numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/chgeqz.f | 29446B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
*> \brief \b CHGEQZ * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CHGEQZ + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chgeqz.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chgeqz.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chgeqz.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT, * ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, * RWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER COMPQ, COMPZ, JOB * INTEGER IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N * .. * .. Array Arguments .. * REAL RWORK( * ) * COMPLEX ALPHA( * ), BETA( * ), H( LDH, * ), * $ Q( LDQ, * ), T( LDT, * ), WORK( * ), * $ Z( LDZ, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CHGEQZ computes the eigenvalues of a complex matrix pair (H,T), *> where H is an upper Hessenberg matrix and T is upper triangular, *> using the single-shift QZ method. *> Matrix pairs of this type are produced by the reduction to *> generalized upper Hessenberg form of a complex matrix pair (A,B): *> *> A = Q1*H*Z1**H, B = Q1*T*Z1**H, *> *> as computed by CGGHRD. *> *> If JOB='S', then the Hessenberg-triangular pair (H,T) is *> also reduced to generalized Schur form, *> *> H = Q*S*Z**H, T = Q*P*Z**H, *> *> where Q and Z are unitary matrices and S and P are upper triangular. *> *> Optionally, the unitary matrix Q from the generalized Schur *> factorization may be postmultiplied into an input matrix Q1, and the *> unitary matrix Z may be postmultiplied into an input matrix Z1. *> If Q1 and Z1 are the unitary matrices from CGGHRD that reduced *> the matrix pair (A,B) to generalized Hessenberg form, then the output *> matrices Q1*Q and Z1*Z are the unitary factors from the generalized *> Schur factorization of (A,B): *> *> A = (Q1*Q)*S*(Z1*Z)**H, B = (Q1*Q)*P*(Z1*Z)**H. *> *> To avoid overflow, eigenvalues of the matrix pair (H,T) *> (equivalently, of (A,B)) are computed as a pair of complex values *> (alpha,beta). If beta is nonzero, lambda = alpha / beta is an *> eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP) *> A*x = lambda*B*x *> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the *> alternate form of the GNEP *> mu*A*y = B*y. *> The values of alpha and beta for the i-th eigenvalue can be read *> directly from the generalized Schur form: alpha = S(i,i), *> beta = P(i,i). *> *> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix *> Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973), *> pp. 241--256. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOB *> \verbatim *> JOB is CHARACTER*1 *> = 'E': Compute eigenvalues only; *> = 'S': Computer eigenvalues and the Schur form. *> \endverbatim *> *> \param[in] COMPQ *> \verbatim *> COMPQ is CHARACTER*1 *> = 'N': Left Schur vectors (Q) are not computed; *> = 'I': Q is initialized to the unit matrix and the matrix Q *> of left Schur vectors of (H,T) is returned; *> = 'V': Q must contain a unitary matrix Q1 on entry and *> the product Q1*Q is returned. *> \endverbatim *> *> \param[in] COMPZ *> \verbatim *> COMPZ is CHARACTER*1 *> = 'N': Right Schur vectors (Z) are not computed; *> = 'I': Q is initialized to the unit matrix and the matrix Z *> of right Schur vectors of (H,T) is returned; *> = 'V': Z must contain a unitary matrix Z1 on entry and *> the product Z1*Z is returned. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices H, T, Q, and Z. N >= 0. *> \endverbatim *> *> \param[in] ILO *> \verbatim *> ILO is INTEGER *> \endverbatim *> *> \param[in] IHI *> \verbatim *> IHI is INTEGER *> ILO and IHI mark the rows and columns of H which are in *> Hessenberg form. It is assumed that A is already upper *> triangular in rows and columns 1:ILO-1 and IHI+1:N. *> If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0. *> \endverbatim *> *> \param[in,out] H *> \verbatim *> H is COMPLEX array, dimension (LDH, N) *> On entry, the N-by-N upper Hessenberg matrix H. *> On exit, if JOB = 'S', H contains the upper triangular *> matrix S from the generalized Schur factorization. *> If JOB = 'E', the diagonal of H matches that of S, but *> the rest of H is unspecified. *> \endverbatim *> *> \param[in] LDH *> \verbatim *> LDH is INTEGER *> The leading dimension of the array H. LDH >= max( 1, N ). *> \endverbatim *> *> \param[in,out] T *> \verbatim *> T is COMPLEX array, dimension (LDT, N) *> On entry, the N-by-N upper triangular matrix T. *> On exit, if JOB = 'S', T contains the upper triangular *> matrix P from the generalized Schur factorization. *> If JOB = 'E', the diagonal of T matches that of P, but *> the rest of T is unspecified. *> \endverbatim *> *> \param[in] LDT *> \verbatim *> LDT is INTEGER *> The leading dimension of the array T. LDT >= max( 1, N ). *> \endverbatim *> *> \param[out] ALPHA *> \verbatim *> ALPHA is COMPLEX array, dimension (N) *> The complex scalars alpha that define the eigenvalues of *> GNEP. ALPHA(i) = S(i,i) in the generalized Schur *> factorization. *> \endverbatim *> *> \param[out] BETA *> \verbatim *> BETA is COMPLEX array, dimension (N) *> The real non-negative scalars beta that define the *> eigenvalues of GNEP. BETA(i) = P(i,i) in the generalized *> Schur factorization. *> *> Together, the quantities alpha = ALPHA(j) and beta = BETA(j) *> represent the j-th eigenvalue of the matrix pair (A,B), in *> one of the forms lambda = alpha/beta or mu = beta/alpha. *> Since either lambda or mu may overflow, they should not, *> in general, be computed. *> \endverbatim *> *> \param[in,out] Q *> \verbatim *> Q is COMPLEX array, dimension (LDQ, N) *> On entry, if COMPQ = 'V', the unitary matrix Q1 used in the *> reduction of (A,B) to generalized Hessenberg form. *> On exit, if COMPQ = 'I', the unitary matrix of left Schur *> vectors of (H,T), and if COMPQ = 'V', the unitary matrix of *> left Schur vectors of (A,B). *> Not referenced