            CALL CLACPY( 'L', NR, NR, V, LDV, CWORK(2*N+1), NR )
            DO 3950 p = 1, NR
               TEMP1 = SCNRM2(NR-p+1,CWORK(2*N+(p-1)*NR+p),1)
               CALL CSSCAL(NR-p+1,ONE/TEMP1,CWORK(2*N+(p-1)*NR+p),1)
 3950       CONTINUE
            CALL CPOCON('L',NR,CWORK(2*N+1),NR,ONE,TEMP1,
     $                   CWORK(2*N+NR*NR+1),RWORK,IERR)
            CONDR1 = ONE / SQRT(TEMP1)
*           .. here need a second opinion on the condition number
*           .. then assume worst case scenario
*           R1 is OK for inverse <=> CONDR1 .LT. REAL(N)
*           more conservative    <=> CONDR1 .LT. SQRT(REAL(N))
*
            COND_OK = SQRT(SQRT(REAL(NR)))
*[TP]       COND_OK is a tuning parameter.
*
            IF ( CONDR1 .LT. COND_OK ) THEN
*              .. the second QRF without pivoting. Note: in an optimized
*              implementation, this QRF should be implemented as the QRF
*              of a lower triangular matrix.
*              R1^* = Q2 * R2
               CALL CGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
     $              LWORK-2*N, IERR )
*
               IF ( L2PERT ) THEN
                  XSC = SQRT(SMALL)/EPSLN
                  DO 3959 p = 2, NR
                     DO 3958 q = 1, p - 1
                        CTEMP=CMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
     $                              ZERO)
                        IF ( ABS(V(q,p)) .LE. TEMP1 )
*     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
     $                     V(q,p) = CTEMP
 3958                CONTINUE
 3959             CONTINUE
               END IF
*
               IF ( NR .NE. N )
     $         CALL CLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
*              .. save ...
*
*           .. this transposed copy should be better than naive
               DO 1969 p = 1, NR - 1
                  CALL CCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
                  CALL CLACGV(NR-p+1, V(p,p), 1 )
 1969          CONTINUE
               V(NR,NR)=CONJG(V(NR,NR))
*
               CONDR2 = CONDR1
*
            ELSE
*
*              .. ill-conditioned case: second QRF with pivoting
*              Note that windowed pivoting would be equally good
*              numerically, and more run-time efficient. So, in
*              an optimal implementation, the next call to CGEQP3
*              should be replaced with eg. CALL CGEQPX (ACM TOMS #782)
*              with properly (carefully) chosen parameters.
*
*              R1^* * P2 = Q2 * R2
               DO 3003 p = 1, NR
                  IWORK(N+p) = 0
 3003          CONTINUE
               CALL CGEQP3( N, NR, V, LDV, IWORK(N+1), CWORK(N+1),
     $                  CWORK(2*N+1), LWORK-2*N, RWORK, IERR )
**               CALL CGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
**     $              LWORK-2*N, IERR )
               IF ( L2PERT ) THEN
                  XSC = SQRT(SMALL)
                  DO 3969 p = 2, NR
                     DO 3968 q = 1, p - 1
                        CTEMP=CMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
     $                                ZERO)
                        IF ( ABS(V(q,p)) .LE. TEMP1 )
*     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
     $                     V(q,p) = CTEMP
 3968                CONTINUE
 3969             CONTINUE
               END IF
*
               CALL CLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
*
               IF ( L2PERT ) THEN
                  XSC = SQRT(SMALL)
                  DO 8970 p = 2, NR
                     DO 8971 q = 1, p - 1
                        CTEMP=CMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
     $                               ZERO)
*                        V(p,q) = - TEMP1*( V(q,p) / ABS(V(q,p)) )
                        V(p,q) = - CTEMP
 8971                CONTINUE
 8970             CONTINUE
               ELSE
                  CALL CLASET( 'L',NR-1,NR-1,CZERO,CZERO,V(2,1),LDV )
               END IF
*              Now, compute R2 = L3 * Q3, the LQ factorization.
