numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/cla_gbrpvgrw.f 4911B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
*> \brief \b CLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLA_GBRPVGRW + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_gbrpvgrw.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_gbrpvgrw.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_gbrpvgrw.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       REAL FUNCTION CLA_GBRPVGRW( N, KL, KU, NCOLS, AB, LDAB, AFB,
*                                   LDAFB )
*
*       .. Scalar Arguments ..
*       INTEGER            N, KL, KU, NCOLS, LDAB, LDAFB
*       ..
*       .. Array Arguments ..
*       COMPLEX            AB( LDAB, * ), AFB( LDAFB, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CLA_GBRPVGRW computes the reciprocal pivot growth factor
*> norm(A)/norm(U). The "max absolute element" norm is used. If this is
*> much less than 1, the stability of the LU factorization of the
*> (equilibrated) matrix A could be poor. This also means that the
*> solution X, estimated condition numbers, and error bounds could be
*> unreliable.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>     The number of linear equations, i.e., the order of the
*>     matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*>          KL is INTEGER
*>     The number of subdiagonals within the band of A.  KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*>          KU is INTEGER
*>     The number of superdiagonals within the band of A.  KU >= 0.
*> \endverbatim
*>
*> \param[in] NCOLS
*> \verbatim
*>          NCOLS is INTEGER
*>     The number of columns of the matrix A.  NCOLS >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*>          AB is COMPLEX array, dimension (LDAB,N)
*>     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
*>     The j-th column of A is stored in the j-th column of the
*>     array AB as follows:
*>     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>     The leading dimension of the array AB.  LDAB >= KL+KU+1.
*> \endverbatim
*>
*> \param[in] AFB
*> \verbatim
*>          AFB is COMPLEX array, dimension (LDAFB,N)
*>     Details of the LU factorization of the band matrix A, as
*>     computed by CGBTRF.  U is stored as an upper triangular
*>     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
*>     and the multipliers used during the factorization are stored
*>     in rows KL+KU+2 to 2*KL+KU+1.
*> \endverbatim
*>
*> \param[in] LDAFB
*> \verbatim
*>          LDAFB is INTEGER
*>     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup la_gbrpvgrw
*
*  =====================================================================
      REAL FUNCTION CLA_GBRPVGRW( N, KL, KU, NCOLS, AB, LDAB, AFB,
     $                            LDAFB )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            N, KL, KU, NCOLS, LDAB, LDAFB
*     ..
*     .. Array Arguments ..
      COMPLEX            AB( LDAB, * ), AFB( LDAFB, * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, J, KD
      REAL               AMAX, UMAX, RPVGRW
      COMPLEX            ZDUM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, REAL, AIMAG
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Statement Function Definitions ..
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
      RPVGRW = 1.0

      KD = KU + 1
      DO J = 1, NCOLS
         AMAX = 0.0
         UMAX = 0.0
         DO I = MAX( J-KU, 1 ), MIN( J+KL, N )
            AMAX = MAX( CABS1( AB( KD+I-J, J ) ), AMAX )
         END DO
         DO I = MAX( J-KU, 1 ), J
            UMAX = MAX( CABS1( AFB( KD+I-J, J ) ), UMAX )
         END DO
         IF ( UMAX /= 0.0 ) THEN
            RPVGRW = MIN( AMAX / UMAX, RPVGRW )
         END IF
      END DO
      CLA_GBRPVGRW = RPVGRW
*
*     End of CLA_GBRPVGRW
*
      END