numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/clahqr.f | 18661B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
*> \brief \b CLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CLAHQR + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahqr.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahqr.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahqr.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, * IHIZ, Z, LDZ, INFO ) * * .. Scalar Arguments .. * INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N * LOGICAL WANTT, WANTZ * .. * .. Array Arguments .. * COMPLEX H( LDH, * ), W( * ), Z( LDZ, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CLAHQR is an auxiliary routine called by CHSEQR to update the *> eigenvalues and Schur decomposition already computed by CHSEQR, by *> dealing with the Hessenberg submatrix in rows and columns ILO to *> IHI. *> \endverbatim * * Arguments: * ========== * *> \param[in] WANTT *> \verbatim *> WANTT is LOGICAL *> = .TRUE. : the full Schur form T is required; *> = .FALSE.: only eigenvalues are required. *> \endverbatim *> *> \param[in] WANTZ *> \verbatim *> WANTZ is LOGICAL *> = .TRUE. : the matrix of Schur vectors Z is required; *> = .FALSE.: Schur vectors are not required. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix H. N >= 0. *> \endverbatim *> *> \param[in] ILO *> \verbatim *> ILO is INTEGER *> \endverbatim *> *> \param[in] IHI *> \verbatim *> IHI is INTEGER *> It is assumed that H is already upper triangular in rows and *> columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1). *> CLAHQR works primarily with the Hessenberg submatrix in rows *> and columns ILO to IHI, but applies transformations to all of *> H if WANTT is .TRUE.. *> 1 <= ILO <= max(1,IHI); IHI <= N. *> \endverbatim *> *> \param[in,out] H *> \verbatim *> H is COMPLEX array, dimension (LDH,N) *> On entry, the upper Hessenberg matrix H. *> On exit, if INFO is zero and if WANTT is .TRUE., then H *> is upper triangular in rows and columns ILO:IHI. If INFO *> is zero and if WANTT is .FALSE., then the contents of H *> are unspecified on exit. The output state of H in case *> INF is positive is below under the description of INFO. *> \endverbatim *> *> \param[in] LDH *> \verbatim *> LDH is INTEGER *> The leading dimension of the array H. LDH >= max(1,N). *> \endverbatim *> *> \param[out] W *> \verbatim *> W is COMPLEX array, dimension (N) *> The computed eigenvalues ILO to IHI are stored in the *> corresponding elements of W. If WANTT is .TRUE., the *> eigenvalues are stored in the same order as on the diagonal *> of the Schur form returned in H, with W(i) = H(i,i). *> \endverbatim *> *> \param[in] ILOZ *> \verbatim *> ILOZ is INTEGER *> \endverbatim *> *> \param[in] IHIZ *> \verbatim *> IHIZ is INTEGER *> Specify the rows of Z to which transformations must be *> applied if WANTZ is .TRUE.. *> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is COMPLEX array, dimension (LDZ,N) *> If WANTZ is .TRUE., on entry Z must contain the current *> matrix Z of transformations accumulated by CHSEQR, and on *> exit Z has been updated; transformations are applied only to *> the submatrix Z(ILOZ:IHIZ,ILO:IHI). *> If WANTZ is .FALSE., Z is not referenced. