numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/chetrf_aa.f 14602B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
*> \brief \b CHETRF_AA
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CHETRF_AA + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetrf_aa.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetrf_aa.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetrf_aa.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER    UPLO
*       INTEGER      N, LDA, LWORK, INFO
*       ..
*       .. Array Arguments ..
*       INTEGER      IPIV( * )
*       COMPLEX      A( LDA, * ), WORK( * )
*       ..
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CHETRF_AA computes the factorization of a complex hermitian matrix A
*> using the Aasen's algorithm.  The form of the factorization is
*>
*>    A = U**H*T*U  or  A = L*T*L**H
*>
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is a hermitian tridiagonal matrix.
*>
*> This is the blocked version of the algorithm, calling Level 3 BLAS.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored;
*>          = 'L':  Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          On entry, the hermitian matrix A.  If UPLO = 'U', the leading
*>          N-by-N upper triangular part of A contains the upper
*>          triangular part of the matrix A, and the strictly lower
*>          triangular part of A is not referenced.  If UPLO = 'L', the
*>          leading N-by-N lower triangular part of A contains the lower
*>          triangular part of the matrix A, and the strictly upper
*>          triangular part of A is not referenced.
*>
*>          On exit, the tridiagonal matrix is stored in the diagonals
*>          and the subdiagonals of A just below (or above) the diagonals,
*>          and L is stored below (or above) the subdiagonals, when UPLO
*>          is 'L' (or 'U').
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          On exit, it contains the details of the interchanges, i.e.,
*>          the row and column k of A were interchanged with the
*>          row and column IPIV(k).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The length of WORK.
*>          LWORK >= 1, if N <= 1, and LWORK >= 2*N, otherwise.
*>          For optimum performance LWORK >= N*(1+NB), where NB is
*>          the optimal blocksize, returned by ILAENV.
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup hetrf_aa
*
*  =====================================================================
      SUBROUTINE CHETRF_AA( UPLO, N, A, LDA, IPIV,
     $                      WORK, LWORK, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
      IMPLICIT NONE
*
*     .. Scalar Arguments ..
      CHARACTER    UPLO
      INTEGER      N, LDA, LWORK, INFO
*     ..
*     .. Array Arguments ..
      INTEGER      IPIV( * )
      COMPLEX      A( LDA, * ), WORK( * )
*     ..
*
*  =====================================================================
*     .. Parameters ..
      COMPLEX      ZERO, ONE
      PARAMETER    ( ZERO = (0.0E+0, 0.0E+0), ONE = (1.0E+0, 0.0E+0) )
*
*     .. Local Scalars ..
      LOGICAL      LQUERY, UPPER
      INTEGER      J, LWKMIN, LWKOPT
      INTEGER      NB, MJ, NJ, K1, K2, J1, J2, J3, JB
      COMPLEX      ALPHA
*     ..
*     .. External Functions ..
      LOGICAL      LSAME
      INTEGER      ILAENV
      REAL         SROUNDUP_LWORK
      EXTERNAL     LSAME, ILAENV, SROUNDUP_LWORK
*     ..
*     .. External Subroutines ..
      EXTERNAL     CLAHEF_AA, CGEMM, CCOPY, CSWAP, CSCAL,
     $                   XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC    REAL, CONJG, MAX
*     ..
*     .. Executable Statements ..
*
*     Determine the block size
*
      NB = ILAENV( 1, 'CHETRF_AA', UPLO, N, -1, -1, -1 )
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      LQUERY = ( LWORK.EQ.-1 )
      IF( N.LE.1 ) THEN
         LWKMIN = 1
         LWKOPT = 1
      ELSE
         LWKMIN = 2*N
         LWKOPT = (NB+1)*N
      END IF
*
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
         INFO = -7
      END IF
*
      IF( INFO.EQ.0 ) THEN
         WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CHETRF_AA', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return
*
      IF( N.EQ.0 ) THEN
          RETURN
      ENDIF
      IPIV( 1 ) = 1
      IF( N.EQ.1 ) THEN
         A( 1, 1 ) = REAL( A( 1, 1 ) )
         RETURN
      END IF
*
*     Adjust block size based on the workspace size
*
      IF( LWORK.LT.((1+NB)*N) ) THEN
         NB = ( LWORK-N ) / N
      END IF
*
      IF( UPPER ) THEN
*
*        .....................................................
