numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/cgetrf2.f 7040B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
*> \brief \b CGETRF2
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       RECURSIVE SUBROUTINE CGETRF2( M, N, A, LDA, IPIV, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, M, N
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX            A( LDA, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CGETRF2 computes an LU factorization of a general M-by-N matrix A
*> using partial pivoting with row interchanges.
*>
*> The factorization has the form
*>    A = P * L * U
*> where P is a permutation matrix, L is lower triangular with unit
*> diagonal elements (lower trapezoidal if m > n), and U is upper
*> triangular (upper trapezoidal if m < n).
*>
*> This is the recursive version of the algorithm. It divides
*> the matrix into four submatrices:
*>
*>        [  A11 | A12  ]  where A11 is n1 by n1 and A22 is n2 by n2
*>    A = [ -----|----- ]  with n1 = min(m,n)/2
*>        [  A21 | A22  ]       n2 = n-n1
*>
*>                                       [ A11 ]
*> The subroutine calls itself to factor [ --- ],
*>                                       [ A12 ]
*>                 [ A12 ]
*> do the swaps on [ --- ], solve A12, update A22,
*>                 [ A22 ]
*>
*> then calls itself to factor A22 and do the swaps on A21.
*>
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          On entry, the M-by-N matrix to be factored.
*>          On exit, the factors L and U from the factorization
*>          A = P*L*U; the unit diagonal elements of L are not stored.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (min(M,N))
*>          The pivot indices; for 1 <= i <= min(M,N), row i of the
*>          matrix was interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
*>                has been completed, but the factor U is exactly
*>                singular, and division by zero will occur if it is used
*>                to solve a system of equations.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup getrf2
*
*  =====================================================================
      RECURSIVE SUBROUTINE CGETRF2( M, N, A, LDA, IPIV, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            A( LDA, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE, ZERO
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
     $                     ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      REAL               SFMIN
      COMPLEX            TEMP
      INTEGER            I, IINFO, N1, N2
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      INTEGER            ICAMAX
      EXTERNAL           SLAMCH, ICAMAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM, CSCAL, CLASWP, CTRSM, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGETRF2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN

      IF ( M.EQ.1 ) THEN
*
*        Use unblocked code for one row case
*        Just need to handle IPIV and INFO
*
         IPIV( 1 ) = 1
         IF ( A(1,1).EQ.ZERO )
     $      INFO = 1
*
      ELSE IF( N.EQ.1 ) THEN
*
*        Use unblocked code for one column case
*
*
*        Compute machine safe minimum
*
         SFMIN = SLAMCH('S')
*
*        Find pivot and test for singularity
*
         I = ICAMAX( M, A( 1, 1 ), 1 )
         IPIV( 1 ) = I
         IF( A( I, 1 ).NE.ZERO ) THEN
*
*           Apply the interchange
*
            IF( I.NE.1 ) THEN
               TEMP = A( 1, 1 )
               A( 1, 1 ) = A( I, 1 )
               A( I, 1 ) = TEMP
            END IF
*
*           Compute elements 2:M of the column
*
            IF( ABS(A( 1, 1 )) .GE. SFMIN ) THEN
               CALL CSCAL( M-1, ONE / A( 1, 1 ), A( 2, 1 ), 1 )
            ELSE
               DO 10 I = 1, M-1
                  A( 1+I, 1 ) = A( 1+I, 1 ) / A( 1, 1 )
   10          CONTINUE
            END IF
*
         ELSE
            INFO = 1
         END IF
*
      ELSE
*
*        Use recursive code
*
         N1 = MIN( M, N ) / 2
         N2 = N-N1
*
*               [ A11 ]
*        Factor [ --- ]
*               [ A21 ]
*
         CALL CGETRF2( M, N1, A, LDA, IPIV, IINFO )

         IF ( INFO.EQ.0 .AND. IINFO.GT.0 )
     $      INFO = IINFO
*
*                              [ A12 ]
*        Apply interchanges to [ --- ]
*                              [ A22 ]
*
         CALL CLASWP( N2, A( 1, N1+1 ), LDA, 1, N1, IPIV, 1 )
*
*        Solve A12
*
         CALL CTRSM( 'L', 'L', 'N', 'U', N1, N2, ONE, A, LDA,
     $               A( 1, N1+1 ), LDA )
*
*        Update A22
*
         CALL CGEMM( 'N', 'N', M-N1, N2, N1, -ONE, A( N1+1, 1 ), LDA,
     $               A( 1, N1+1 ), LDA, ONE, A( N1+1, N1+1 ), LDA )
*
*        Factor A22
*
         CALL CGETRF2( M-N1, N2, A( N1+1, N1+1 ), LDA, IPIV( N1+1 ),
     $                 IINFO )
*
*        Adjust INFO and the pivot indices
*
         IF ( INFO.EQ.0 .AND. IINFO.GT.0 )
     $      INFO = IINFO + N1
         DO 20 I = N1+1, MIN( M, N )
            IPIV( I ) = IPIV( I ) + N1
   20    CONTINUE
*
*        Apply interchanges to A21
*
         CALL CLASWP( N1, A( 1, 1 ), LDA, N1+1, MIN( M, N), IPIV, 1 )
*
      END IF
      RETURN
*
*     End of CGETRF2
*
      END