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. LDZ >= max(1,N). *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> > 0: if INFO = i, CLAHQR failed to compute all the *> eigenvalues ILO to IHI in a total of 30 iterations *> per eigenvalue; elements i+1:ihi of W contain *> those eigenvalues which have been successfully *> computed. *> *> If INFO > 0 and WANTT is .FALSE., then on exit, *> the remaining unconverged eigenvalues are the *> eigenvalues of the upper Hessenberg matrix *> rows and columns ILO through INFO of the final, *> output value of H. *> *> If INFO > 0 and WANTT is .TRUE., then on exit *> (*) (initial value of H)*U = U*(final value of H) *> where U is an orthogonal matrix. The final *> value of H is upper Hessenberg and triangular in *> rows and columns INFO+1 through IHI. *> *> If INFO > 0 and WANTZ is .TRUE., then on exit *> (final value of Z) = (initial value of Z)*U *> where U is the orthogonal matrix in (*) *> (regardless of the value of WANTT.) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup lahqr * *> \par Contributors: * ================== *> *> \verbatim *> *> 02-96 Based on modifications by *> David Day, Sandia National Laboratory, USA *> *> 12-04 Further modifications by *> Ralph Byers, University of Kansas, USA *> This is a modified version of CLAHQR from LAPACK version 3.0. *> It is (1) more robust against overflow and underflow and *> (2) adopts the more conservative Ahues & Tisseur stopping *> criterion (LAWN 122, 1997). *> \endverbatim *> * ===================================================================== SUBROUTINE CLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, $ IHIZ, Z, LDZ, INFO ) IMPLICIT NONE * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N LOGICAL WANTT, WANTZ * .. * .. Array Arguments .. COMPLEX H( LDH, * ), W( * ), Z( LDZ, * ) * .. * * ========================================================= * * .. Parameters .. COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0e0, 0.0e0 ), $ ONE = ( 1.0e0, 0.0e0 ) ) REAL RZERO, RONE, HALF PARAMETER ( RZERO = 0.0e0, RONE = 1.0e0, HALF = 0.5e0 ) REAL DAT1 PARAMETER ( DAT1 = 3.0e0 / 4.0e0 ) INTEGER KEXSH PARAMETER ( KEXSH = 10 ) * .. * .. Local Scalars .. COMPLEX CDUM, H11, H11S, H22, SC, SUM, T, T1, TEMP, U, $ V2, X, Y REAL AA, AB, BA, BB, H10, H21, RTEMP, S, SAFMAX, $ SAFMIN, SMLNUM, SX, T2, TST, ULP INTEGER I, I1, I2, ITS, ITMAX, J, JHI, JLO, K, L, M, $ NH, NZ, KDEFL * .. * .. Local Arrays .. COMPLEX V( 2 ) * .. * .. External Functions .. COMPLEX CLADIV REAL SLAMCH EXTERNAL CLADIV, SLAMCH * .. * .. External Subroutines .. EXTERNAL CCOPY, CLARFG, CSCAL * .. * .. Statement Functions .. REAL CABS1 * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, CONJG, MAX, MIN, REAL, SQRT * .. * .. Statement Function definitions .. CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) ) * .. * .. Executable Statements .. * INFO = 0 * * Quick return if possible * IF( N.EQ.0 ) $ RETURN IF( ILO.EQ.IHI ) THEN W( ILO ) = H( ILO, ILO ) RETURN END IF * * ==== clear out the trash ==== DO 10 J = ILO, IHI - 3 H( J+2, J ) = ZERO H( J+3, J ) = ZERO 10 CONTINUE IF( ILO.LE.IHI-2 ) $ H( IHI, IHI-2 ) = ZERO * ==== ensure that subdiagonal entries are real ==== IF( WANTT ) THEN JLO = 1 JHI = N ELSE JLO = ILO JHI = IHI END IF DO 20 I = ILO + 1, IHI IF( AIMAG( H( I, I-1 ) ).NE.RZERO ) THEN * ==== The following redundant normalization * . avoids problems with both gradual and * . sudden underflow in ABS(H(I,I-1)) ==== SC = H( I, I-1 ) / CABS1( H( I, I-1 ) ) SC = CONJG( SC ) / ABS( SC ) H( I, I-1 ) = ABS( H( I, I-1 ) ) CALL CSCAL( JHI-I+1, SC, H( I, I ), LDH ) CALL CSCAL( MIN( JHI, I+1 )-JLO+1, CONJG( SC ), H( JLO, $ I ), $ 1 ) IF( WANTZ ) $ CALL CSCAL( IHIZ-ILOZ+1, CONJG( SC ), Z( ILOZ, I ), $ 1 ) END IF 20 CONTINUE * NH = IHI - ILO + 1 NZ = IHIZ - ILOZ + 1 * * Set machine-dependent constants for the stopping criterion. * SAFMIN = SLAMCH( 'SAFE MINIMUM' ) SAFMAX = RONE / SAFMIN ULP = SLAMCH( 'PRECISION' ) SMLNUM = SAFMIN*( REAL( NH ) / ULP ) * * I1 and I2 are the indices of the first row and last column of H * to which transformations must be applied. If eigenvalues only are * being computed, I1 and I2 are set inside the main loop. * IF( WANTT ) THEN I1 = 1 I2 = N END IF * * ITMAX is the total number of QR iterations allowed. * ITMAX = 30 * MAX( 10, NH ) * * KDEFL counts the number of iterations since a deflation * KDEFL = 0 * * The main loop begins here. I is the loop index and decreases from * IHI to ILO in steps of 1. Each iteration of the loop works * with the active submatrix in rows and columns L to I. * Eigenvalues I+1 to IHI have already converged. Either L = ILO, or * H(L,L-1) is negligible so that the matrix splits. * I = IHI 30 CONTINUE IF( I.LT.ILO ) $ GO TO 150 * * Perform QR iterations on rows and columns ILO to I until a * submatrix of order 1 splits off at the bottom because a * subdiagonal element has become negligible. * L = ILO DO 130 ITS = 0, ITMAX * * Look for a single small subdiagonal element. * DO 40 K = I, L + 1, -1 IF( CABS1( H( K, K-1 ) ).LE.SMLNUM ) $ GO TO 50 TST = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) ) IF( TST.EQ.ZERO ) THEN IF( K-2.GE.ILO ) $ TST = TST + ABS( REAL( H( K-1, K-2 ) ) ) IF( K+1.LE.IHI ) $ TST = TST + ABS( REAL( H( K+1, K ) ) ) END IF * ==== The following is a conservative small subdiagonal * . deflation criterion due to Ahues & Tisseur (LAWN 122, * . 1997). It has better mathematical foundation and * . improves accuracy in some examples. ==== IF( ABS( REAL( H( K, K-1 ) ) ).LE.ULP*TST ) THEN AB = MAX( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) ) BA = MIN( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) ) AA = MAX( CABS1( H( K, K ) ), $ CABS1( H( K-1, K-1 )-H( K, K ) ) ) BB = MIN( CABS1( H( K, K ) ), $ CABS1( H( K-1, K-1 )-H( K, K ) ) ) S = AA + AB IF( BA*( AB / S ).LE.MAX( SMLNUM, $ ULP*( BB*( AA / S ) ) ) )GO TO 50 END IF 40 CONTINUE 50 CONTINUE L = K IF( L.GT.ILO ) THEN * * H(L,L-1) is negligible * H( L, L-1 ) = ZERO END IF * * Exit from loop if a submatrix of order 1 has split off. * IF( L.GE.I ) $ GO TO 140 KDEFL = KDEFL + 1 * * Now the active submatrix is in rows and columns L to I. If * eigenvalues only are being computed, only the active submatrix * need be transformed. * IF( .NOT.WANTT ) THEN I1 = L I2 = I END IF * IF( MOD(KDEFL,2*KEXSH).EQ.0 ) THEN * * Exceptional shift. * S = DAT1*ABS( REAL( H( I, I-1 ) ) ) T = S + H( I, I ) ELSE IF( MOD(KDEFL,KEXSH).EQ.0 ) THEN * * Exceptional shift. * S = DAT1*ABS( REAL( H( L+1, L ) ) ) T = S + H( L, L ) ELSE * * Wilkinson's shift. * T = H( I, I ) U = SQRT( H( I-1, I ) )*SQRT( H( I, I-1 ) ) S = CABS1( U ) IF( S.NE.RZERO ) THEN X = HALF*( H( I-1, I-1 )-T ) SX = CABS1( X ) S = MAX( S, CABS1( X ) ) Y = S*SQRT( ( X / S )**2+( U / S )**2 ) IF( SX.GT.RZERO ) THEN IF( REAL( X / SX )*REAL( Y )+AIMAG( X / SX )* $ AIMAG( Y ).LT.RZERO )Y = -Y END IF T = T - U*CLADIV( U, ( X+Y ) ) END IF END IF * * Look for two consecutive small subdiagonal elements. * DO 60 M = I - 1, L + 1, -1 * * Determine the effect of starting the single-shift QR * iteration at row M, and see if this would make H(M,M-1) * negligible. * H11 = H( M, M ) H22 = H( M+1, M+1 ) H11S = H11 - T H21 = REAL( H( M+1, M ) ) S = CABS1( H11S ) + ABS( H21 ) H11S = H11S / S H21 = H21 / S V( 1 ) = H11S V( 2 ) = H21 H10 = REAL( H( M, M-1 ) ) IF( ABS( H10 )*ABS( H21 ).LE.ULP* $ ( CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) ) ) ) $ GO TO 70 60 CONTINUE H11 = H( L, L ) H22 = H( L+1, L+1 ) H11S = H11 - T H21 = REAL( H( L+1, L ) ) S = CABS1( H11S ) + ABS( H21 ) H11S = H11S / S H21 = H21 / S V( 1 ) = H11S V( 2 ) = H21 70 CONTINUE * * Single-shift QR step * DO 120 K = M, I - 1 * * The first iteration of this loop determines a reflection G * from the vector V and applies it from left and right to H, * thus creating a nonzero bulge below the subdiagonal. * * Each subsequent iteration determines a reflection G to * restore the Hessenberg form in the (K-1)th column, and thus * chases the bulge one step toward the bottom of the active * submatrix. * * V(2) is always real before the call to CLARFG, and hence * after the call T2 ( = T1*V(2) ) is also real. * IF( K.GT.M ) $ CALL CCOPY( 2, H( K, K-1 ), 1, V, 1 ) CALL CLARFG( 2, V( 1 ), V( 2 ), 1, T1 ) IF( K.GT.M ) THEN H( K, K-1 ) = V( 1 ) H( K+1, K-1 ) = ZERO END IF V2 = V( 2 ) T2 = REAL( T1*V2 ) * * Apply G from the left to transform the rows of the matrix * in columns K to I2. * DO 80 J = K, I2 SUM = CONJG( T1 )*H( K, J ) + T2*H( K+1, J ) H( K, J ) = H( K, J ) - SUM H( K+1, J ) = H( K+1, J ) - SUM*V2 80 CONTINUE * * Apply G from the right to transform the columns of the * matrix in rows I1 to min(K+2,I). * DO 90 J = I1, MIN( K+2, I ) SUM = T1*H( J, K ) + T2*H( J, K+1 ) H( J, K ) = H( J, K ) - SUM H( J, K+1 ) = H( J, K+1 ) - SUM*CONJG( V2 ) 90 CONTINUE * IF( WANTZ ) THEN * * Accumulate transformations in the matrix Z * DO 100 J = ILOZ, IHIZ SUM = T1*Z( J, K ) + T2*Z( J, K+1 ) Z( J, K ) = Z( J, K ) - SUM Z( J, K+1 ) = Z( J, K+1 ) - SUM*CONJG( V2 ) 100 CONTINUE END IF * IF( K.EQ.M .AND. M.GT.L ) THEN * * If the QR step was started at row M > L because two * consecutive small subdiagonals were found, then extra * scaling must be performed to ensure that H(M,M-1) remains * real. * TEMP = ONE - T1 TEMP = TEMP / ABS( TEMP ) H( M+1, M ) = H( M+1, M )*CONJG( TEMP ) IF( M+2.LE.I ) $ H( M+2, M+1 ) = H( M+2, M+1 )*TEMP DO 110 J = M, I IF( J.NE.M+1 ) THEN IF( I2.GT.J ) $ CALL CSCAL( I2-J, TEMP, H( J, J+1 ), LDH ) CALL CSCAL( J-I1, CONJG( TEMP ), H( I1, J ), 1 ) IF( WANTZ ) THEN CALL CSCAL( NZ, CONJG( TEMP ), Z( ILOZ, J ), $ 1 ) END IF END IF 110 CONTINUE END IF 120 CONTINUE * * Ensure that H(I,I-1) is real. * TEMP = H( I, I-1 ) IF( AIMAG( TEMP ).NE.RZERO ) THEN RTEMP = ABS( TEMP ) H( I, I-1 ) = RTEMP TEMP = TEMP / RTEMP IF( I2.GT.I ) $ CALL CSCAL( I2-I, CONJG( TEMP ), H( I, I+1 ), LDH ) CALL CSCAL( I-I1, TEMP, H( I1, I ), 1 ) IF( WANTZ ) THEN CALL CSCAL( NZ, TEMP, Z( ILOZ, I ), 1 ) END IF END IF * 130 CONTINUE * * Failure to converge in remaining number of iterations * INFO = I RETURN * 140 CONTINUE * * H(I,I-1) is negligible: one eigenvalue has converged. * W( I ) = H( I, I ) * reset deflation counter KDEFL = 0 * * return to start of the main loop with new value of I. * I = L - 1 GO TO 30 * 150 CONTINUE RETURN * * End of CLAHQR * END