*        Factorize A as U**H*D*U using the upper triangle of A
*        .....................................................
*
*        copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
*
         CALL CCOPY( N, A( 1, 1 ), LDA, WORK( 1 ), 1 )
*
*        J is the main loop index, increasing from 1 to N in steps of
*        JB, where JB is the number of columns factorized by CLAHEF;
*        JB is either NB, or N-J+1 for the last block
*
         J = 0
 10      CONTINUE
         IF( J.GE.N )
     $      GO TO 20
*
*        each step of the main loop
*         J is the last column of the previous panel
*         J1 is the first column of the current panel
*         K1 identifies if the previous column of the panel has been
*          explicitly stored, e.g., K1=1 for the first panel, and
*          K1=0 for the rest
*
         J1 = J + 1
         JB = MIN( N-J1+1, NB )
         K1 = MAX(1, J)-J
*
*        Panel factorization
*
         CALL CLAHEF_AA( UPLO, 2-K1, N-J, JB,
     $                      A( MAX(1, J), J+1 ), LDA,
     $                      IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
*
*        Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
*
         DO J2 = J+2, MIN(N, J+JB+1)
            IPIV( J2 ) = IPIV( J2 ) + J
            IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
               CALL CSWAP( J1-K1-2, A( 1, J2 ), 1,
     $                              A( 1, IPIV(J2) ), 1 )
            END IF
         END DO
         J = J + JB
*
*        Trailing submatrix update, where
*         the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and
*         WORK stores the current block of the auxiriarly matrix H
*
         IF( J.LT.N ) THEN
*
*          if the first panel and JB=1 (NB=1), then nothing to do
*
            IF( J1.GT.1 .OR. JB.GT.1 ) THEN
*
*              Merge rank-1 update with BLAS-3 update
*
               ALPHA = CONJG( A( J, J+1 ) )
               A( J, J+1 ) = ONE
               CALL CCOPY( N-J, A( J-1, J+1 ), LDA,
     $                          WORK( (J+1-J1+1)+JB*N ), 1 )
               CALL CSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
*
*              K1 identifies if the previous column of the panel has been
*               explicitly stored, e.g., K1=0 and K2=1 for the first panel,
*               and K1=1 and K2=0 for the rest
*
               IF( J1.GT.1 ) THEN
*
*                 Not first panel
*
                  K2 = 1
               ELSE
*
*                 First panel
*
                  K2 = 0
*
*                 First update skips the first column
*
                  JB = JB - 1
               END IF
*
               DO J2 = J+1, N, NB
                  NJ = MIN( NB, N-J2+1 )
*
*                 Update (J2, J2) diagonal block with CGEMV
*
                  J3 = J2
                  DO MJ = NJ-1, 1, -1
                     CALL CGEMM( 'Conjugate transpose', 'Transpose',
     $                            1, MJ, JB+1,
     $                           -ONE, A( J1-K2, J3 ), LDA,
     $                                 WORK( (J3-J1+1)+K1*N ), N,
     $                            ONE, A( J3, J3 ), LDA )
                     J3 = J3 + 1
                  END DO
*
*                 Update off-diagonal block of J2-th block row with CGEMM
*
                  CALL CGEMM( 'Conjugate transpose', 'Transpose',
     $                        NJ, N-J3+1, JB+1,
     $                       -ONE, A( J1-K2, J2 ), LDA,
     $                             WORK( (J3-J1+1)+K1*N ), N,
     $                        ONE, A( J2, J3 ), LDA )
               END DO
*
*              Recover T( J, J+1 )
*
               A( J, J+1 ) = CONJG( ALPHA )
            END IF
*
*           WORK(J+1, 1) stores H(J+1, 1)
*
            CALL CCOPY( N-J, A( J+1, J+1 ), LDA, WORK( 1 ), 1 )
         END IF
         GO TO 10
      ELSE
*
*        .....................................................
