numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/clamtsqr.f | 12251B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
*> \brief \b CLAMTSQR * * Definition: * =========== * * SUBROUTINE CLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, * $ LDT, C, LDC, WORK, LWORK, INFO ) * * * .. Scalar Arguments .. * CHARACTER SIDE, TRANS * INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC * .. * .. Array Arguments .. * COMPLEX A( LDA, * ), WORK( * ), C(LDC, * ), * $ T( LDT, * ) *> \par Purpose: * ============= *> *> \verbatim *> *> CLAMTSQR overwrites the general complex M-by-N matrix C with *> *> *> SIDE = 'L' SIDE = 'R' *> TRANS = 'N': Q * C C * Q *> TRANS = 'C': Q**H * C C * Q**H *> where Q is a complex unitary matrix defined as the product *> of blocked elementary reflectors computed by tall skinny *> QR factorization (CLATSQR) *> \endverbatim * * Arguments: * ========== * *> \param[in] SIDE *> \verbatim *> SIDE is CHARACTER*1 *> = 'L': apply Q or Q**H from the Left; *> = 'R': apply Q or Q**H from the Right. *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> = 'N': No transpose, apply Q; *> = 'C': Conjugate Transpose, apply Q**H. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >=0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix C. N >= 0. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER *> The number of elementary reflectors whose product defines *> the matrix Q. M >= K >= 0; *> *> \endverbatim *> *> \param[in] MB *> \verbatim *> MB is INTEGER *> The block size to be used in the blocked QR. *> MB > N. (must be the same as CLATSQR) *> \endverbatim *> *> \param[in] NB *> \verbatim *> NB is INTEGER *> The column block size to be used in the blocked QR. *> N >= NB >= 1. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension (LDA,K) *> The i-th column must contain the vector which defines the *> blockedelementary reflector H(i), for i = 1,2,...,k, as *> returned by CLATSQR in the first k columns of *> its array argument A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. *> If SIDE = 'L', LDA >= max(1,M); *> if SIDE = 'R', LDA >= max(1,N). *> \endverbatim *> *> \param[in] T *> \verbatim *> T is COMPLEX array, dimension *> ( N * Number of blocks(CEIL(M-K/MB-K)), *> The blocked upper triangular block reflectors stored in compact form *> as a sequence of upper triangular blocks. See below *> for further details. *> \endverbatim *> *> \param[in] LDT *> \verbatim *> LDT is INTEGER *> The leading dimension of the array T. LDT >= NB. *> \endverbatim *> *> \param[in,out] C *> \verbatim *> C is COMPLEX array, dimension (LDC,N) *> On entry, the M-by-N matrix C. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. *> \endverbatim *> *> \param[in] LDC *> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. LDC >= max(1,M). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. *> If MIN(M,N,K) = 0, LWORK >= 1. *> If SIDE = 'L', LWORK >= max(1,N*NB). *> If SIDE = 'R', LWORK >= max(1,MB*NB). *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \par Further Details: * ===================== *> *> \verbatim *> Tall-Skinny QR (TSQR) performs QR by a sequence of unitary transformations, *> representing Q as a product of other unitary matrices *> Q = Q(1) * Q(2) * . . . * Q(k) *> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A: *> Q(1) zeros out the subdiagonal entries of rows 1:MB of A *> Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A *> Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A *> . . . *> *> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors *> stored under the diagonal of rows 1:MB of A, and by upper triangular *> block reflectors, stored in array T(1:LDT,1:N). *> For more information see Further Details in GEQRT. *> *> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors *> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular *> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N). *> The last Q(k) may use fewer rows. *> For more information see Further Details in TPQRT. *> *> For more details of the overall algorithm, see the description of *> Sequential TSQR in Section 2.2 of [1]. *> *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,” *> J. Demmel, L. Grigori, M. Hoemmen, J. Langou, *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 *> \endverbatim *> *> \ingroup lamtsqr *> * ===================================================================== SUBROUTINE CLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, $ LDT, C, LDC, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER SIDE, TRANS INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC * .. * .. Array Arguments .. COMPLEX A( LDA, * ), WORK( * ), C( LDC, * ), $ T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY INTEGER I, II, KK, LW, CTR, Q, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME REAL SROUNDUP_LWORK EXTERNAL LSAME, SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL CGEMQRT, CTPMQRT, XERBLA * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'C' ) LEFT = LSAME( SIDE, 'L' ) RIGHT = LSAME( SIDE, 'R' ) IF( LEFT ) THEN LW = N * NB Q = M ELSE LW = M * NB Q = N END IF * MINMNK = MIN( M, N, K ) IF( MINMNK.EQ.0 ) THEN LWMIN = 1 ELSE LWMIN = MAX( 1, LW ) END IF * IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN INFO = -1 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN INFO = -2 ELSE IF( M.LT.K ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( K.LT.0 ) THEN INFO = -5 ELSE IF( K.LT.NB .OR. NB.LT.1 ) THEN INFO = -7 ELSE IF( LDA.LT.MAX( 1, Q ) ) THEN INFO = -9 ELSE IF( LDT.LT.MAX( 1, NB ) ) THEN INFO = -11 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -13 ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -15 END IF * IF( INFO.EQ.0 ) THEN WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CLAMTSQR', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( MINMNK.EQ.0 ) THEN RETURN END IF * * Determine the block size if it is tall skinny or short and wide * IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN CALL CGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA, $ T, LDT, C, LDC, WORK, INFO ) RETURN END IF * IF(LEFT.AND.NOTRAN) THEN * * Multiply Q to the last block of C * KK = MOD((M-K),(MB-K)) CTR = (M-K)/(MB-K) IF (KK.GT.0) THEN II=M-KK+1 CALL CTPMQRT('L','N',KK , N, K, 0, NB, A(II,1), LDA, $ T(1, CTR*K+1),LDT , C(1,1), LDC, $ C(II,1), LDC, WORK, INFO ) ELSE II=M+1 END IF * DO I=II-(MB-K),MB+1,-(MB-K) * * Multiply Q to the current block of C (I:I+MB,1:N) * CTR = CTR - 1 CALL CTPMQRT('L','N',MB-K , N, K, 0,NB, A(I,1), LDA, $ T(1,CTR*K+1),LDT, C(1,1), LDC, $ C(I,1), LDC, WORK, INFO ) END DO * * Multiply Q to the first block of C (1:MB,1:N) * CALL CGEMQRT('L','N',MB , N, K, NB, A(1,1), LDA, T $ ,LDT ,C(1,1), LDC, WORK, INFO ) * ELSE IF (LEFT.AND.TRAN) THEN * * Multiply Q to the first block of C * KK = MOD((M-K),(MB-K)) II=M-KK+1 CTR = 1 CALL CGEMQRT('L','C',MB , N, K, NB, A(1,1), LDA, T $ ,LDT ,C(1,1), LDC, WORK, INFO ) * DO I=MB+1,II-MB+K,(MB-K) * * Multiply Q to the current block of C (I:I+MB,1:N) * CALL CTPMQRT('L','C',MB-K , N, K, 0,NB, A(I,1), LDA, $ T(1, CTR*K+1),LDT, C(1,1), LDC, $ C(I,1), LDC, WORK, INFO ) CTR = CTR + 1 * END DO IF(II.LE.M) THEN * * Multiply Q to the last block of C * CALL CTPMQRT('L','C',KK , N, K, 0,NB, A(II,1), LDA, $ T(1,CTR*K+1), LDT, C(1,1), LDC, $ C(II,1), LDC, WORK, INFO ) * END IF * ELSE IF(RIGHT.AND.TRAN) THEN * * Multiply Q to the last block of C * KK = MOD((N-K),(MB-K)) CTR = (N-K)/(MB-K) IF (KK.GT.0) THEN II=N-KK+1 CALL CTPMQRT('R','C',M , KK, K, 0, NB, A(II,1), LDA, $ T(1, CTR*K+1), LDT, C(1,1), LDC, $ C(1,II), LDC, WORK, INFO ) ELSE II=N+1 END IF * DO I=II-(MB-K),MB+1,-(MB-K) * * Multiply Q to the current block of C (1:M,I:I+MB) * CTR = CTR - 1 CALL CTPMQRT('R','C',M , MB-K, K, 0,NB, A(I,1), LDA, $ T(1,CTR*K+1), LDT, C(1,1), LDC, $ C(1,I), LDC, WORK, INFO ) END DO * * Multiply Q to the first block of C (1:M,1:MB) * CALL CGEMQRT('R','C',M , MB, K, NB, A(1,1), LDA, T $ ,LDT ,C(1,1), LDC, WORK, INFO ) * ELSE IF (RIGHT.AND.NOTRAN) THEN * * Multiply Q to the first block of C * KK = MOD((N-K),(MB-K)) II=N-KK+1 CTR = 1 CALL CGEMQRT('R','N', M, MB , K, NB, A(1,1), LDA, T $ ,LDT ,C(1,1), LDC, WORK, INFO ) * DO I=MB+1,II-MB+K,(MB-K) * * Multiply Q to the current block of C (1:M,I:I+MB) * CALL CTPMQRT('R','N', M, MB-K, K, 0,NB, A(I,1), LDA, $ T(1,CTR*K+1),LDT, C(1,1), LDC, $ C(1,I), LDC, WORK, INFO ) CTR = CTR + 1 * END DO IF(II.LE.N) THEN * * Multiply Q to the last block of C * CALL CTPMQRT('R','N', M, KK , K, 0,NB, A(II,1), LDA, $ T(1,CTR*K+1),LDT, C(1,1), LDC, $ C(1,II), LDC, WORK, INFO ) * END IF * END IF * WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN * * End of CLAMTSQR * END