               CALL CGELQF( NR, NR, V, LDV, CWORK(2*N+N*NR+1),
     $               CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
*              .. and estimate the condition number
               CALL CLACPY( 'L',NR,NR,V,LDV,CWORK(2*N+N*NR+NR+1),NR )
               DO 4950 p = 1, NR
                  TEMP1 = SCNRM2( p, CWORK(2*N+N*NR+NR+p), NR )
                  CALL CSSCAL( p, ONE/TEMP1, CWORK(2*N+N*NR+NR+p),
     $                         NR )
 4950          CONTINUE
               CALL CPOCON( 'L',NR,CWORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
     $              CWORK(2*N+N*NR+NR+NR*NR+1),RWORK,IERR )
               CONDR2 = ONE / SQRT(TEMP1)
*
*
               IF ( CONDR2 .GE. COND_OK ) THEN
*                 .. save the Householder vectors used for Q3
*                 (this overwrites the copy of R2, as it will not be
*                 needed in this branch, but it does not overwrite the
*                 Huseholder vectors of Q2.).
                  CALL CLACPY( 'U', NR, NR, V, LDV, CWORK(2*N+1), N )
*                 .. and the rest of the information on Q3 is in
*                 WORK(2*N+N*NR+1:2*N+N*NR+N)
               END IF
*
            END IF
*
            IF ( L2PERT ) THEN
               XSC = SQRT(SMALL)
               DO 4968 q = 2, NR
                  CTEMP = XSC * V(q,q)
                  DO 4969 p = 1, q - 1
*                     V(p,q) = - TEMP1*( V(p,q) / ABS(V(p,q)) )
                     V(p,q) = - CTEMP
 4969             CONTINUE
 4968          CONTINUE
            ELSE
               CALL CLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2),
     $                      LDV )
            END IF
*
*        Second preconditioning finished; continue with Jacobi SVD
*        The input matrix is lower triangular.
*
*        Recover the right singular vectors as solution of a well
*        conditioned triangular matrix equation.
*
            IF ( CONDR1 .LT. COND_OK ) THEN
*
               CALL CGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, LDU,
     $              CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,RWORK,
     $              LRWORK, INFO )
               SCALEM  = RWORK(1)
               NUMRANK = NINT(RWORK(2))
               DO 3970 p = 1, NR
                  CALL CCOPY(  NR, V(1,p), 1, U(1,p), 1 )
                  CALL CSSCAL( NR, SVA(p),    V(1,p), 1 )
 3970          CONTINUE

*        .. pick the right matrix equation and solve it
*
               IF ( NR .EQ. N ) THEN
* :))             .. best case, R1 is inverted. The solution of this matrix
*                 equation is Q2*V2 = the product of the Jacobi rotations
*                 used in CGESVJ, premultiplied with the orthogonal matrix
*                 from the second QR factorization.
                  CALL CTRSM('L','U','N','N', NR,NR,CONE, A,LDA, V,
     $                        LDV)
               ELSE
*                 .. R1 is well conditioned, but non-square. Adjoint of R2
*                 is inverted to get the product of the Jacobi rotations
*                 used in CGESVJ. The Q-factor from the second QR
*                 factorization is then built in explicitly.
                  CALL CTRSM('L','U','C','N',NR,NR,CONE,CWORK(2*N+1),
     $                 N,V,LDV)
                  IF ( NR .LT. N ) THEN
                  CALL CLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
                  CALL CLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
                  CALL CLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),
     $                         LDV)
                  END IF
                  CALL CUNMQR('L','N',N,N,NR,CWORK(2*N+1),N,
     $                         CWORK(N+1),
     $                V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
               END IF
*
            ELSE IF ( CONDR2 .LT. COND_OK ) THEN
*
*              The matrix R2 is inverted. The solution of the matrix equation
*              is Q3^* * V3 = the product of the Jacobi rotations (applied to
*              the lower triangular L3 from the LQ factorization of
*              R2=L3*Q3), pre-multiplied with the transposed Q3.