*        Factorize A as L*D*L**H using the lower triangle of A
*        .....................................................
*
*        copy first column A(1:N, 1) into H(1:N, 1)
*         (stored in WORK(1:N))
*
         CALL CCOPY( N, A( 1, 1 ), 1, WORK( 1 ), 1 )
*
*        J is the main loop index, increasing from 1 to N in steps of
*        JB, where JB is the number of columns factorized by CLAHEF;
*        JB is either NB, or N-J+1 for the last block
*
         J = 0
 11      CONTINUE
         IF( J.GE.N )
     $      GO TO 20
*
*        each step of the main loop
*         J is the last column of the previous panel
*         J1 is the first column of the current panel
*         K1 identifies if the previous column of the panel has been
*          explicitly stored, e.g., K1=1 for the first panel, and
*          K1=0 for the rest
*
         J1 = J+1
         JB = MIN( N-J1+1, NB )
         K1 = MAX(1, J)-J
*
*        Panel factorization
*
         CALL CLAHEF_AA( UPLO, 2-K1, N-J, JB,
     $                      A( J+1, MAX(1, J) ), LDA,
     $                      IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
*
*        Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
*
         DO J2 = J+2, MIN(N, J+JB+1)
            IPIV( J2 ) = IPIV( J2 ) + J
            IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
               CALL CSWAP( J1-K1-2, A( J2, 1 ), LDA,
     $                              A( IPIV(J2), 1 ), LDA )
            END IF
         END DO
         J = J + JB
*
*        Trailing submatrix update, where
*          A(J2+1, J1-1) stores L(J2+1, J1) and
*          WORK(J2+1, 1) stores H(J2+1, 1)
*
         IF( J.LT.N ) THEN
*
*          if the first panel and JB=1 (NB=1), then nothing to do
*
            IF( J1.GT.1 .OR. JB.GT.1 ) THEN
*
*              Merge rank-1 update with BLAS-3 update
*
               ALPHA = CONJG( A( J+1, J ) )
               A( J+1, J ) = ONE
               CALL CCOPY( N-J, A( J+1, J-1 ), 1,
     $                          WORK( (J+1-J1+1)+JB*N ), 1 )
               CALL CSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
*
*              K1 identifies if the previous column of the panel has been
*               explicitly stored, e.g., K1=0 and K2=1 for the first panel,
*               and K1=1 and K2=0 for the rest
*
               IF( J1.GT.1 ) THEN
*
*                 Not first panel
*
                  K2 = 1
               ELSE
*
*                 First panel
*
                  K2 = 0
*
*                 First update skips the first column
*
                  JB = JB - 1
               END IF
*
               DO J2 = J+1, N, NB
                  NJ = MIN( NB, N-J2+1 )
*
*                 Update (J2, J2) diagonal block with CGEMV
*
                  J3 = J2
                  DO MJ = NJ-1, 1, -1
                     CALL CGEMM( 'No transpose',
     $                           'Conjugate transpose',
     $                           MJ, 1, JB+1,
     $                          -ONE, WORK( (J3-J1+1)+K1*N ), N,
     $                                A( J3, J1-K2 ), LDA,
     $                           ONE, A( J3, J3 ), LDA )
                     J3 = J3 + 1
                  END DO
*
*                 Update off-diagonal block of J2-th block column with CGEMM
*
                  CALL CGEMM( 'No transpose', 'Conjugate transpose',
     $                        N-J3+1, NJ, JB+1,
     $                       -ONE, WORK( (J3-J1+1)+K1*N ), N,
     $                             A( J2, J1-K2 ), LDA,
     $                        ONE, A( J3, J2 ), LDA )
               END DO
*
*              Recover T( J+1, J )
*
               A( J+1, J ) = CONJG( ALPHA )
            END IF
*
*           WORK(J+1, 1) stores H(J+1, 1)
*
            CALL CCOPY( N-J, A( J+1, J+1 ), 1, WORK( 1 ), 1 )
         END IF
         GO TO 11
      END IF
*
   20 CONTINUE
      WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
      RETURN
*
*     End of CHETRF_AA
*
      END