if COMPQ = 'N'. *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. LDQ >= 1. *> If COMPQ='V' or 'I', then LDQ >= N. *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is COMPLEX array, dimension (LDZ, N) *> On entry, if COMPZ = 'V', the unitary matrix Z1 used in the *> reduction of (A,B) to generalized Hessenberg form. *> On exit, if COMPZ = 'I', the unitary matrix of right Schur *> vectors of (H,T), and if COMPZ = 'V', the unitary matrix of *> right Schur vectors of (A,B). *> Not referenced if COMPZ = 'N'. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. LDZ >= 1. *> If COMPZ='V' or 'I', then LDZ >= N. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (MAX(1,LWORK)) *> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= max(1,N). *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> = 1,...,N: the QZ iteration did not converge. (H,T) is not *> in Schur form, but ALPHA(i) and BETA(i), *> i=INFO+1,...,N should be correct. *> = N+1,...,2*N: the shift calculation failed. (H,T) is not *> in Schur form, but ALPHA(i) and BETA(i), *> i=INFO-N+1,...,N should be correct. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup hgeqz * *> \par Further Details: * ===================== *> *> \verbatim *> *> We assume that complex ABS works as long as its value is less than *> overflow. *> \endverbatim *> * ===================================================================== SUBROUTINE CHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, $ LDT, $ ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, $ RWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER COMPQ, COMPZ, JOB INTEGER IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N * .. * .. Array Arguments .. REAL RWORK( * ) COMPLEX ALPHA( * ), BETA( * ), H( LDH, * ), $ Q( LDQ, * ), T( LDT, * ), WORK( * ), $ Z( LDZ, * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) REAL HALF PARAMETER ( HALF = 0.5E+0 ) * .. * .. Local Scalars .. LOGICAL ILAZR2, ILAZRO, ILQ, ILSCHR, ILZ, LQUERY INTEGER ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST, $ ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER, $ JR, MAXIT REAL ABSB, ANORM, ASCALE, ATOL, BNORM, BSCALE, BTOL, $ C, SAFMIN, TEMP, TEMP2, TEMPR, ULP COMPLEX ABI22, AD11, AD12, AD21, AD22, CTEMP, CTEMP2, $ CTEMP3, ESHIFT, S, SHIFT, SIGNBC, $ U12, X, ABI12, Y * .. * .. External Functions .. COMPLEX CLADIV LOGICAL LSAME REAL CLANHS, SLAMCH EXTERNAL CLADIV, LSAME, CLANHS, SLAMCH * .. * .. External Subroutines .. EXTERNAL CLARTG, CLASET, CROT, CSCAL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL, SQRT * .. * .. Statement Functions .. REAL ABS1 * .. * .. Statement Function definitions .. ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) ) * .. * .. Executable Statements .. * * Decode JOB, COMPQ, COMPZ * IF( LSAME( JOB, 'E' ) ) THEN ILSCHR = .FALSE. ISCHUR = 1 ELSE IF( LSAME( JOB, 'S' ) ) THEN ILSCHR = .TRUE. ISCHUR = 2 ELSE ILSCHR = .TRUE. ISCHUR = 0 END IF * IF( LSAME( COMPQ, 'N' ) ) THEN ILQ = .FALSE. ICOMPQ = 1 ELSE IF( LSAME( COMPQ, 'V' ) ) THEN ILQ = .TRUE. ICOMPQ = 2 ELSE IF( LSAME( COMPQ, 'I' ) ) THEN ILQ = .TRUE. ICOMPQ = 3 ELSE ILQ = .TRUE. ICOMPQ = 0 END IF * IF( LSAME( COMPZ, 'N' ) ) THEN ILZ = .FALSE. ICOMPZ = 1 ELSE IF( LSAME( COMPZ, 'V' ) ) THEN ILZ = .TRUE. ICOMPZ = 2 ELSE IF( LSAME( COMPZ, 'I' ) ) THEN ILZ = .TRUE. ICOMPZ = 3 ELSE ILZ = .TRUE. ICOMPZ = 0 END IF * * Check Argument Values * INFO = 0 WORK( 1 ) = CMPLX( MAX( 1, N ) ) LQUERY = ( LWORK.EQ.-1 ) IF( ISCHUR.EQ.0 ) THEN INFO = -1 ELSE IF( ICOMPQ.EQ.0 ) THEN INFO = -2 ELSE IF( ICOMPZ.EQ.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( ILO.LT.1 ) THEN INFO = -5 ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN INFO = -6 ELSE IF( LDH.LT.N ) THEN INFO = -8 ELSE IF( LDT.LT.N ) THEN INFO = -10 ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN INFO = -14 ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN INFO = -16 ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN INFO = -18 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CHGEQZ', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * * WORK( 1 ) = CMPLX( 1 ) IF( N.LE.0 ) THEN WORK( 1 ) = CMPLX( 1 ) RETURN END IF * * Initialize Q and Z * IF( ICOMPQ.EQ.3 ) $ CALL CLASET( 'Full', N, N, CZERO, CONE, Q, LDQ ) IF( ICOMPZ.EQ.3 ) $ CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDZ ) * * Machine Constants * IN = IHI + 1 - ILO SAFMIN = SLAMCH( 'S' ) ULP = SLAMCH( 'E' )*SLAMCH( 'B' ) ANORM = CLANHS( 'F', IN, H( ILO, ILO ), LDH, RWORK ) BNORM = CLANHS( 'F', IN, T( ILO, ILO ), LDT, RWORK ) ATOL = MAX( SAFMIN, ULP*ANORM ) BTOL = MAX( SAFMIN, ULP*BNORM ) ASCALE = ONE / MAX( SAFMIN, ANORM ) BSCALE = ONE / MAX( SAFMIN, BNORM ) * * * Set Eigenvalues IHI+1:N * DO 10 J = IHI + 1, N ABSB = ABS( T( J, J ) ) IF( ABSB.GT.SAFMIN ) THEN SIGNBC = CONJG( T( J, J ) / ABSB ) T( J, J ) = ABSB IF( ILSCHR ) THEN CALL CSCAL( J-1, SIGNBC, T( 1, J ), 1 ) CALL CSCAL( J, SIGNBC, H( 1, J ), 1 ) ELSE CALL CSCAL( 1, SIGNBC, H( J, J ), 1 ) END IF IF( ILZ ) $ CALL CSCAL( N, SIGNBC, Z( 1, J ), 1 ) ELSE T( J, J ) = CZERO END IF ALPHA( J ) = H( J, J ) BETA( J ) = T( J, J ) 10 CONTINUE * * If IHI < ILO, skip QZ steps * IF( IHI.LT.ILO ) $ GO TO 190 * * MAIN QZ ITERATION LOOP * * Initialize dynamic indices * * Eigenvalues ILAST+1:N have been found. * Column operations modify rows IFRSTM:whatever * Row operations modify columns whatever:ILASTM * * If only eigenvalues are being computed, then * IFRSTM is the row of the last splitting row above row ILAST; * this is always at least ILO. * IITER counts iterations since the last eigenvalue was found, * to tell when to use an extraordinary shift. * MAXIT is the maximum number of QZ sweeps allowed. * ILAST = IHI IF( ILSCHR ) THEN IFRSTM = 1 ILASTM = N ELSE IFRSTM = ILO ILASTM = IHI END IF IITER = 0 ESHIFT = CZERO MAXIT = 30*( IHI-ILO+1 ) * DO 170 JITER = 1, MAXIT * * Check for too many iterations. * IF( JITER.GT.MAXIT ) $ GO TO 180 * * Split the matrix if