               CALL CGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR,
     $                      U,
     $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
     $              RWORK, LRWORK, INFO )
               SCALEM  = RWORK(1)
               NUMRANK = NINT(RWORK(2))
               DO 3870 p = 1, NR
                  CALL CCOPY( NR, V(1,p), 1, U(1,p), 1 )
                  CALL CSSCAL( NR, SVA(p),    U(1,p), 1 )
 3870          CONTINUE
               CALL CTRSM('L','U','N','N',NR,NR,CONE,CWORK(2*N+1),N,
     $                    U,LDU)
*              .. apply the permutation from the second QR factorization
               DO 873 q = 1, NR
                  DO 872 p = 1, NR
                     CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 872              CONTINUE
                  DO 874 p = 1, NR
                     U(p,q) = CWORK(2*N+N*NR+NR+p)
 874              CONTINUE
 873           CONTINUE
               IF ( NR .LT. N ) THEN
                  CALL CLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),
     $                         LDV )
                  CALL CLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),
     $                         LDV )
                  CALL CLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),
     $                         LDV)
               END IF
               CALL CUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
     $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
            ELSE
*              Last line of defense.
* #:(          This is a rather pathological case: no scaled condition
*              improvement after two pivoted QR factorizations. Other
*              possibility is that the rank revealing QR factorization
*              or the condition estimator has failed, or the COND_OK
*              is set very close to ONE (which is unnecessary). Normally,
*              this branch should never be executed, but in rare cases of
*              failure of the RRQR or condition estimator, the last line of
*              defense ensures that CGEJSV completes the task.
*              Compute the full SVD of L3 using CGESVJ with explicit
*              accumulation of Jacobi rotations.
               CALL CGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR,
     $                      U,
     $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
     $                         RWORK, LRWORK, INFO )
               SCALEM  = RWORK(1)
               NUMRANK = NINT(RWORK(2))
               IF ( NR .LT. N ) THEN
                  CALL CLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),
     $                         LDV )
                  CALL CLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),
     $                         LDV )
                  CALL CLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),
     $                         LDV)
               END IF
               CALL CUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
     $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
*
               CALL CUNMLQ( 'L', 'C', NR, NR, NR, CWORK(2*N+1), N,
     $              CWORK(2*N+N*NR+1), U, LDU, CWORK(2*N+N*NR+NR+1),
     $              LWORK-2*N-N*NR-NR, IERR )
               DO 773 q = 1, NR
                  DO 772 p = 1, NR
                     CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 772              CONTINUE
                  DO 774 p = 1, NR
                     U(p,q) = CWORK(2*N+N*NR+NR+p)
 774              CONTINUE
 773           CONTINUE
*
            END IF
*
*           Permute the rows of V using the (column) permutation from the
*           first QRF. Also, scale the columns to make them unit in
*           Euclidean norm. This applies to all cases.
*
            TEMP1 = SQRT(REAL(N)) * EPSLN
            DO 1972 q = 1, N
               DO 972 p = 1, N
                  CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
  972          CONTINUE
               DO 973 p = 1, N
                  V(p,q) = CWORK(2*N+N*NR+NR+p)
  973          CONTINUE
               XSC = ONE / SCNRM2( N, V(1,q), 1 )
               IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
     $           CALL CSSCAL( N, XSC, V(1,q), 1 )
 1972       CONTINUE
*           At this moment, V contains the right singular vectors of A.
*           Next, assemble the left singular vector matrix U (M x N).
            IF ( NR .LT. M ) THEN
               CALL CLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1),
     $                      LDU)
               IF ( NR .LT. N1 ) THEN
                  CALL CLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
                  CALL CLASET('A',M-NR,N1-NR,CZERO,CONE,
     $                        U(NR+1,NR+1),LDU)
               END IF
            END IF
*
*           The Q matrix from the first QRF is built into the left singular
*           matrix U. This applies to all cases.
*
            CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
     $           LDU, CWORK(N+1), LWORK-N, IERR )

*           The columns of U are normalized. The cost is O(M*N) flops.
            TEMP1 = SQRT(REAL(M)) * EPSLN
            DO 1973 p = 1, NR
               XSC = ONE / SCNRM2( M, U(1,p), 1 )
               IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
     $          CALL CSSCAL( M, XSC, U(1,p), 1 )
 1973       CONTINUE
*
*           If the initial QRF is computed with row pivoting, the left
*           singular vectors must be adjusted.
