numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/cgttrf.f 6699B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
*> \brief \b CGTTRF
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGTTRF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgttrf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgttrf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgttrf.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, N
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX            D( * ), DL( * ), DU( * ), DU2( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CGTTRF computes an LU factorization of a complex tridiagonal matrix A
*> using elimination with partial pivoting and row interchanges.
*>
*> The factorization has the form
*>    A = L * U
*> where L is a product of permutation and unit lower bidiagonal
*> matrices and U is upper triangular with nonzeros in only the main
*> diagonal and first two superdiagonals.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.
*> \endverbatim
*>
*> \param[in,out] DL
*> \verbatim
*>          DL is COMPLEX array, dimension (N-1)
*>          On entry, DL must contain the (n-1) sub-diagonal elements of
*>          A.
*>
*>          On exit, DL is overwritten by the (n-1) multipliers that
*>          define the matrix L from the LU factorization of A.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is COMPLEX array, dimension (N)
*>          On entry, D must contain the diagonal elements of A.
*>
*>          On exit, D is overwritten by the n diagonal elements of the
*>          upper triangular matrix U from the LU factorization of A.
*> \endverbatim
*>
*> \param[in,out] DU
*> \verbatim
*>          DU is COMPLEX array, dimension (N-1)
*>          On entry, DU must contain the (n-1) super-diagonal elements
*>          of A.
*>
*>          On exit, DU is overwritten by the (n-1) elements of the first
*>          super-diagonal of U.
*> \endverbatim
*>
*> \param[out] DU2
*> \verbatim
*>          DU2 is COMPLEX array, dimension (N-2)
*>          On exit, DU2 is overwritten by the (n-2) elements of the
*>          second super-diagonal of U.
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          The pivot indices; for 1 <= i <= n, row i of the matrix was
*>          interchanged with row IPIV(i).  IPIV(i) will always be either
*>          i or i+1; IPIV(i) = i indicates a row interchange was not
*>          required.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -k, the k-th argument had an illegal value
*>          > 0:  if INFO = k, U(k,k) is exactly zero. The factorization
*>                has been completed, but the factor U is exactly
*>                singular, and division by zero will occur if it is used
*>                to solve a system of equations.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup gttrf
*
*  =====================================================================
      SUBROUTINE CGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            D( * ), DL( * ), DU( * ), DU2( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      COMPLEX            FACT, TEMP, ZDUM
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, REAL
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
         CALL XERBLA( 'CGTTRF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Initialize IPIV(i) = i and DU2(i) = 0
*
      DO 10 I = 1, N
         IPIV( I ) = I
   10 CONTINUE
      DO 20 I = 1, N - 2
         DU2( I ) = ZERO
   20 CONTINUE
*
      DO 30 I = 1, N - 2
         IF( CABS1( D( I ) ).GE.CABS1( DL( I ) ) ) THEN
*
*           No row interchange required, eliminate DL(I)
*
            IF( CABS1( D( I ) ).NE.ZERO ) THEN
               FACT = DL( I ) / D( I )
               DL( I ) = FACT
               D( I+1 ) = D( I+1 ) - FACT*DU( I )
            END IF
         ELSE
*
*           Interchange rows I and I+1, eliminate DL(I)
*
            FACT = D( I ) / DL( I )
            D( I ) = DL( I )
            DL( I ) = FACT
            TEMP = DU( I )
            DU( I ) = D( I+1 )
            D( I+1 ) = TEMP - FACT*D( I+1 )
            DU2( I ) = DU( I+1 )
            DU( I+1 ) = -FACT*DU( I+1 )
            IPIV( I ) = I + 1
         END IF
   30 CONTINUE
      IF( N.GT.1 ) THEN
         I = N - 1
         IF( CABS1( D( I ) ).GE.CABS1( DL( I ) ) ) THEN
            IF( CABS1( D( I ) ).NE.ZERO ) THEN
               FACT = DL( I ) / D( I )
               DL( I ) = FACT
               D( I+1 ) = D( I+1 ) - FACT*DU( I )
            END IF
         ELSE
            FACT = D( I ) / DL( I )
            D( I ) = DL( I )
            DL( I ) = FACT
            TEMP = DU( I )
            DU( I ) = D( I+1 )
            D( I+1 ) = TEMP - FACT*D( I+1 )
            IPIV( I ) = I + 1
         END IF
      END IF
*
*     Check for a zero on the diagonal of U.
*
      DO 40 I = 1, N
         IF( CABS1( D( I ) ).EQ.ZERO ) THEN
            INFO = I
            GO TO 50
         END IF
   40 CONTINUE
   50 CONTINUE
*
      RETURN
*
*     End of CGTTRF
*
      END