numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/clabrd.f | 15568B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
*> \brief \b CLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CLABRD + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clabrd.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clabrd.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clabrd.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, * LDY ) * * .. Scalar Arguments .. * INTEGER LDA, LDX, LDY, M, N, NB * .. * .. Array Arguments .. * REAL D( * ), E( * ) * COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ), * $ Y( LDY, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CLABRD reduces the first NB rows and columns of a complex general *> m by n matrix A to upper or lower real bidiagonal form by a unitary *> transformation Q**H * A * P, and returns the matrices X and Y which *> are needed to apply the transformation to the unreduced part of A. *> *> If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower *> bidiagonal form. *> *> This is an auxiliary routine called by CGEBRD *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows in the matrix A. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns in the matrix A. *> \endverbatim *> *> \param[in] NB *> \verbatim *> NB is INTEGER *> The number of leading rows and columns of A to be reduced. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> On entry, the m by n general matrix to be reduced. *> On exit, the first NB rows and columns of the matrix are *> overwritten; the rest of the array is unchanged. *> If m >= n, elements on and below the diagonal in the first NB *> columns, with the array TAUQ, represent the unitary *> matrix Q as a product of elementary reflectors; and *> elements above the diagonal in the first NB rows, with the *> array TAUP, represent the unitary matrix P as a product *> of elementary reflectors. *> If m < n, elements below the diagonal in the first NB *> columns, with the array TAUQ, represent the unitary *> matrix Q as a product of elementary reflectors, and *> elements on and above the diagonal in the first NB rows, *> with the array TAUP, represent the unitary matrix P as *> a product of elementary reflectors. *> See Further Details. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[out] D *> \verbatim *> D is REAL array, dimension (NB) *> The diagonal elements of the first NB rows and columns of *> the reduced matrix. D(i) = A(i,i). *> \endverbatim *> *> \param[out] E *> \verbatim *> E is REAL array, dimension (NB) *> The off-diagonal elements of the first NB rows and columns of *> the reduced matrix. *> \endverbatim *> *> \param[out] TAUQ *> \verbatim *> TAUQ is COMPLEX array, dimension (NB) *> The scalar factors of the elementary reflectors which *> represent the unitary matrix Q. See Further Details. *> \endverbatim *> *> \param[out] TAUP *> \verbatim *> TAUP is COMPLEX array, dimension (NB) *> The scalar factors of the elementary reflectors which *> represent the unitary matrix P. See Further Details. *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX array, dimension (LDX,NB) *> The m-by-nb matrix X required to update the unreduced part *> of A. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. LDX >= max(1,M). *> \endverbatim *> *> \param[out] Y *> \verbatim *> Y is COMPLEX array, dimension (LDY,NB) *> The n-by-nb matrix Y required to update the unreduced part *> of A. *> \endverbatim *> *> \param[in] LDY *> \verbatim *> LDY is INTEGER *> The leading dimension of the array Y. LDY >= max(1,N). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup labrd * *> \par Further Details: * ===================== *> *> \verbatim *> *> The matrices Q and P are represented as products of elementary *> reflectors: *> *> Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) *> *> Each H(i) and G(i) has the form: *> *> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H *> *> where tauq and taup are complex scalars, and v and u are complex *> vectors. *> *> If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in *> A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in *> A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). *> *> If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in *> A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in *> A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). *> *> The elements of the vectors v and u together form the m-by-nb matrix *> V and the nb-by-n matrix U**H which are needed, with X and Y, to apply *> the transformation to the unreduced part of the matrix, using a block *> update of the form: A := A - V*Y**H - X*U**H. *> *> The contents of A on exit are illustrated by the following examples *> with nb = 2: *> *> m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): *> *> ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) *> ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) *> ( v1 v2 a a a ) ( v1 1 a a a a ) *> ( v1 v2 a a a ) ( v1 v2 a a a a ) *> ( v1 v2 a a a ) ( v1 v2 a a a a ) *> ( v1 v2 a a a ) *> *> where a denotes an element of the original matrix which is unchanged, *> vi denotes an element of the vector defining H(i), and ui an element *> of the vector defining G(i). *> \endverbatim *> * ===================================================================== SUBROUTINE CLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, $ Y, $ LDY ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER LDA, LDX, LDY, M, N, NB * .. * .. Array Arguments .. REAL D( * ), E( * ) COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ), $ Y( LDY, * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ), $ ONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I COMPLEX ALPHA * .. * .. External Subroutines .. EXTERNAL CGEMV, CLACGV, CLARFG, CSCAL * .. * .. Intrinsic Functions .. INTRINSIC MIN * .. * .. Executable Statements .. * * Quick return if possible * IF( M.LE.0 .OR. N.LE.0 ) $ RETURN * IF( M.GE.N ) THEN * * Reduce to upper bidiagonal form * DO 10 I = 1, NB * * Update A(i:m,i) * CALL CLACGV( I-1, Y( I, 1 ), LDY ) CALL CGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ), $ LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 ) CALL CLACGV( I-1, Y( I, 1 ), LDY ) CALL CGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ), $ LDX, A( 1, I ), 1, ONE, A( I, I ), 1 ) * * Generate reflection Q(i) to annihilate A(i+1:m,i) * ALPHA = A( I, I ) CALL CLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1, $ TAUQ( I ) ) D( I ) = REAL( ALPHA ) IF( I.LT.N ) THEN A( I, I ) = ONE * * Compute Y(i+1:n,i) * CALL CGEMV( 'Conjugate transpose', M-I+1, N-I, ONE, $ A( I, I+1 ), LDA, A( I, I ), 1, ZERO, $ Y( I+1, I ), 1 ) CALL CGEMV( 'Conjugate transpose', M-I+1, I-1, ONE, $ A( I, 1 ), LDA, A( I, I ), 1, ZERO, $ Y( 1, I ), 1 ) CALL CGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, $ 1 ), $ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 ) CALL CGEMV( 'Conjugate transpose', M-I+1, I-1, ONE, $ X( I, 1 ), LDX, A( I, I ), 1, ZERO, $ Y( 1, I ), 1 ) CALL CGEMV( 'Conjugate transpose', I-1, N-I, -ONE, $ A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE, $ Y( I+1, I ), 1 ) CALL CSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 ) * * Update A(i,i+1:n) * CALL CLACGV( N-I, A( I, I+1 ), LDA ) CALL CLACGV( I, A( I, 1 ), LDA ) CALL CGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ), $ LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA ) CALL CLACGV( I, A( I, 1 ), LDA ) CALL CLACGV( I-1, X( I, 1 ), LDX ) CALL CGEMV( 'Conjugate transpose', I-1, N-I, -ONE, $ A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE, $ A( I, I+1 ), LDA ) CALL CLACGV( I-1, X( I, 1 ), LDX ) * * Generate reflection P(i) to annihilate A(i,i+2:n) * ALPHA = A( I, I+1 ) CALL CLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), $ LDA, TAUP( I ) ) E( I ) = REAL( ALPHA ) A( I, I+1 ) = ONE * * Compute X(i+1:m,i) * CALL CGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, $ I+1 ), $ LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 ) CALL CGEMV( 'Conjugate transpose', N-I, I, ONE, $ Y( I+1, 1 ), LDY, A( I, I+1 ), LDA, ZERO, $ X( 1, I ), 1 ) CALL CGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ), $ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 ) CALL CGEMV( 'No transpose', I-1, N-I, ONE, A( 1, $ I+1 ), $ LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 ) CALL CGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, $ 1 ), $ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 ) CALL CSCAL( M-I, TAUP( I ), X( I+1, I ), 1 ) CALL CLACGV( N-I, A( I, I+1 ), LDA ) END IF 10 CONTINUE ELSE * * Reduce to lower bidiagonal form * DO 20 I = 1, NB * * Update A(i,i:n) * CALL CLACGV( N-I+1, A( I, I ), LDA ) CALL CLACGV( I-1, A( I, 1 ), LDA ) CALL CGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ), $ LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA ) CALL CLACGV( I-1, A( I, 1 ), LDA ) CALL CLACGV( I-1, X( I, 1 ), LDX ) CALL CGEMV( 'Conjugate transpose', I-1, N-I+1, -ONE, $ A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ), $ LDA ) CALL CLACGV( I-1, X( I, 1 ), LDX ) * * Generate reflection P(i) to annihilate A(i,i+1:n) * ALPHA = A( I, I ) CALL CLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA, $ TAUP( I ) ) D( I ) = REAL( ALPHA ) IF( I.LT.M ) THEN A( I, I ) = ONE * * Compute X(i+1:m,i) * CALL CGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, $ I ), $ LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 ) CALL CGEMV( 'Conjugate transpose', N-I+1, I-1, ONE, $ Y( I, 1 ), LDY, A( I, I ), LDA, ZERO, $ X( 1, I ), 1 ) CALL CGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, $ 1 ), $ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 ) CALL CGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, $ I ), $ LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 ) CALL CGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, $ 1 ), $ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 ) CALL CSCAL( M-I, TAUP( I ), X( I+1, I ), 1 ) CALL CLACGV( N-I+1, A( I, I ), LDA ) * * Update A(i+1:m,i) * CALL CLACGV( I-1, Y( I, 1 ), LDY ) CALL CGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, $ 1 ), $ LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 ) CALL CLACGV( I-1, Y( I, 1 ), LDY ) CALL CGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ), $ LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 ) * * Generate reflection Q(i) to annihilate A(i+2:m,i) * ALPHA = A( I+1, I ) CALL CLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1, $ TAUQ( I ) ) E( I ) = REAL( ALPHA ) A( I+1, I ) = ONE * * Compute Y(i+1:n,i) * CALL CGEMV( 'Conjugate transpose', M-I, N-I, ONE, $ A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO, $ Y( I+1, I ), 1 ) CALL CGEMV( 'Conjugate transpose', M-I, I-1, ONE, $ A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO, $ Y( 1, I ), 1 ) CALL CGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, $ 1 ), $ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 ) CALL CGEMV( 'Conjugate transpose', M-I, I, ONE, $ X( I+1, 1 ), LDX, A( I+1, I ), 1, ZERO, $ Y( 1, I ), 1 ) CALL CGEMV( 'Conjugate transpose', I, N-I, -ONE, $ A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE, $ Y( I+1, I ), 1 ) CALL CSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 ) ELSE CALL CLACGV( N-I+1, A( I, I ), LDA ) END IF 20 CONTINUE END IF RETURN * * End of CLABRD * END