possible. * * Two tests: * 1: H(j,j-1)=0 or j=ILO * 2: T(j,j)=0 * * Special case: j=ILAST * IF( ILAST.EQ.ILO ) THEN GO TO 60 ELSE IF( ABS1( H( ILAST, ILAST-1 ) ).LE.MAX( SAFMIN, ULP*( $ ABS1( H( ILAST, ILAST ) ) + ABS1( H( ILAST-1, ILAST-1 ) $ ) ) ) ) THEN H( ILAST, ILAST-1 ) = CZERO GO TO 60 END IF END IF * IF( ABS( T( ILAST, ILAST ) ).LE.BTOL ) THEN T( ILAST, ILAST ) = CZERO GO TO 50 END IF * * General case: j<ILAST * DO 40 J = ILAST - 1, ILO, -1 * * Test 1: for H(j,j-1)=0 or j=ILO * IF( J.EQ.ILO ) THEN ILAZRO = .TRUE. ELSE IF( ABS1( H( J, J-1 ) ).LE.MAX( SAFMIN, ULP*( $ ABS1( H( J, J ) ) + ABS1( H( J-1, J-1 ) ) $ ) ) ) THEN H( J, J-1 ) = CZERO ILAZRO = .TRUE. ELSE ILAZRO = .FALSE. END IF END IF * * Test 2: for T(j,j)=0 * IF( ABS( T( J, J ) ).LT.BTOL ) THEN T( J, J ) = CZERO * * Test 1a: Check for 2 consecutive small subdiagonals in A * ILAZR2 = .FALSE. IF( .NOT.ILAZRO ) THEN IF( ABS1( H( J, J-1 ) )*( ASCALE*ABS1( H( J+1, $ J ) ) ).LE.ABS1( H( J, J ) )*( ASCALE*ATOL ) ) $ ILAZR2 = .TRUE. END IF * * If both tests pass (1 & 2), i.e., the leading diagonal * element of B in the block is zero, split a 1x1 block off * at the top. (I.e., at the J-th row/column) The leading * diagonal element of the remainder can also be zero, so * this may have to be done repeatedly. * IF( ILAZRO .OR. ILAZR2 ) THEN DO 20 JCH = J, ILAST - 1 CTEMP = H( JCH, JCH ) CALL CLARTG( CTEMP, H( JCH+1, JCH ), C, S, $ H( JCH, JCH ) ) H( JCH+1, JCH ) = CZERO CALL CROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH, $ H( JCH+1, JCH+1 ), LDH, C, S ) CALL CROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT, $ T( JCH+1, JCH+1 ), LDT, C, S ) IF( ILQ ) $ CALL CROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), $ 1, $ C, CONJG( S ) ) IF( ILAZR2 ) $ H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C ILAZR2 = .FALSE. IF( ABS1( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN IF( JCH+1.GE.ILAST ) THEN GO TO 60 ELSE IFIRST = JCH + 1 GO TO 70 END IF END IF T( JCH+1, JCH+1 ) = CZERO 20 CONTINUE GO TO 50 ELSE * * Only test 2 passed -- chase the zero to T(ILAST,ILAST) * Then process as in the case T(ILAST,ILAST)=0 * DO 30 JCH = J, ILAST - 1 CTEMP = T( JCH, JCH+1 ) CALL CLARTG( CTEMP, T( JCH+1, JCH+1 ), C, S, $ T( JCH, JCH+1 ) ) T( JCH+1, JCH+1 ) = CZERO IF( JCH.LT.ILASTM-1 ) $ CALL CROT( ILASTM-JCH-1, T( JCH, JCH+2 ), $ LDT, $ T( JCH+1, JCH+2 ), LDT, C, S ) CALL CROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH, $ H( JCH+1, JCH-1 ), LDH, C, S ) IF( ILQ ) $ CALL CROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), $ 1, $ C, CONJG( S ) ) CTEMP = H( JCH+1, JCH ) CALL CLARTG( CTEMP, H( JCH+1, JCH-1 ), C, S, $ H( JCH+1, JCH ) ) H( JCH+1, JCH-1 ) = CZERO CALL CROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1, $ H( IFRSTM, JCH-1 ), 1, C, S ) CALL CROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1, $ T( IFRSTM, JCH-1 ), 1, C, S ) IF( ILZ ) $ CALL CROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), $ 1, $ C, S ) 30 CONTINUE