numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/cladiv.f | 2324B | -rw-r--r-- |
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
*> \brief \b CLADIV performs complex division in real arithmetic, avoiding unnecessary overflow. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CLADIV + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cladiv.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cladiv.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cladiv.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * COMPLEX FUNCTION CLADIV( X, Y ) * * .. Scalar Arguments .. * COMPLEX X, Y * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CLADIV := X / Y, where X and Y are complex. The computation of X / Y *> will not overflow on an intermediary step unless the results *> overflows. *> \endverbatim * * Arguments: * ========== * *> \param[in] X *> \verbatim *> X is COMPLEX *> \endverbatim *> *> \param[in] Y *> \verbatim *> Y is COMPLEX *> The complex scalars X and Y. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup ladiv * * ===================================================================== COMPLEX FUNCTION CLADIV( X, Y ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. COMPLEX X, Y * .. * * ===================================================================== * * .. Local Scalars .. REAL ZI, ZR * .. * .. External Subroutines .. EXTERNAL SLADIV * .. * .. Intrinsic Functions .. INTRINSIC AIMAG, CMPLX, REAL * .. * .. Executable Statements .. * CALL SLADIV( REAL( X ), AIMAG( X ), REAL( Y ), AIMAG( Y ), ZR, $ ZI ) CLADIV = CMPLX( ZR, ZI ) * RETURN * * End of CLADIV * END