*
            IF ( ROWPIV )
     $          CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
*
         ELSE
*
*        .. the initial matrix A has almost orthogonal columns and
*        the second QRF is not needed
*
            CALL CLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
            IF ( L2PERT ) THEN
               XSC = SQRT(SMALL)
               DO 5970 p = 2, N
                  CTEMP = XSC * CWORK( N + (p-1)*N + p )
                  DO 5971 q = 1, p - 1
*                     CWORK(N+(q-1)*N+p)=-TEMP1 * ( CWORK(N+(p-1)*N+q) /
*     $                                        ABS(CWORK(N+(p-1)*N+q)) )
                     CWORK(N+(q-1)*N+p)=-CTEMP
 5971             CONTINUE
 5970          CONTINUE
            ELSE
               CALL CLASET( 'L',N-1,N-1,CZERO,CZERO,CWORK(N+2),N )
            END IF
*
            CALL CGESVJ( 'U', 'U', 'N', N, N, CWORK(N+1), N, SVA,
     $           N, U, LDU, CWORK(N+N*N+1), LWORK-N-N*N, RWORK, LRWORK,
     $       INFO )
*
            SCALEM  = RWORK(1)
            NUMRANK = NINT(RWORK(2))
            DO 6970 p = 1, N
               CALL CCOPY( N, CWORK(N+(p-1)*N+1), 1, U(1,p), 1 )
               CALL CSSCAL( N, SVA(p), CWORK(N+(p-1)*N+1), 1 )
 6970       CONTINUE
*
            CALL CTRSM( 'L', 'U', 'N', 'N', N, N,
     $           CONE, A, LDA, CWORK(N+1), N )
            DO 6972 p = 1, N
               CALL CCOPY( N, CWORK(N+p), N, V(IWORK(p),1), LDV )
 6972       CONTINUE
            TEMP1 = SQRT(REAL(N))*EPSLN
            DO 6971 p = 1, N
               XSC = ONE / SCNRM2( N, V(1,p), 1 )
               IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
     $            CALL CSSCAL( N, XSC, V(1,p), 1 )
 6971       CONTINUE
*
*           Assemble the left singular vector matrix U (M x N).
*
            IF ( N .LT. M ) THEN
               CALL CLASET( 'A',  M-N, N, CZERO, CZERO, U(N+1,1),
     $                      LDU )
               IF ( N .LT. N1 ) THEN
                  CALL CLASET('A',N,  N1-N, CZERO, CZERO,  U(1,N+1),
     $                         LDU)
                  CALL CLASET( 'A',M-N,N1-N, CZERO, CONE,U(N+1,N+1),
     $                         LDU)
               END IF
            END IF
            CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
     $           LDU, CWORK(N+1), LWORK-N, IERR )
            TEMP1 = SQRT(REAL(M))*EPSLN
            DO 6973 p = 1, N1
               XSC = ONE / SCNRM2( M, U(1,p), 1 )
               IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
     $            CALL CSSCAL( M, XSC, U(1,p), 1 )
 6973       CONTINUE
*
            IF ( ROWPIV )
     $         CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
*
         END IF
*
*        end of the  >> almost orthogonal case <<  in the full SVD
*
         ELSE
*
*        This branch deploys a preconditioned Jacobi SVD with explicitly
*        accumulated rotations. It is included as optional, mainly for
*        experimental purposes. It does perform well, and can also be used.
*        In this implementation, this branch will be automatically activated
*        if the  condition number sigma_max(A) / sigma_min(A) is predicted
*        to be greater than the overflow threshold. This is because the
*        a posteriori computation of the singular vectors assumes robust
*        implementation of BLAS and some LAPACK procedures, capable of working
*        in presence of extreme values, e.g. when the singular values spread from
*        the underflow to the overflow threshold. 