GO TO 50 END IF ELSE IF( ILAZRO ) THEN * * Only test 1 passed -- work on J:ILAST * IFIRST = J GO TO 70 END IF * * Neither test passed -- try next J * 40 CONTINUE * * (Drop-through is "impossible") * INFO = 2*N + 1 GO TO 210 * * T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a * 1x1 block. * 50 CONTINUE CTEMP = H( ILAST, ILAST ) CALL CLARTG( CTEMP, H( ILAST, ILAST-1 ), C, S, $ H( ILAST, ILAST ) ) H( ILAST, ILAST-1 ) = CZERO CALL CROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1, $ H( IFRSTM, ILAST-1 ), 1, C, S ) CALL CROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1, $ T( IFRSTM, ILAST-1 ), 1, C, S ) IF( ILZ ) $ CALL CROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, $ S ) * * H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHA and BETA * 60 CONTINUE ABSB = ABS( T( ILAST, ILAST ) ) IF( ABSB.GT.SAFMIN ) THEN SIGNBC = CONJG( T( ILAST, ILAST ) / ABSB ) T( ILAST, ILAST ) = ABSB IF( ILSCHR ) THEN CALL CSCAL( ILAST-IFRSTM, SIGNBC, T( IFRSTM, ILAST ), $ 1 ) CALL CSCAL( ILAST+1-IFRSTM, SIGNBC, H( IFRSTM, $ ILAST ), $ 1 ) ELSE CALL CSCAL( 1, SIGNBC, H( ILAST, ILAST ), 1 ) END IF IF( ILZ ) $ CALL CSCAL( N, SIGNBC, Z( 1, ILAST ), 1 ) ELSE T( ILAST, ILAST ) = CZERO END IF ALPHA( ILAST ) = H( ILAST, ILAST ) BETA( ILAST ) = T( ILAST, ILAST ) * * Go to next block -- exit if finished. * ILAST = ILAST - 1 IF( ILAST.LT.ILO ) $ GO TO 190 * * Reset counters * IITER = 0 ESHIFT = CZERO IF( .NOT.ILSCHR ) THEN ILASTM = ILAST IF( IFRSTM.GT.ILAST ) $ IFRSTM = ILO END IF GO TO 160 * * QZ step * * This iteration only involves rows/columns IFIRST:ILAST. We * assume IFIRST < ILAST, and that the diagonal of B is non-zero. * 70 CONTINUE IITER = IITER + 1 IF( .NOT.ILSCHR ) THEN IFRSTM = IFIRST END IF * * Compute the Shift. * * At this point, IFIRST < ILAST, and the diagonal elements of * T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in * magnitude) * IF( ( IITER / 10 )*10.NE.IITER ) THEN * * The Wilkinson shift (AEP p.512), i.e., the eigenvalue of * the bottom-right 2x2 block of A inv(B) which is nearest to * the bottom-right element. * * We factor B as U*D, where U has unit diagonals, and * compute (A*inv(D))*inv(U). * U12 = ( BSCALE*T( ILAST-1, ILAST ) ) / $ ( BSCALE*T( ILAST, ILAST ) ) AD11 = ( ASCALE*H( ILAST-1, ILAST-1 ) ) / $ ( BSCALE*T( ILAST-1, ILAST-1 ) ) AD21 = ( ASCALE*H( ILAST, ILAST-1 ) ) / $ ( BSCALE*T( ILAST-1, ILAST-1 ) ) AD12 = ( ASCALE*H( ILAST-1, ILAST ) ) / $ ( BSCALE*T( ILAST, ILAST ) ) AD22 = ( ASCALE*H( ILAST, ILAST ) ) / $ ( BSCALE*T( ILAST, ILAST ) ) ABI22 = AD22 - U12*AD21 ABI12 = AD12 - U12*AD11 * SHIFT = ABI22 CTEMP = SQRT( ABI12 )*SQRT( AD21 ) TEMP = ABS1( CTEMP ) IF( CTEMP.NE.ZERO ) THEN X = HALF*( AD11-SHIFT ) TEMP2 = ABS1( X ) TEMP = MAX( TEMP, ABS1( X ) ) Y = TEMP*SQRT( ( X / TEMP )**2+( CTEMP / TEMP )**2 ) IF( TEMP2.GT.ZERO ) THEN IF( REAL( X / TEMP2 )*REAL( Y )+ $ AIMAG( X / TEMP2 )*AIMAG( Y ).LT.ZERO )Y = -Y END IF SHIFT = SHIFT - CTEMP*CLADIV( CTEMP, ( X+Y ) ) END IF ELSE * * Exceptional shift. Chosen for no particularly good reason. * IF( ( IITER / 20 )*20.EQ.IITER .AND. $ BSCALE*ABS1(T( ILAST, ILAST )).GT.SAFMIN ) THEN ESHIFT = ESHIFT + ( ASCALE*H( ILAST, $ ILAST ) )/( BSCALE*T( ILAST, ILAST ) ) ELSE ESHIFT = ESHIFT + ( ASCALE*H( ILAST, $ ILAST-1 ) )/( BSCALE*T( ILAST-1, ILAST-1 ) ) END IF SHIFT = ESHIFT END IF * * Now check for two consecutive small subdiagonals. * DO 80 J = ILAST - 1, IFIRST + 1, -1 ISTART = J CTEMP = ASCALE*H( J, J ) - SHIFT*( BSCALE*T( J, J ) ) TEMP = ABS1( CTEMP ) TEMP2 = ASCALE*ABS1( H( J+1, J ) ) TEMPR = MAX( TEMP, TEMP2 ) IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN TEMP = TEMP / TEMPR TEMP2 = TEMP2 / TEMPR END IF IF( ABS1( H( J, J-1 ) )*TEMP2.LE.TEMP*ATOL ) $ GO TO 90 80 CONTINUE * ISTART = IFIRST CTEMP = ASCALE*H( IFIRST, IFIRST ) - $ SHIFT*( BSCALE*T( IFIRST, IFIRST ) ) 90 CONTINUE * * Do an implicit-shift QZ sweep. * * Initial Q * CTEMP2 = ASCALE*H( ISTART+1, ISTART ) CALL CLARTG( CTEMP, CTEMP2, C, S, CTEMP3 ) * * Sweep * DO 150 J = ISTART, ILAST - 1 IF( J.GT.ISTART ) THEN CTEMP = H( J, J-1 ) CALL CLARTG( CTEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) ) H( J+1, J-1 ) = CZERO END IF * DO 100 JC = J, ILASTM CTEMP = C*H( J, JC ) + S*H( J+1, JC ) H( J+1, JC ) = -CONJG( S )*H( J, JC ) + C*H( J+1, JC ) H( J, JC ) = CTEMP CTEMP2 = C*T( J, JC ) + S*T( J+1, JC ) T( J+1, JC ) = -CONJG( S )*T( J, JC ) + C*T( J+1, JC ) T( J, JC ) = CTEMP2 100 CONTINUE IF( ILQ ) THEN DO 110 JR = 1, N CTEMP = C*Q( JR, J ) + CONJG( S )*Q( JR, J+1 ) Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 ) Q( JR, J ) = CTEMP 110 CONTINUE END IF * CTEMP = T( J+1, J+1 ) CALL CLARTG( CTEMP, T( J+1, J ), C, S, T( J+1, J+1 ) ) T( J+1, J ) = CZERO * DO 120 JR = IFRSTM, MIN( J+2, ILAST ) CTEMP = C*H( JR, J+1 ) + S*H( JR, J ) H( JR, J ) = -CONJG( S )*H( JR, J+1 ) + C*H( JR, J ) H( JR, J+1 ) = CTEMP 120 CONTINUE DO 130 JR = IFRSTM, J CTEMP = C*T( JR, J+1 ) + S*T( JR, J ) T( JR, J ) = -CONJG( S )*T( JR, J+1 ) + C*T( JR, J ) T( JR, J+1 ) = CTEMP 130 CONTINUE IF( ILZ ) THEN DO 140 JR = 1, N CTEMP = C*Z( JR, J+1 ) + S*Z( JR, J ) Z( JR, J ) = -CONJG( S )*Z( JR, J+1 ) + C*Z( JR, J ) Z( JR, J+1 ) = CTEMP 140 CONTINUE END IF 150 CONTINUE * 160 CONTINUE * 170 CONTINUE * * Drop-through = non-convergence * 180 CONTINUE INFO = ILAST GO TO 210 * * Successful completion of all QZ steps * 190 CONTINUE * * Set Eigenvalues 1:ILO-1 * DO 200 J = 1, ILO - 1 ABSB = ABS( T( J, J ) ) IF( ABSB.GT.SAFMIN ) THEN SIGNBC = CONJG( T( J, J ) / ABSB ) T( J, J ) = ABSB IF( ILSCHR ) THEN CALL CSCAL( J-1, SIGNBC, T( 1, J ), 1 ) CALL CSCAL( J, SIGNBC, H( 1, J ), 1 ) ELSE CALL CSCAL( 1, SIGNBC, H( J, J ), 1 ) END IF IF( ILZ ) $ CALL CSCAL( N, SIGNBC, Z( 1, J ), 1 ) ELSE T( J, J ) = CZERO END IF ALPHA( J ) = H( J, J ) BETA( J ) = T( J, J ) 200 CONTINUE * * Normal Termination * INFO = 0 * * Exit (other than argument error) -- return optimal workspace size * 210 CONTINUE WORK( 1 ) = CMPLX( N ) RETURN * * End of CHGEQZ * END