*
         DO 7968 p = 1, NR
            CALL CCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
            CALL CLACGV( N-p+1, V(p,p), 1 )
 7968    CONTINUE
*
         IF ( L2PERT ) THEN
            XSC = SQRT(SMALL/EPSLN)
            DO 5969 q = 1, NR
               CTEMP = CMPLX(XSC*ABS( V(q,q) ),ZERO)
               DO 5968 p = 1, N
                  IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
     $                .OR. ( p .LT. q ) )
*     $                V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
     $                V(p,q) = CTEMP
                  IF ( p .LT. q ) V(p,q) = - V(p,q)
 5968          CONTINUE
 5969       CONTINUE
         ELSE
            CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
         END IF

         CALL CGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
     $        LWORK-2*N, IERR )
         CALL CLACPY( 'L', N, NR, V, LDV, CWORK(2*N+1), N )
*
         DO 7969 p = 1, NR
            CALL CCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
            CALL CLACGV( NR-p+1, U(p,p), 1 )
 7969    CONTINUE

         IF ( L2PERT ) THEN
            XSC = SQRT(SMALL/EPSLN)
            DO 9970 q = 2, NR
               DO 9971 p = 1, q - 1
                  CTEMP = CMPLX(XSC * MIN(ABS(U(p,p)),ABS(U(q,q))),
     $                           ZERO)
*                  U(p,q) = - TEMP1 * ( U(q,p) / ABS(U(q,p)) )
                  U(p,q) = - CTEMP
 9971          CONTINUE
 9970       CONTINUE
         ELSE
            CALL CLASET('U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
         END IF

         CALL CGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA,
     $        N, V, LDV, CWORK(2*N+N*NR+1), LWORK-2*N-N*NR,
     $         RWORK, LRWORK, INFO )
         SCALEM  = RWORK(1)
         NUMRANK = NINT(RWORK(2))

         IF ( NR .LT. N ) THEN
            CALL CLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
            CALL CLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
            CALL CLASET( 'A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV )
         END IF

         CALL CUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
     $        V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
*
*           Permute the rows of V using the (column) permutation from the
*           first QRF. Also, scale the columns to make them unit in
*           Euclidean norm. This applies to all cases.
*
            TEMP1 = SQRT(REAL(N)) * EPSLN
            DO 7972 q = 1, N
               DO 8972 p = 1, N
                  CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 8972          CONTINUE
               DO 8973 p = 1, N
                  V(p,q) = CWORK(2*N+N*NR+NR+p)
 8973          CONTINUE
               XSC = ONE / SCNRM2( N, V(1,q), 1 )
               IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
     $           CALL CSSCAL( N, XSC, V(1,q), 1 )
 7972       CONTINUE
*
*           At this moment, V contains the right singular vectors of A.
*           Next, assemble the left singular vector matrix U (M x N).
*
         IF ( NR .LT. M ) THEN
            CALL CLASET( 'A',  M-NR, NR, CZERO, CZERO, U(NR+1,1),
     $                   LDU )
            IF ( NR .LT. N1 ) THEN
               CALL CLASET('A',NR,  N1-NR, CZERO, CZERO,  U(1,NR+1),
     $                      LDU)
               CALL CLASET('A',M-NR,N1-NR, CZERO, CONE,U(NR+1,NR+1),
     $                      LDU)
            END IF
         END IF
*
         CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
     $        LDU, CWORK(N+1), LWORK-N, IERR )
*
            IF ( ROWPIV )
     $         CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
*
*
         END IF
         IF ( TRANSP ) THEN
*           .. swap U and V because the procedure worked on A^*
            DO 6974 p = 1, N
               CALL CSWAP( N, U(1,p), 1, V(1,p), 1 )
 6974       CONTINUE
         END IF
*
      END IF
*     end of the full SVD
*
*     Undo scaling, if necessary (and possible)
*
      IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
         CALL SLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N,
     $                IERR )
         USCAL1 = ONE
         USCAL2 = ONE
      END IF
*
      IF ( NR .LT. N ) THEN
         DO 3004 p = NR+1, N
            SVA(p) = ZERO
 3004    CONTINUE
      END IF
*
      RWORK(1) = USCAL2 * SCALEM
      RWORK(2) = USCAL1
      IF ( ERREST ) RWORK(3) = SCONDA
      IF ( LSVEC .AND. RSVEC ) THEN
         RWORK(4) = CONDR1
         RWORK(5) = CONDR2
      END IF
      IF ( L2TRAN ) THEN
         RWORK(6) = ENTRA
         RWORK(7) = ENTRAT
      END IF
*
      IWORK(1) = NR
      IWORK(2) = NUMRANK
      IWORK(3) = WARNING
      IF ( TRANSP ) THEN
          IWORK(4) =  1 
      ELSE
          IWORK(4) = -1
      END IF 
      
*
      RETURN
*     ..
*     .. END OF CGEJSV
*     ..
      END
*